
OLAP For Multicriteria Maintenance Scheduling

Walter Cai†, David C. Anastasiu‡, Mingji Xia§, and Byron J. Gao‡
†Memorial High School, Madison, WI, USA

‡Department of Computer Science, Texas State University - San Marcos, San Marcos, TX, USA
§Department of Computer Science, University of Wisconsin - Madison, Madison, WI, USA

Abstract— Widely used in decision support systems, OLAP
(Online Analytical Processing) technology facilitates inter-
active analysis of multi-dimensional data of varied granular-
ities. In this paper, we demonstrate an interesting application
of OLAP in solving multicriteria maintenance scheduling
problems. Maintenance scheduling has many important ap-
plications, such as maintenance of inverted indexes for
search engines and maintenance of extracted structures for
unstructured data management systems. We introduce the
design and implementation of Scube, an OLAP-based web
service that allows users to navigate in a multi-dimensional
simulation cube and comprehensively evaluate maintenance
schedules. Based on the evaluation, the best trade-off sched-
ule can be selected.1

Keywords: OLAP, multicriteria maintenance scheduling, Pareto
set, decision support

1. Introduction
Since its first introduction in the early 90’s, OLAP (Online

Analytical Processing) technology has evolved to be a must-
have marketing weapon for business executives to systemat-
ically organize, understand, and use enterprise-wide data to
make strategic decisions [14]. OLAP facilitates interactive
analysis of multi-dimensional data of varied granularities.
Most OLAP applications are business-oriented, including
sales, financial and management reporting, marketing, busi-
ness process management, budgeting and forecasting.

In this paper, we investigate an interesting application
of OLAP in solving multicriteria maintenance scheduling
problems. Maintenance scheduling is a non-typical category
of scheduling problems, where jobs need to be periodically
maintained over a long time span. It has many important
applications, such as maintenance of inverted indexes for
search engines, maintenance of extracted structures for un-
structured data management systems, and maintenance of
materialized views in data warehouses.

Due to the explosive growth of the web, crawling web
pages has become increasingly challenging. As of ten years
ago, the typical time for a major search engine to crawl one

1This work originated from a student summer project Walter Cai did
under the direction of Dr. Byron J. Gao at the University of Wisconsin -
Madison.

billion pages was more than one week, and it took up to
six months for a new page to be indexed by popular search
engines [5]. To substantially improve up-to-dateness of in-
verted indexes and save on network bandwidth, incremental
crawling [5][4] was introduced, where crawlers estimate how
often pages change, and then schedule pages for revisit based
on their estimated change frequency and importance.

The challenge of managing unstructured data represents
the largest opportunity since managing relational data [9].
An essential step in unstructured data management is to
extract structures embedded in unstructured data, enabling
structured queries like “how many citations did Jim Gray
receive in 2009?" Web sources are highly dynamic, maintain-
ing extracted structures is a labor intensive undertaking, and
developing scheduling techniques to improve up-to-dateness
and reduce maintenance cost is critical [10].

Such maintenance scheduling tasks are generally subject
to communication and computation capacity constraints.
While we want to keep the jobs maintained as in-time as
possible, we also want to consume as few resources (e.g.,
workload) as possible. Taking account of several criteria
enables us to propose more realistic solutions to the decision
maker [21]. Therefore, maintenance scheduling problems are
best modeled as multicriteria optimization problems, where
multiple incommensurable objectives need to be optimized
simultaneously.

At the abstract level, in a typical multicriteria maintenance
scheduling problem, we have many jobs with different
maintenance periods and maintenance costs. During each
period, a job needs to be maintained at least once. We also
have a daily workload capacity. The task is then to find a
feasible schedule minimizing the long-term tardiness as well
as workload.

