
52 	 Published by the IEEE Computer Society	 1089-7801/13/$31.00 © 2013 IEEE� IEEE INTERNET COMPUTING

Se
ar

ch
 R

es
ul

ts
 R

an
ki

ng

User-Centric Organization
of Search Results

Byron J. Gao
Texas State University

David Buttler
Lawrence Livermore National Lab

David C. Anastasiu,
Shuaiqiang Wang,
Peng Zhang, and Joey Jan
Texas State University

Search engines should organize results to minimize user effort. The authors

introduce a user-centric approach to organizing search results for the

common ranked-list search interface and the alternative clustering interface,

letting users personalize how the results are organized. Such personalized

views can be combined to provide an aggregated view as a mass-collaborative

way of improving search performance. Two working prototypes, Rants and

ClusteringWiki, show how the approach can serve as a complementary

solution for effectively organizing search results.

H ow search results are organized
and presented directly affects
search engine utility. Ideally,

the organization should make it easier
for users to fulfill their information
needs. Currently, the most common search
interface is the list interface, in which
search results are organized in a
ranked list. The clustering interface is
an emerging alternative that lets users
navigate search results through a hier-
archy of meaningful labels (see the
“List Versus Clustering” sidebar).

Most search engines use a machine-
centric approach for organizing search
results. It’s automatic, algorithmic, and
involves little or no user interven-
tion. For the list interface, the rank-
ing scheme considers relevancy, term
proximity, static quality, and diversity.
Commercial search engines typically
adopt numerous ranking heuristics.
Machine learning techniques are also
under intensive research and develop-
ment. Algorithmic search result clustering

has received increasing attention in
recent years from the information
retrieval, Web search, and data mining
communities (see the “Related Work in
Search Result Organization” sidebar).
Commercial clustering search engines
include Clusty (www.clusty.com), iBoogie
(www.iboogie.com), and CarrotSearch
(carrotsearch.com).

Our user-centric approach lets users
directly edit and manipulate the search
result organization, thus creating a
query-specific personalized view. Tradi-
tional personalized search maintains a
profile for each user based on the user’s
search history1 and uses this profile to
influence all queries from the user. This
influence is limited and indirect because
the user can’t arbitrarily and directly
manipulate the search result presenta-
tion. In user-centric personalization, a
set of edits is associated with a particu-
lar query (or similar ones). Web queries
abide by the power law,2 which means
there are many rare queries and very

IC-17-03-Gao.indd 52 4/5/13 11:57 AM

User-Centric Organization of Search Results

MAY/JUNE 2013� 53

few frequent ones. Queries from individual users
would follow the same trend. Therefore, although
the user-centric approach is query-specific, in
practice it can be applied wisely only to the com-
mon queries and wouldn’t incur unlimited stor-
age and computation overhead. It provides a
complementary solution to profile-based person-
alization, and the two can be used in combina-
tion to handle common and rare queries.

User-centric personalization also lets users
share edits. This approach can combine person-
alized views to form an aggregated view, let-
ting users collaborate at a mass scale and “vote”
for the best search result presentation. This
approach is in line with current Web trends,
such as Web 2.0, Semantic Web, and mass col-
laboration.3 Whereas general mass collabora-
tion applications feature entity annotation, our
approach involves implicitly annotating rela-
tionships. Specifically, user editing of ranked
lists corresponds to annotation of total orders,
and user editing of clusterings corresponds to
annotation of partial orders.

We’ve deployed two prototypes, Rants
(dmlab.cs.txstate.edu/rants) and ClusteringWiki

(dm lab.cs.txstate.edu/ClusteringWiki), for the list
and clustering interfaces, respectively. Rants (Figure 1a)
features enhanced functionalities and makes the
first effort to establish a framework and prin-
cipled solutions for search engines of this kind.
For the clustering interface, we introduce and
implement personalized and mass-collaborative
clustering in the context of search result orga-
nization. In contrast to existing approaches that
innovate on the automatic algorithmic clustering
procedure, ClusteringWiki (Figure 1b) lets users
directly edit the clustering results.

Designing and implementing Rants and
ClusteringWiki pose nontrivial technical chal-
lenges. User edits represent user preferences or
constraints that should be enforced the next
time the same query is issued. Query process-
ing is time-critical, thus efficiency must receive
high priority to maintain and enforce user
preferences. Moreover, the dynamic nature of
search results brings complications.