Unlike single objective optimization problems, multi-
objective or multicriteria problems do not have a single op-
timal solution. Instead, all non-dominated solutions form an
optimal Pareto set, or Pareto front. There are two conceptual
steps in solving multicriteria problems: search and decision
making. Search refers to the optimization process in which
the feasible set is sampled for Pareto solutions. Decision
making refers to selecting a suitable compromise solution
from the Pareto set. A human decision maker is required
to make the often difficult trade-offs among conflicting
objectives [13].

Maintenance schedules are long-term schedules having a
huge number of measure points, e.g., one tardiness value
for each job with respect to each due day, and one work-
load value for each day. The performance of maintenance
schedules cannot be well captured by a single measure (e.g.,
largest tardiness or workload) or at a single point (e.g.,
tardiness or workload for a particular day). For example,
schedule s1 with a bigger maximum tardiness may be much
more favorable over schedule s2 if s1 performs better than s2

in terms of tardiness for most due days of most jobs. Thus,
maintenance schedules need to be comprehensively evalu-
ated on their overall performance, which usually requires
human intervention.

OLAP technology, facilitating interactive analysis of
multi-dimensional data of varied granularities, is ideal in
assisting decision makers to compare and evaluate the overall
performance of alternative maintenance schedules by navi-
gating the data cube. In this paper, we introduce the design
and implementation of Scube (scheduling cube), an OLAP-
based web service that allows users to comprehensively
evaluate maintenance schedules.

Outlines. In Section 2, we discuss related work. In
Section 3, we model multicriteria maintenance scheduling
and introduce OLAP preliminaries. In Section 4, we discuss
in detail the architecture and design of Scube. In Section 5,
we discuss the implementation of the system. In Section 6,
we present initial empirical evaluations of Scube and a case
study. Section 7 concludes the paper.

2. Related Work
[5] studies how to refresh a local copy of an autonomous

data source to maintain the copy fresh in the context of man-
aging web data, in particular, inverted index maintenance. It
defines freshness, which informally represents the fraction
of up-to-date pages in the local collection.

Based on the same motivation of keeping inverted in-
dexes up-to-date, [4][11][17] discuss designs of incremental
crawlers with different topical foci, e.g., how web pages
evolve over time, what distribution better models changes
of web pages, and how to achieve scalability.

[6] theoretically studies a crawler scheduling problem
minimizing the fraction of time that pages spend out of
date, assuming Poisson page change processes and a general
distribution for page access time.

Maintenance scheduling applications abound in unstruc-
tured data management systems [9][10]. In such systems,
unstructured data are fetched periodically and structurized
to enable SQL-like queries. It is one of the central issues to
schedule the workflow wisely and keep the structured data
as fresh as possible while minimizing communication and
computation costs.

Scheduling theory first appeared in the mid 1950’s.
Scheduling concerns the allocation of limited resources to

tasks over time and is normally formulated as optimization
problems [18][7]. Maintenance scheduling is a non-typical
scheduling problem. Instead of completion time, it concerns
periodic in-time maintenance of jobs over a long time span.
[1][3][19][2] theoretically study a maintenance scheduling
formulation called “windows scheduling problem".

Multicriteria optimization has been studied for decades
[12][8][20]. An excellent overview for multicriteria schedul-
ing can be found in [21]. The majority of scheduling
problems are single objective. Taking account of several
criteria enables us to propose to the decision maker more
realistic solutions [21]. Multicriteria problems do not have
a single optimal solution and a decision maker is usually
involved in the problem solving procedure [13].

OLAP technology has been widely used in enterprise
decision support systems [14]. To our knowledge, we are
the first to apply OLAP to multicriteria optimization. For a
thorough coverage on OLAP, interested readers can refer
to the many books dedicated to data warehousing and
applications, e.g., [15][16].

3. Preliminaries
In this section, we briefly introduce OLAP preliminaries

and a generic problem formulation for multicriteria mainte-
nance scheduling.

OLAP. OLAP systems are built based on the multi-
dimensional model, where the central concept is data cube.
A data cube consists of a large set of numeric facts called
measures that are categorized by dimensions. Hierarchical
in nature, dimensions are the entities or perspectives with
respect to which an organization wants to keep records. Data
cubes are typically created from star schemas or snowflake
schemas, with star schemas being more popular.

Typical OLAP operations include roll-up, drill-down,
drill-across, drill-through, slice, dice, and pivot. There are
also other statistical operations available such as ranking and
computing moving averages and growth rates. These oper-
ations allow users to navigate a data cube along dimension
hierarchies and view the cube from different perspectives.

In particular, roll-up summarizes data by climbing up a
concept hierarchy of a dimension (or by dimension reduc-
tion) to have a “higher view", e.g., from a city view to
a country view. Drill-down is the reverse of roll-up going
from a higher level summary to a lower level summary.
Slice performs a selection on one dimension of the cube,
resulting in a subcube. Dice defines a subcube by performing
a selection on two or more dimensions. Pivot changes the
dimensional orientation and rotates the data axes in order to
provide an alternative presentation of the data. Drill-across
executes queries involving more than one fact table. Drill-
through uses relational SQL facilities to drill through the
bottom level of a data cube down to its back-end relational
tables [14].

Modeling of Multicriteria Maintenance Scheduling.
In a typical multicriteria maintenance scheduling problem,
there are n jobs to be maintained. Each job labeled i needs
to be maintained at least once every wi days and each
maintenance costs ci workload. There is a daily workload
capacity of k. The task is to find a feasible schedule
minimizing the long-term tardiness as well as workload.

The measure tardiness is either 0 (maintained in time) or a
positive number indicating the number of days after the due
day of a maintenance. A feasible schedule is one satisfying
all the given constraints. The notion of day here is symbolic,
it can be time slot of any length.

We use a tuple I = (k, (c1, w1), . . . , (cn, wn)) to denote
an instance of a multicriteria maintenance scheduling prob-
lem. In I , each job i has a maintenance window of size wi

and maintenance cost of ci.
Note that, real maintenance scheduling problems are

almost always dynamic, where jobs come and go, and
maintenance costs and window sizes change randomly. For
example, web pages are created and deleted every day. Blogs
would get updated more frequently during holiday seasons.
Authors may receive higher citation rates after winning
some major awards. Therefore in a dynamic maintenance
scheduling instance I , the parameters k, ci, and wi are not
constants, but variables.

4. Architecture of Scube
In this section, we discuss in detail the design, architecture

and workflow of Scube.
The architecture of Scube is shown in Figure 1. In the

system, a dynamic multicriteria scheduling instance I can
either be automatically generated by the data generation
module or provided by users. Some built-in schedulers in
the scheduling module will then be applied to I to generate
a set of alternative schedules that approximate the Pareto
set. Users can also apply external schedulers to generate
schedules for I and upload them. Then, from I and the set
of alternative schedules, the cube computation module com-
putes a simulation cube. The cube navigation module allows
users to navigate the cube and evaluate the schedules in three
modes: SQL, CQL, and Graphic. Based on interactive and
comprehensive evaluations, users can decide the best trade-
off schedule for I .

Data Generation Module. Scube provides a synthetic
data generator that generates dynamic maintenance schedul-
ing instances. The instances can vary in size n, length, daily
workload capacity k, distribution (Gaussian or Poisson) of
maintenance cost ci and window size wi. Since Scube
performs a simulation calculating measures for each day,
a valid instance must end at some finite length.

Dynamic factors (creation and deletion of jobs, change of
parameters) are added randomly under a uniform or Poisson
distribution.

Scheduling
Module

Cube Navigation
Module

Cube
Computation

Module

Best
Schedule Simulation

CubeSQL CQL Graphic

Multi-
criteria

Problem

Alternative
Schedules

Data
Generation

Module

Fig. 1: Scube architecture.

Scube was designed to provide web services. Thus, it
also allows users to upload their own scheduling instances
conforming to a simple XML style format as described in
the following.