Architecture and Principles
Rants and ClusteringWiki share a common
architecture (shown in Figure 2) and principles.

List Versus Clustering

The Boolean model is an early information retrieval (IR)
paradigm in which each query represents a Boolean

expression. It is a 1–0 model in which documents in the corpus
are either relevant – that is, they satisfy the Boolean condition
the query specifies – or irrelevant. All the relevant documents
are returned unranked.

Most modern IR systems adopt the more user-friendly
vector space model. Under this model, search results are
presented as a ranked list according to their relevancy to the
query, where document-query relevancy is calculated based on
the similarity between the document and the query, both rep-
resented as vectors of term weights. Most Web search engines
present search results as a ranked list, where the ranking
scheme typically incorporates additional factors, such as static
quality (for example, PageRank).

The flat ranked list search interface is simple and intuitive.
It’s effective for homogeneous search results or navigational
queries that seek a single website or a single entity’s homepage.
However, queries are inherently ambiguous, and search results
are often diverse with multiple senses. In a list presentation,
the results on a query’s different subtopics will be mixed
together. The user must sift through many irrelevant results to
locate the relevant ones.

With the Web’s rapid growth, queries have become more
ambiguous than ever. For example, Wikipedia includes more

than 20 entries for individuals named Jim Gray, including a
computer scientist, a sportscaster, a zoologist, a politician, a
film director, and a cricketer.

Clustering is an alternative search interface that minimizes
users’ browsing effort and alleviates information overload by
providing additional structure.1–3 Clustering organizes objects
into groups (clusters) that exhibit internal cohesion and exter-
nal isolation. We can use clustering to categorize a long list of
disparate search results into a few clusters such that each clus-
ter represents a homogeneous query subtopic. Meaningfully
labeled, these clusters let the user quickly locate relevant and
interesting results. Evidence shows that clustering improves
the user experience and search result quality.4

References
1.	 M.A. Hearst and J.O. Pedersen, “Reexamining the Cluster Hypothesis:

Scatter/Gather on Retrieval Results,” Proc. 19th Ann. Int’l ACM SIGIR Conf.

Research and Development in Information Retrieval, ACM, 1996, pp. 76–84.

2.	 O. Zamir and O. Etzioni, “Web Document Clustering: A Feasibility Dem-

onstration,” Proc. 21st Ann. Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval, ACM, 1998, pp. 46–54.

3.	 C. Carpineto et al., “A Survey of Web Clustering Engines,” ACM Computing

Surveys, vol. 41, no. 3, 2009, pp. 1–38.

4.	 C.D. Marming, P. Raghavan, and H. Schtze, Introduction to Information

Retrieval, Cambridge Univ. Press, 2008.

IC-17-03-Gao.indd 53 4/5/13 11:57 AM

Search Results Ranking

54	 www.computer.org/internet/� IEEE INTERNET COMPUTING

The query-processing module takes a query q
and a set of applicable user preferences as input
to produce a search result presentation T that
respects the preferences. The editing module
takes T and a user edit e as input to generate
preferences with respect to q. These preferences
are enforced immediately to refresh T, and are
stored and managed by the preference manage-
ment module.

The framework decomposes search result
presentation T into a set of independent editing
components. In particular, it decomposes a list
into a set of preference pairs in Rants, and it

decomposes a cluster tree into a set of root-to-
leaf paths in ClusteringWiki. So, it would decom-
pose the list in Figure 1a into {(r1, r2), (r2, r3),
(r3, r4), … }, and the cluster tree in Figure 3 into
{(All, A, B, P1), (All, A, B, P2), (All, A, C, P3), …}.
Each edit e on presentation T leads to the addi-
tion or removal of one or several editing compo-
nents, reflecting user preferences for T.

A user editing session typically involves a
series of edits. Decomposition makes these edits
independent of each other, leading to a more
responsive and reliable editing experience.
Independence of user preferences also enables

Related Work in Search Result Organization

Through SearchWiki (googleblog.blogspot.com/2008/11/
searchwiki-make-search-your-own.html) and U Rank

(research.microsoft.com/en-us/projects/urank), Web search
giants Google and Microsoft have experimented with a new
search paradigm that lets users directly and arbitrarily edit the
search result ranking. Rants demonstrates a well-formulated
framework with extended functionalities,1 letting users specify
both relative and absolute preferences and providing enhanced
flexibility in aggregating and sharing user preferences.

Researchers initially proposed document clustering for
information retrieval and Web search to improve search per-
formance by validating the cluster hypothesis, which states that
documents in the same cluster behave similarly with respect to
relevance to information needs.2 In recent years, researchers
have used clustering to organize search results, creating a cluster-
based search interface as an alternative presentation to the list
interface. The list interface works fine for most navigational
queries (seeking a single website), but can be less effective for
informational queries (covering a broad topic), which account
for most Web queries.3,4 Research has shown that the cluster
interface improves user experience and search result quality.5–7

One way to create a cluster interface is to construct a
static, offline, preretrieval clustering of the entire document
collection. For example, the dmoz (www.dmoz.org) directory
tries to establish a hierarchical categorization for the Web. It was
manually created by 52,000 editors and covers less than 5 percent
of all websites. However, this approach is ineffective because it’s
based on features that appear frequently in the entire collection
but are irrelevant to the particular query.8 Query-specific, online,
postretrieval clustering (that is, clustering search results) pro-
duces superior results.5

Scatter/gather was an early cluster-based document
browsing method that performed postretrieval clustering on
top-ranked documents returned from a traditional informa-
tion retrieval system.5 The Grouper system (retired in 2000)
introduced the Suffix Tree Clustering (STC) algorithm, which
groups Web search results into clusters labeled by phrases

extracted from snippets.9 Carrot2 (www.carrot2.org) is an
open source search result clustering engine that embeds STC.

Other related work from the Web, information retrieval,
and data mining communities exists. Claudio Carpineto and his
colleagues surveyed Web clustering engines and algorithms.8
Whereas all these methods focus on improving the automatic
algorithmic procedure of clustering, ClusteringWiki10 adopts a
user-centric approach that lets users directly edit the cluster-
ing results, leveraging the power of human computation and
mass collaboration.

References
1.	 B.J. Gao and J. Jan, “Rants: A Framework for Rank Editing and Sharing in

Web Search,” Proc. World Wide Web Conf., ACM, 2010, pp. 1245–1248.

2.	 C.J.V. Rijsbergen, Information Retrieval, Butterworth-Heinemann, 1979.

3.	 A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, vol. 36, no. 2, 2002,

pp. 3–10.

4.	 D.E. Rose and D. Levinson, “Understanding User Goals in Web Search,”

Proc. World Wide Web Conf., ACM, 2004, pp. 13–19.

5.	 M.A. Hearst and J.O. Pedersen, “Reexamining the Cluster Hypothesis:

Scatter/Gather on Retrieval Results, Proc. 19th Ann. Int’l ACM SIGIR Conf.

Research and Development in Information Retrieval, ACM, 1996, pp. 76–84.

6 .	 A . Tombros , R . V i l l a , and C . J . Van R i j sbergen , “The E f fec t i ve -

ness of Query-Specific Hierarchic Clustering in Information Retrieval,”

Information Processing and Management: An Int’l J., vol. 38, no. 4, 2002,

pp. 559–582.

7.	 M. Kaki, “Findex: Search Result Categories Help Users When Document

Ranking Fails,” Proc. SIGCHI Conf. Human Factors in Computing Systems, ACM,

2005, pp. 131–140.

8.	 C. Carpineto et al., “A Survey of Web Clustering Engines,” ACM Computing

Surveys, vol. 41, no. 3, 2009, pp. 1–38.

9.	 O. Zamir and O. Etzioni, “Web Document Clustering: A Feasibility Dem-

onstration,” Proc. 21st Ann. Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval, ACM, 1998, pp. 46–54.

10.	 D.C. Anastasiu, B.J. Gao, and D. Buttler, “ClusteringWiki: Personalized and

Collaborative Clustering of Search Results,” Proc. 20th ACM Int’l Conf. Infor-

mation and Knowledge Management, ACM, 2011, pp. 573–582.

IC-17-03-Gao.indd 54 4/5/13 11:57 AM

User-Centric Organization of Search Results

MAY/JUNE 2013� 55

their straightforward aggregation and enforce-
ment during query processing. Search results
are dynamic in nature. In query processing, we
need to enforce only the applicable preferences.
For example, for query q, we have a stored pref-
erence (r1, r2). If r2 is missing from the set of
returned results, (r1, r2) will become inapplicable.