Multicriteria Problem. In instance I , maintenance cost
ci and window size wi can be updated at any specified day.
A new job is created if it appears in I with a new id. Job
i is deleted if ci becomes 0. The daily workload capacity k
can be modified as well. I ends on the day when all jobs
are deleted.

An example instance I is given in Figure 2 (left hand
side), demonstrating the required simple format. On day 1,
two jobs 1 and 2 are inserted, where c1 = c2 = 1 and
w1 = w2 = 4. The daily capacity k = 2. On day 3, k is
updated to 3, c1 is updated to 0.5, and w1 is updated to 8.
On day 5, all jobs are deleted and I is ended.

Scheduling Module. The scheduling module contains a
repository of schedulers for users to choose. Currently it
includes two built-in schedulers, EDD (Earliest Due Day
first) and MMEDD (Multicriteria Maintenance version of
EDD).

The simple greedy algorithm EDD provides optimal
solutions for many non-maintenance scheduling problems
minimizing the maximum tardiness [7]. In EDD, jobs are
ordered by non-decreasing order of due dates (breaking ties
arbitrarily) and scheduled in that order.

EDD minimizes tardiness but cares little about workload.
If used in maintenance scheduling, EDD would consume too
much workload unnecessarily. Non-maintenance scheduling
concerns early completion of jobs, whereas in maintenance
scheduling, the concern is long-term in-time maintenance.
Jobs will not be completed. Each maintenance of a job
simply generates a new due day for the same job. Thus EDD
would end up generating too many due days unnecessarily.
MMEDD minimizes tardiness while using workload wisely.
We omit the algorithmic details of MMEDD as they are

<jobs>

 <day>1</day>

 <k>2</k>

 <job>

 <id>1</id>

 <c>1</c>

 <w>4</w>

 </job>

 <job>

 <id>2</id>

 <c>1</c>

 <w>4</w>

 </job>

</jobs>

<jobs>

 <day>3</day>

 <k>3</k>

 <job>

 <id>1</id>

 <c>0.5</c>

 <w>8</w>

 </job>

</jobs>

<jobs>

 <day>5</day>

 <deleteall>yes</deleteall>

</jobs>

<schedule>

 <id>1</id>

 <day>1</day>

 <jobs>1,2</jobs>

 <day>2</day>

 <jobs>1,2</jobs>

 <day>3</day>

 <jobs>1,2</jobs>

 <day>4</day>

 <jobs>1,2</jobs>

</schedule>

<schedule>

 <id>2</id>

 <day>1</day>

 <jobs></jobs>

 <day>2</day>

 <jobs></jobs>

 <day>3</day>

 <jobs></jobs>

 <day>4</day>

 <jobs>2</jobs>

</schedule>

Fig. 2: Example problem and schedules.

beyond the scope of this paper.
A chosen scheduler will generate a set of alternative

schedules for input instance I . The scheduling step can be
executed multiple times using different schedulers, in other
words, the generated alternative schedules to be evaluated
are not necessarily from the same scheduler.

Instead of using the Scube built-in schedulers, users
can also apply external scheduling mechanisms on I and
upload the resulting schedules for evaluation, as long as
those schedules conform to a simple XML style format as
described in the following.

Alternative Schedules. An example set of generated
alternative schedules is given in Figure 2 (right hand side),
demonstrating the required simple format. There are two
schedules in the set with id 1 and 2 for the instance I given
in the left hand side. Schedule 1 is an “exhausting" schedule,
according to which both jobs need to be maintained every
day from day 1 to day 4. Schedule 2 is an optimal schedule,
according to which no maintenance is needed from day 1
to day 3, and only job 2 needs to be maintained on day 4.
Note that in I , the due day of job 1 is updated on day 3 and
it is not due on day 4 anymore, but on day 8.

Cube Computation Module. The cube computation mod-
ule takes as input the problem instance I and the set
of alternative schedules to compute all the tardiness and
workload measures. The computed values are then inserted
into the fact table of the simulation cube. Algorithm 1
presents the pseudo code for this computation.