Editing takes user effort. User preferences
can be aggregated and shared among users.
The preference management module periodi-
cally aggregates these preferences offline. With
decomposition, we can treat preferences inde-
pendently and aggregate them separately in
a straightforward manner. Let U be the set of
users whose preferences are to be aggregated.
We add a preference to the set P of aggregated
preferences if the percentage of users in U who
have specified the preference is beyond a tun-
able threshold. Preferences in P might conflict.
For example, {(r1, r2), (r2, r3), (r3, r1)}. We use a
cycle detection and breaking scheme to resolve
the problem. For each user u, let Pu be the set
of preferences u has specified through editing.
We only need to store the set difference Pu − P,
which will be updated when P is updated.

User preferences can also be shared among
similar queries and reused. For example, a user
who has edited the results for the query “David
Dewitt” likely wants to reuse the edits for the
query “David J. Dewitt.”

We use two similarity measures to decide
whether queries q and q′ are similar enough
to share preferences. The first, wordSim(q, q′),
compares the keywords of q and q′. The second,
rankSim(q, q ′), compares Kq and Kq ′, the top k

(for example, k = 10) search results of q and q′.
Both must pass their respective tunable thresh-
olds. Obviously, the bigger the thresholds, the
more conservative the sharing. Setting the
thresholds to 1 shuts down preference sharing.

Figure 1. Our user-centric search result organization approach: (a) screenshot of Rants, and (b) screenshot
of ClusteringWiki.

(a) (b)

Figure 2. Main components in the Rants and ClusteringWiki
architecture. The figure shows a typical workflow of the systems.

Query q Query-
processing

module

Editing
module

Search result
presentation T

Edit e

Preference-
management

module

Preferences

Applicable
preferences

Figure 3. Example cluster tree. The figure
exemplifies a hierarchical presentation of search
results in ClusteringWiki.

All

P1

P2

P3

P4

P1

P5

B

C

A

D

IC-17-03-Gao.indd 55 4/5/13 11:57 AM

Search Results Ranking

56	 www.computer.org/internet/� IEEE INTERNET COMPUTING

To compute wordSim(q, q′), we treat q and q′
as sets of keywords and use J(q, q′), the Jaccard
index for q and q′. Specifically,

 J q q
q q
q q

(,) .′ =
∩ ′
∪ ′

We have two opt ions for comput ing
rankSim(q, q′). We can use J(Kq, Kq′) − that is,
the Jaccard index for the top k results of q and q′.
Or, we can use the rank-aware Kendall tau coef-
ficient, a nonparametric statistic for measur-
ing the degree of correspondence between two
rankings. Specifically,

 τ ′ =
−

−
K K

n n

k k
(,) 1

2
(1)

,q q
c d

where nc is the number of concordant pairs
between Kq and Kq ′, and nd is the number of
disconcordant pairs. The denominator is just the
total number of pairs.

Suppose q has no stored preferences, and
we want to f ind a q ′ whose stored prefer-
ences can be shared with q. We first compute
wordSim(q, q′) to eliminate most of the unquali-
fied candidates. We then compute rankSim(q, q′)
and select a qualif ied q ′ with the largest
rankSim(q, q′).

Both Rants and ClusteringWiki can repro-
duce edited presentations. In particular, after a
series of user edits on Tinit (initial query results)
to produce T, if Tinit remains the same in a
subsequent query, exactly the same T will be
produced after enforcing the stored user pref-
erences generated from the previous user edits
on Tinit.

Rants
Existing systems provide two editing opera-
tions, promotion and demotion, in which a user
can promote (move up) or demote (move down)
a search result r for a query q by one or more
positions. Let up and down denote the two oper-
ations, where up(r, 2) means to move r up two
positions if possible (it might reach the top and
not be able to continue).

How does the system interpret a move?
The user intention behind a move is unfortu-
nately ambiguous. It might be an assertion for
the ranking of all results after the move, or it
might indicate several pairwise preferences for
the involved results only. In our framework,

we take a conservative approach and make the
fewest inferences from a move. For example, if
after up(r, 2) by user u for query q, r surpassed
r ′ and r″, we store two pairs (r, r ′) and (r, r″),
meaning that for q, user u prefers r to appear
before r′ and r″.

We adopt this least inference principle for
several reasons. First, it generates the least,
if any, ambiguity. In the previous example,
although different users might intend the same
move for different preferences, such prefer-
ences would at least include those two pairwise
preferences. We don’t even infer on the prece-
dence relationship between r ′ and r″. Second, it
achieves reproducibility.

Based on this interpretat ion, up (r, 2) is
equivalent to two consecutive executions of
up(r, 1). Thus, in Rants, we only allow up(r) and
down(r), meaning up(r, 1) and down(r, 1), indi-
cated by the ↑ and ↓ arrows in Figure 1. This
is not a limitation, but an emphasis on primi-
tive functionalities, instead of syntactic sug-
ars, for conceptual clarity. Each move results
in specification of one pair (preference). The set
of all pairs is maintained as a redundancy-free
directed acyclic graph.

Rants also features extended editing facili-
ties. Promotion and demotion specify relative
preferences. Users will often want to specify
absolute preferences as well. For example, user u
might always want to see result r appear among
the top three results for query q. This isn’t pos-
sible through relative preferences because over
time, new results for q would take the top three
seats whose pairwise preferences with respect
to r weren’t specified and stored.

User u might want to stipulate that result r
must appear among the top k. We use a pair (r, k)
to capture this absolute preference. As Figure 1a
shows, for each q, k can be entered into the box
to the right of the ↓ arrow.

In processing query q, we first determine a
set R of relative preferences and a set A of abso-
lute preferences that are applicable. We consider
these preferences as constraints to be enforced.
The enforcement adopts a least modification
principle, in which we use as little modification
as possible to enforce the constraints, and we
measure the degree of modification by edit dis-
tance between the search result rankings before
and after the enforcement.

We process R first. In Rants, the preference
management module maintains consistency of

IC-17-03-Gao.indd 56 4/5/13 11:57 AM

User-Centric Organization of Search Results

MAY/JUNE 2013� 57

relative preferences, so R is completely enforce-
able. We can enforce a partial order in differ-
ent ways, which reflects the fact that a directed
acyclic graph can have many topological order-
ings. In graph theory, a topological ordering
of a directed acyclic graph is a linear ordering
of its nodes in which each node comes before
all nodes to which it has outbound edges. It’s
a total order that’s compatible with the partial
order. Every directed acyclic graph has one
or more topological orderings. To comply with
the least modification principle, we compute
a topological ordering O for R that’s closest to
the list of search results, L. Next, we iteratively
process the edges in O in order. That is, for each
(r, r′) ∈ O, if r′ is before r in L, move r′ down to
the position immediately after r. In this pro-
cess, (r ′, k) ∈ A might be violated. But we do
nothing about it until the next stage.

Next, we process A. Absolute preferences
might conf lict with themselves (for example,
(r, 1) and (r ′, 1) might be specif ied at differ-
ent times) as well as with relative preferences.
Rants adopts a lightweight best-effort heuristic
to enforce A. To comply with the least modifica-
tion principle, we sort the results in A according
to their order in L, the list of search results. We
then iteratively process each (r, k) ∈ A by invok-
ing climb(r), which is recursive. If rank(r) > k,
it moves r up by swapping r and r′. If r′ blocks r, it
recursively calls climb(r′). Result r′ blocks r if
(r ′, k ′) ∈ A or (r ′, r) ∈ R is violated by the
planned swapping. When rank(r) = k, climb(r)
stops, or no swapping can be conducted. In
this case, all results above r (including r) are
blocked.

Clustering Wiki
In ClusteringWiki, search results are organized
in a cluster tree T, as exemplified in Figure 3.
The internal nodes contain cluster labels and
are presented on the left-hand label panel. Each
label is a set of keywords. The leaf nodes con-
tain search results, and the leaf nodes for a
selected label are presented on the right-hand
result panel. A search result can appear multi
ple times in T. The root of T represents the
query q and is always labeled with All. Labels
other than All represent the various, possibly
overlapping, subtopics of q.

A user u can edit T by creating, deleting,
modifying, moving, or copying nodes. As dis-
cussed earlier, we decompose T into a set of

independent root-to-leaf paths. Thus, each edit
leads to the insertion or deletion of one or more
paths. Each stored path p can be either positive
or negative, representing insertion and deletion,
respectively. Two opposite paths, p and −p,
will cancel each other out. User edits will be
validated against a set C of consistency con-
straints before being stored. The set C contains
predefined constraints that are specified on,
for example, cluster size, tree height, and label
length. These constraints maintain a favorable
user interface for fast and intuitive navigation.