In line 6 of Algorithm 1, by comparing the current day

Algorithm 1 Cube Computation
Input: I: scheduling instance; S: set of schedules
Output: F : fact table of the simulation cube

1: process I and store each update of ci and wi for job i
into Ci and Wi respectively, where Ci and Wi are arrays
of (day, value) pairs;

2: for each s ∈ S
3: for each day d ≤ the end day of s
4: for each job i
5: if (job i is scheduled) then
6: compare d with D[i] to obtain the tardiness

for job i on day d w.r.t. schedule s and insert
into F ;

7: consult Ci to obtain the current cost of job i
and insert into F as the maintenance workload
spent on job i on day d w.r.t. schedule s;

8: consult Wi and update D[i];
9: end if

10: end for
11: end for
12: end for

d with the current due day of job i that is scheduled (and
maintained) on day d, we get the tardiness for job i on day
d w.r.t. schedule s. We insert this tardiness value into the
fact table properly.

In line 7, by consulting Ci we can get the current mainte-
nance cost for the scheduled job i. This cost is inserted into
the fact table as the workload spent on job i on day d w.r.t.
schedule s.

Note that, the series of due days for job i are not pre-
fixed. They depend on the actual schedule as well as the
dynamics of job i itself in the input instance I . In line 8,
after a maintenance, the next due day for job i is updated.
For this update, we need to know the current window size
for job i as it may change at any given day.

The algorithm is linear in the number of jobs, the number
of days, and the number of schedules.

Simulation Cube. The data cube in Scube is called
simulation cube because the facts collected and stored in the
cube are based on a simulation of some maintenance sce-
nario. In this study, we assume jobs are always maintained
as scheduled.

The design of the simulation cube in Scube adopts a star
schema, which involves a large central fact table containing
the bulk of data with no redundancy, and a set of smaller
attendant dimension tables one for each dimension [14].

In Scube, there are three dimension tables, time, jobs,
and schedules. The “time" dimension has a concept hierarchy
of “day", “week", “month", and “year". For simplicity, they
are totally ordered, i.e., a year has 12 months, a month has
4 weeks, and a week has 7 days. The “day" attribute is

Table 1: Comparison of Navigation Modes
Modes Functionality Usability Implementation
SQL Very Good Very Bad Very Easy
CQL Very Good Good Easy

Graphic Very Good Very Good Hard

the primary key in the time dimension table with positive
integers as domain. The “time" dimension allows users to
evaluate schedules based on their performance on different
periods of time of varied granularity.

The “jobs" dimension table has job “id" as primary key.
The two other attributes are “cost" and “window", with
domains of {high, normal, low} and {long, normal, short}
respectively. Jobs are put into different “cost" and “window"
categories based on their calculated average cost and average
window size. The “jobs" dimension allows users to evaluate
schedules based on their performance on different types of
jobs. Note that the “jobs" dimension has a partial order
concept hierarchy.

The “schedules" dimension table has schedule “id" as pri-
mary key. It also has a “type" attribute with domain of {busy,
normal, lazy}, allowing comparing and evaluating schedules
by groups. Busy schedules are those generated (e.g., by
MMEDD) for (k′, (c1, w1), . . . , (cn, wn)) with larger k′ ≤ k
values. Such schedules tend to squander workload for the
minimization of tardiness. Lazy schedules, on the contrary,
favor economic use of workload. Normal schedules are in
between the two.

The fact table has the primary key of every dimension
table as one of its attributes. These attributes are foreign
keys to the corresponding dimension tables, and they to-
gether form the primary key for the fact table. The two
measure attributes are “tardiness" and “workload". There is
a tardiness value, 0 or a positive number, for each scheduled
maintenance and NULL otherwise. Similarly, there is a
positive workload value for each maintenance, which is
equal to the cost of the job being maintained. We use 0
as the default value for workload, which would not cause
any confusion as in the tardiness case.

Cube Navigation Module. The cube navigation module
allows users to interactively evaluate the alternative sched-
ules by navigating the simulation cube. There are three
navigation modes, SQL, CQL, and Graphic.