For a query q, ClusteringWiki clusters the
search results with a default clustering algo-
rithm (for example, frequent phrase hierarchi-
cal) to produce an initial cluster tree Tinit. It
then enforces an applicable set P of stored user
preferences on Tinit to produce a modified clus-
ter tree T. The enforcement takes a straightfor-
ward combination of the paths in P and Tinit. In
particular, for each positive p ∈ P, if p ∉ Tinit,
add p to Tinit. For each negative p ∈ P, if p ∈ Tinit,
remove p from Tinit.

The system preprocesses the combined titles
and snippets of search results and uses them to
build Tinit. ClusteringWiki provides four built-
in clustering algorithms: k-means flat, k-means
hierarchical, frequent phrase flat, and frequent
phrase hierarchical. The hierarchical algo-
rithms recursively apply their flat counterparts
in a top-down manner to large clusters. The
k-means algorithms follow a strategy that gen-
erates clusters before labels. They use a simple
approach to generate cluster labels from titles
of search results that are the closest to cluster
centers. To produce stable clusters, the typi-
cal randomness in k-means due to the random
selection of initial cluster centers is removed.
The parameter k is heuristically determined
based on the input size.

The frequent phrase algorithms generate labels
before clusters. They first identify frequent
phrases using a suffix tree built in linear time
using Ukkonen’s algorithm. Next, they select
labels from the frequent phrases using a greedy
set cover heuristic, where at each step a frequent
phrase covering the most uncovered search
results is selected until the whole cluster is cov-
ered or no frequent phrases remain. They then
assign each search result r to a label L if r con-
tains the keywords in L. Uncovered search results
are added to a special cluster labeled Other. These
algorithms can generate meaningful labels with

IC-17-03-Gao.indd 57 4/5/13 11:57 AM

Search Results Ranking

58	 www.computer.org/internet/� IEEE INTERNET COMPUTING

a couple of additional heuristics — for example,
a sublabel can’t be a subset of a superlabel, in
which case the sublabel is redundant.

To evaluate ClusteringWiki’s utility in improv-
ing search performance, we conducted a user
study with 22 paid participants. We measured
user effort for three query types requiring iden-
tification of one, five, and 10 relevant results,
respectively. The metric for user effort was the
weighted number of examined cluster labels
and search results assuming top-down scan-
ning. We compared four presentations of ranked
list, initial clustering, personalized clustering,
and aggregated clustering. We used multiple
data sources, including Google’s Ajax Search
API (code.google.com/apis/ajaxsearch), Yahoo’s
Search API (developer.yahoo.com/search/web/
webSearch.html), the New York Times Annotated
Corpus dataset (Linguistic Data Consortium),
and the Tipster (disks 1–3) and Trec (disks 4–5)
datasets.

Figure 4 shows the average user effort for
110 queries from the 22 users for each of the
four presentations and each of the query types
on the Google data source. We can observe sim-
ilar trends for other data sources. These trends
reveal the following:

•	 Clustering saves user effort, and personal-
ized clustering is the most effective, saving
up to 50 percent of user effort.

•	 Aggregated clustering also has significant
benefits, and unlike personalized clustering,
doesn’t require user editing effort or login.

•	 Clustering’s effectiveness is related to the
depth of the relevant results. The lower the

results’ ranking, the more effective cluster-
ing is because more irrelevant results can be
skipped.

The detailed experiment setting and complete
experiment results are available elsewhere.4

T he ideas presented here can be extended to
faceted search,5 the current de facto stan-

dard for e-commerce. In faceted search, a set of
facets, each being a taxonomy, are used to orga-
nize information, allowing progressive query
refinement and exploratory search. Structure-
wise, the only difference between the cluster-
ing interface and faceted interface is a single
hierarchy versus multiple hierarchies. Faceted
search systems are costly to build and main-
tain. A mass-collaborative solution can greatly
benefit not-for-profit community portals such
as Craigslist.�

Acknowledgments
This research was supported in part by the US Depart-

ment of Energy’s Lawrence Livermore National Labo-

ratory under contract DE-AC52-07NA27344, the US

National Science Foundation (NSF) under grants OCI-

1062439 and CNS-1058724, and the Texas Norman Hack-

erman Advanced Research Program (NHARP) under grant

003656-0035-2009.

References
1.	 J.-R Wen, Z. Duo, and R. Song, Personalized Web

Search, Springer-Verlag, 2009.

2.	 C.D. Marming, P. Raghavan, and H. Schtze, Introduc-

tion to Information Retrieval, Cambridge Univ. Press,

2008.

3.	 A. Doan, R. Ramakrishnan, and A. Halevy, “Crowd-

sourcing Systems on the World-Wide Web,” Comm.

ACM, vol. 54, no. 4, 2011, pp. 86–89.

4.	 D.C. Anastasiu, B.J. Gao, and D. Buttler, “A Framework

for Personalized and Collaborative Clustering of Search

Results,” Proc. 20th ACM Int’l Conf. Information and

Knowledge Management, ACM, 2011, pp. 573–582.

5.	 D. Tunkelang, Faceted Search , Morgan & Claypool

Publishers, 2009.

Byron J. Gao is an assistant professor at Texas State Univer-

sity. His research spans several related fields including

data mining, databases, information retrieval, and

bioinformatics. Gao has a PhD in computer science

from Simon Fraser University. Contact him at bgao@

txstate.edu.

Figure 4. Utility evaluation. The figure shows the utility
performance for the comparison partners in our user study.

0

5

10

15

20

25

30

35

Query types

U
se

r
ef

fo
rt

 Ω
 (

po
in

ts
)

R1 R5 R10

RL : Ranked list
IC : Initial clustering
AC : Aggregated clustering
PC : Personalized clustering

IC-17-03-Gao.indd 58 4/5/13 11:57 AM

User-Centric Organization of Search Results

MAY/JUNE 2013� 59

David Buttler is a research scientist at Lawrence Livermore

National Lab. His research interests are in information

management systems for distributed data. Buttler has a

PhD in computer science from the Georgia Institute of

Technology. Contact him at buttler1@llnl.gov.

David C. Anastasiu is a PhD candidate at the University of

Minnesota and was a research assistant at Texas State

University at the time this research was conducted. His

research interests include data mining and information

retrieval. Anastasiu has an MS in computer science

from Texas State University. Contact him at anast021@

umn.edu.

Shuaiqiang Wang is an associate professor at Shandong

University of Finance and Economics. His research

interests include information retrieval, data mining,

and machine learning. Wang has a PhD in computer

science from Shandong University. He was a post

doctoral fellow at Texas State University at the time this

research was conducted. Contact him at swang@sdufe

.edu.cn.

Peng Zhang is a research assistant professor at Florida

Atlantic University. His research focuses on data min-

ing and information security. Zhang has a PhD in com-

puter science from the Chinese Academy of Sciences.

He was a postdoctoral fellow at Texas State University

at the time this research was conducted. Contact him at

zhangpeng@ict.ac.cn.

Joey Jan is a research assistant at Texas State University.

His research interests include information retrieval

and data mining. Jan has a BS in computer science

from Texas State University. Contact him at jj1258@

txstate.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Mobile Malware detection, p. 65

developMent tools for sMartphone apps, p. 72

Multitouch interfaces, p. 80

S
E

P
T

E
M

B
E

R
 2

0
12

ht
tp

:/
/w

w
w

.c
om

pu
te

r.
or

g

ANYTIME, ANYWHERE ACCESS

DIGITAL MAGAZINES
Keep up on the latest tech innovations with new digital maga-
zines from the IEEE Computer Society. At more than 65%
off regular print prices, there has never been a better time to
try one. Our industry experts will keep you informed. Digital
magazines are:

• Easy to Save. Easy to Search.
• Email noti� cation. Receive an alert as soon as each digi-

tal magazine is available.
• Two formats. Choose the enhanced PDF version OR the

web browser-based version.
• Quick access. Download the full issue in a � ash.
• Convenience. Read your digital magazine anytime, any-

where—on your laptop, iPad, or other mobile device.
• Digital archives. Subscribers can access the digital issues

archive dating back to January 2007.

Interested? Go to www.computer.org/digitalmagazines
to subscribe and see sample articles.

IC-17-03-Gao.indd 59 4/5/13 11:57 AM