In the SQL (Structured Query Language) mode, a query
window is provided taking any standard SQL query over the
fact table. In the CQL (Cube Query Language) mode, only
several types of predefined intuitive cube navigation queries
are allowed in the query window. In the Graphic mode, the
CQL operations can be performed on a visible cube without
typing textual queries.

A comparison summary for the three navigation modes
is shown in Table 1. In terms of functionality, the SQL
mode obviously provides every possible structured way of

exploring the fact table. With less querying power in general,
the CQL and Graphic modes however provide sufficiently
good querying capability, as they are tailored to facilitate
cube navigation.

In terms of usability, the SQL mode is very bad because
very few regular users are trained to write SQL queries.
The CQL mode, however, is good as its syntax is simple,
intuitive, and easy to learn. The Graphic mode obviously has
the best usability.

In terms of implementation, the SQL mode is very easy
only requiring implementation of a simple interface. The
CQL mode is also fairly easy, as CQL can be considered as a
selective subset of SQL queries plus some syntactic sugar to
improve usability. The Graphic mode is hard to implement,
but it can be essential if we want to make Scube truly
accessible to lay users.

To enable any mode of navigation, users need to know
the schema of the fact and dimension tables. Scube allows
users to browse such information easily.

Currently, CQL defines the most basic OLAP operations,
up (roll-up), down (drill-down), and slice. A CQL query
takes the following format:

Operation Dimension [V alue]

For example, “up time" means to perform a one level
roll-up on the “time" dimension. “down time 2" means to
perform a two level drill-down on the “time" dimension.
The very top level of any dimension is the absence of the
dimension. In addition, “reset" resets the cube to a default
state, which corresponds to the apex cuboid in the lattice of
cuboids of the simulation cube.
Scube allows daisy-chaining multiple commands by sep-

arating them with a semicolon, allowing users to jump
from one cuboid to another directly, as demonstrated by the
following example:

reset; down time 2; down jobs.cost 1

In the above example, conceptually the cube is first reset
to the default state. Then it is drilled-down by 2 levels
along the “time" dimension, and then it is drilled-down by
1 level along the “cost" attribute of the “jobs" dimension.
Recall that the “jobs" dimension has a partial order concept
hierarchy. It is inefficient if all these conceptual steps are
actually computed one after the other, as the user is only
interested in the final state of the cube. Scube analyzes
the multiple commands in a daisy-chained command and
translate them into a single aggregation group-by SQL query,
greatly reducing processing time.

Best Schedule. Alternative schedules are typically non-
dominated and “goodness" of schedules is generally subject
to user preferences. After interactively querying the simula-
tion cube, users will obtain comprehensive knowledge about
the overall performance of those alternative schedules, from
which they are responsible to decide the “best" schedule.

5. Implementation
Scube was implemented in PHP using an OOP ar-

chitecture, utilizing standard web application development
strategies such as the Front Controller Pattern, Model View
Controller, and the Template Pattern. This makes the ap-
plication easily maintainable and extendable. On the server
side, Scube made use of several industry standard frame-
works, such as the Zend PHP Framework2 and Smarty PHP
Template Engine3.

On the client side, Scube used Ajax, implemented using
the jQuery JavaScript Framework4, to enable a rich user
experience without unnecessary delays caused by repeated
browser page refreshes.

In Scube, users follow three steps to complete a schedul-
ing task: present the problem, schedule the problem, and
navigate the cube. All initiated actions within the three
steps are handled in the background by the server via Ajax
requests, which update the browser window with appropri-
ate responses. Scheduling a problem generally takes much
longer time than submitting a problem. Thus all submitted
problems are queued, and the server checks the queue each
minute for new items.
Scube allows users to delete schedules for a given

problem. When a schedule is deleted, the data is removed
from the simulation cube.

To allow concurrent access to the Scube service, the
system generates a random session id for each new ap-
plication session. Users are allowed to change this id.
During subsequent sessions, users can continue to work on
a problem by providing the same session id.

6. Evaluation
Scube5 is open for public access and evaluation. In

this section, we present our initial usability and scalability
studies on Scube. We also introduce a citation information
monitoring system6 as a maintenance scheduling case study.

User Study. Usability is a fundamental concern for
decision making tools like Scube. Decision makers are
business-oriented. They prefer systems that are intuitive,
friendly, and easy to learn and to use.

For an initial test on the usability of Scube, we prepared
6 questions regarding learning time, response time and user-
friendliness. The questions were distributed to 10 users,
most are IT professionals located in Austin (TX, USA) and
Wilmington (NC, USA) in a clinical research organization.
The questions and the received average scores on a scale of
1 to 10 are given in the following.

2http://framework.zend.com/
3http://www.smarty.net/
4http://jquery.com/
5http://dmlab.cs.txstate.edu/scube/
6http://dmlab.cs.txstate.edu/citation/

0

20

40

60

80

100

120

140

160

100 500 900 1300 1700

of jobs

ti
m

e
 (

s
e

c
o

n
d

s
)

MMEDD Cube Computation Average Tardiness

Fig. 3: Scalability.

1) Is the system easy to learn? (9.6)
2) Is the interface user-friendly? (8.8)
3) Does the system respond quickly? (8.8)
4) Are the directions clear? (9.6)
5) Would you consider using such a system if you had

to evaluate alternative long schedules? (9.3)
6) How do you rate the system overall? (9.1)

The scores are higher than expected possibly because most
participants are IT professionals and better than average at
adapting to new technical tools and web services. The system
architecture (Q1) received a high score, which is evident for
the intuitive and logical design of the Scube architecture
as shown in Figure 1. The simple xml style formats for the
instance and schedules are also easy to digest.

The interface (Q2) received a lower score possibly because
we have not fully implemented the Graphic mode for cube
navigation. If users are not familiar with SQL, the SQL
navigation mode can be very unfriendly. Although the CQL
navigation mode is much more friendly, it may still require
some basic understanding on OLAP tools.

The system response performance (Q3) received a lower
score possibly because the users did not understand that
long-term many-job maintenance tasks could easily take a
couple of minutes to schedule. It takes even longer time to
calculate the measures for numerous measure points and load
them into the simulation cube. Thus, the longer response
time may have appeared unexpected.

Overall, the initial deployment of Scube is satisfactory.
The participants felt it could well be a convenient tool for
comprehensively evaluating long schedules.

Scalability Study. In Scube, the most time-consuming
modules are scheduling (MMEDD) and cube computation.
We experimentally evaluated their scalability performance.

In this series of experiments, we used our data generator
to generate instances of different sizes, where daily capacity

k was set to 10 and length of schedules was set to 1000
days. The maintenance cost was set to 1 for every job and
the window size values were random numbers in the range
of 28 to 100 under the normal distribution.

For each instance size, 5 experiments were performed and
the average time was taken. The results are presented in
Figure 3, which shows the scalability of MMEDD and cube
generation, and thus, Scube.

A similar series of experiments were performed for in-
stances generated under the Poisson distribution, and the
results exhibit a similar trend as in Figure 3.

Figure 3 also shows the average tardiness in these exper-
iments, for the purpose of showing an insight that is typical
in maintenance scheduling, i.e., the tardiness increases with
the increase of number of jobs.

Citation Information Monitoring. This research was
initially motivated by a citation monitoring service, where
we monitor the dynamics of citations for authors (currently
8988 of them) in the database community, and provide
online services taking temporal queries for citation. A pilot
system, still under continuous development and evaluation,
has been deployed and up running for about 10 months.
This application is a typical case of dynamic maintenance
scheduling problem.

Tardiness directly impacts the functionality of the system.
For example, if we crawl Jim Gray once every 30 days,
we will not be able to properly answer queries like “what
citations did Jim Gray receive in the last 10 days?"

Workload is just as critical. Actually we have received
complaints from some web sources for intensive crawling.
We definitely need to reduce the total workload.

Thus, in this project we have paid great attention to
scheduling. The application is also exposed to a typical dy-
namic environment, where new authors enter the community
at random times and citation rates change dynamically.

The window size wi for each author i needs to be
estimated each day so as to quickly capture dynamic changes
of citation rates. The basic idea for this estimation is to
calculate a weighted average for the number of citations
received by author i in the past certain number (e.g., 300)
of days. Each author also needs to be assigned a different
maintenance cost, which can be estimated based on the
number of publications of the author. More publications lead
to bigger maintenance cost.

7. Conclusion
In this paper, we demonstrated an interesting application

of OLAP in solving multicriteria maintenance scheduling
problems. Such problems can properly model many impor-
tant applications in information monitoring, such as mainte-
nance of inverted indexes for search engines, maintenance of
extracted structures for unstructured data management, and
maintenance of materialized views in data warehouses, to

name a few. We introduced the design and implementation
of Scube, an OLAP-based web service that helps users to
comprehensively evaluate alternative maintenance schedules
and make decisions on the best trade-off schedule to select.

Future work includes continuous development and refine-
ment of Scube, e.g., on the Graphic navigation mode. The
built-in repository of schedulers in Scube can be expanded
as well. Last but not least, although we provided initial
empirical evaluation on Scube, for a more convincing
justification, it is important if we can apply Scube to
real applications and see the actual long-term benefits it
generates.

References
[1] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing

service and operation costs of periodic scheduling. Math. Oper. Res.,
27(3):518–544, 2002.

[2] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for
broadcast systems. SIAM J. Comput., 32(4):1091–1113, 2003.

[3] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a
restricted version of bin packing. ACM Transactions on Algorithms,
3(3), 2007.

[4] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. In VLDB, 2000.

[5] J. Cho and H. Garcia-Molina. Synchronizing a database to improve
freshness. In SIGMOD, 2000.

[6] E. Coffman, Z. Liu, and P. Weber. Optimal robot scheduling for web
search engines. Journal of Scheduling, (1):15 – 29, 1998.

[7] C. S. David R. Karger and J. Wein. Scheduling Algorithms. Algo-
rithms and Theory of Computation Handbook, 1998.

[8] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[9] A. Doan, J. F. Naughton, A. Baid, X. Chai, F. Chen, T. Chen, E. Chu,
P. DeRose, B. J. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q.
Vuong. The case for a structrued approach to managing unstructured
data. CIDR, 2008.

[10] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen. Community information management.
IEEE Data Eng. Bull., 29(1):64 – 72, 2006.

[11] J. Edwards, K. McCurley, and J. Tomlin. An adaptive model for
optimizing performance of an incremental web crawler. In WWW,
2001.

[12] M. Ehrgott. Multicriteria optimization. Springer, 2005.
[13] G. W. Evans. An overview of techniques for solving multiobjective

mathematical programs. 30(11):1268 – 1282, 1984.
[14] J. Han and M. Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2006.
[15] C. Imhoff and N. Galemmo. Mastering Data Warehouse Design:

Relational and Dimensional Techniques. John Wiley & Sons, 2003.
[16] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete

Guide to Dimensional Modeling. John Wiley & Sons, 2002.
[17] L. Lim, M. Wang, and S. Padmananbhan. Dynamic maintenance of

web indexes using landmarks. In WWW, 2003.
[18] M. Pinedo. Scheduling - Theory, Algorithms, and Systems. Prentice

Hall, 1995.
[19] R. H. Shoshana Anily, Celia A. Glass. The scheduling of maintenance

service. Discrete Applied Mathematics, 82(1–3):27–42, 1998.
[20] R. E. Steuer. Multiple Criteria Optimization: Theory, Computations,

and Application. John Wiley & Sons, 1984.
[21] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling. Springer, 2006.

