

Introduction

- ► All-Pairs Similarity Search (APSS): For each object in a set, find all other objects within the same set with a similarity value of at least t.
- Crucial component in many data mining algorithms, e.g. near duplicate document detection, recommender systems, and clustering.
- ► L2AP leverages the Cauchy–Schwarz inequality to prune more of the search space than previous methods.
- Preliminaries:
- Let objects be vectors, rows in a sparse matrix, **x** is row x in **D**, $\mathbf{D} \in \mathbb{R}^{n \times m}$. Assume all rows normalized, $||\mathbf{x}|| = ||\mathbf{x}||_2 = 1$, $\forall x$ in **D**. x_j is the value of feature j in **x**.
- We focus on cosine similarity between objects, thus $sim(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y}^T = \sum_{i=1}^m x_i \times y_i$.
- If $sim(\mathbf{x}, \mathbf{y}) > t$, we say that **x** and **y** are neighbors.
- We index \mathbf{x}'' , the suffix of \mathbf{x} . We note by $\mathbf{x}''_{\mathcal{D}} = \langle 0, \dots, 0, x_{\mathcal{D}}, \dots, x_{\mathcal{M}} \rangle$ the suffix of \mathbf{x} starting at feature p. Similarly, $\mathbf{x}'_{p} = \langle x_1, \ldots, x_{p-1}, 0, \ldots, 0 \rangle$ is its prefix ending at p-1, and \mathbf{x}' is the un-indexed portion of \mathbf{x} . $\Rightarrow \mathbf{x} = \mathbf{x}' + \mathbf{x}''$.

Naïve solution and initial extensions

• Compute similarity of each object with all others, keep results $\geq t$.

• Equivalent to sparse matrix-matrix multiplication: APSS $\sim DD^{\prime} \ge t$

for each row $x = 1, \ldots, n$ do for each row $y = 1, \ldots, n$ do if $x \neq y$ & sim $(\mathbf{x}, \mathbf{y}) > t$ then Add $\{x, y, sim(\mathbf{x}, \mathbf{y})\}$ to result

Extensions:

- Leverage sparsity in **D**. Build an *inverted index*, a sparse column-wise representation of **D**, then traverse the inverted lists for only \mathbf{x} 's features to find its possible neighbors.
- Leverage commutativity of cos(x, y). Compute sim(x, y) only among vectors y with id less than x (Sarawagi and Kirpal, 2004).
- Build a partial index. We only need to index enough features of x to ensure its discovery as a potential neighbor (similarity candidate) during candidate generation for subsequent rows. (Chaudhuri et al., 2006)
- Leads to the straight-forward and practical AllPairs framework (Bayardo et al., 2007):

AllPairs:

for each rows $x = 1, \ldots, n$ do

Find similarity candidates for **x** using current inverted index (candidate generation) Complete similarity computation and prune unpromising candidates (candidate verification) Index enough of **x** to ensure all valid similarity pairs are discovered (index construction)

Index construction

- Add a minimum number of non-zero features j of x to the inverted index lists I_i (index filtering).
- If we can guarantee that $sim(\mathbf{x}'_i, \mathbf{y}) < t, \forall y > x$, any such **y** must have at least one feature in common with $\mathbf{x}_{i}^{\prime\prime}$ if they are neighbors.
- Ordering D columns in decreasing frequency order heuristically leads to smaller index sizes.
 - for each column $j = 1, \ldots, m$ s.t. $x_j > 0$ do if sim $(\mathbf{x}'_{i+1}, \mathbf{y}) \ge t, \ \forall y > x$ then $I_i \leftarrow I_i \cup \{(x, x_i)\}$
- Let $\mathbf{w} = \langle \max z_1, \dots, \max z_m \rangle$, the vector of max column values in **D**. $z = 1, \dots, n$ is some row in **D**. We can estimate $sim(\mathbf{x}'_{i+1}, \mathbf{y}) \leq sim(\mathbf{x}'_{i+1}, \mathbf{w})$.
- Leverage a permutation of **D**'s rows. Permute rows in decreasing max row value $(||x||_{\infty})$ order. Let $\hat{\mathbf{w}} = \langle \min(x_1, \max z_1), \ldots, \min(x_m, \max z_m) \rangle$. Then $\sin(\mathbf{x}'_{i+1}, \mathbf{y}) \leq \sin(\mathbf{x}'_{i+1}, \hat{\mathbf{w}})$, since the y's we seek follow x in the row order (bound b_1 , Bayardo et al., 2007).
- ▶ By the Cauchy–Schwarz inequality, $sim(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y}^T \le ||\mathbf{x}|| \times ||\mathbf{y}||$, which also holds for $sim(\mathbf{x}'_{i+1}, \mathbf{y}) \le ||\mathbf{x}'_{i+1}|| \times ||\mathbf{y}|| = ||\mathbf{x}'_{i+1}||$, since $||\mathbf{y}|| = 1$ (bound b_3). We store $||\mathbf{x}'_i||$ along with $\dot{x_i}$ in the index to use for later pruning.
- We use the minimum of the two bounds, $\min(b_1, b_3)$, and store $ps[x] \leftarrow min(sim(\mathbf{x}'_i, \hat{\mathbf{w}}), ||\mathbf{x}_i||)$ to use in later candidate pruning.

L2AP: Fast Cosine Similarity Search With Prefix L-2 Norm Bounds

David C. Anastasiu and George Karypis

Karypis Lab, Computer Science & Engineering, University of Minnesota, Twin Cities

http://cs.umn.edu/~dragos/12ap

Decreasing Freq. Inv.

Forward

ldx

Decreasing

Max Row

Value

.

Candidate generation

During the candidate generation stage, we traverse the inverted index lists I_i corresponding to non-zero features j of x and keep track of a partial dot product (A[y]) for the candidates encountered.

for each column $j = m, \ldots, 1$ s.t. $x_i > 0$ do for each $(y, y_i) \in I_i$ do if A[y] > 0 or $sim(\mathbf{x}'_i, \mathbf{y}) \ge t$ then $A[y] \leftarrow A[y] + x_i \times y_i$ $A[y] \leftarrow 0 \text{ if } A[y] + sim(\mathbf{x}, \mathbf{y}'_i) < t$

- Leverage t to prune potential candidates (residual filtering). Note that we are accumulating the *suffix dot product*, $sim(\mathbf{x}'', \mathbf{y})$. If the prefix similarity sim(\mathbf{x}', \mathbf{y}) is below t, and A[y] = 0, y cannot be a neighbor of **x**.
- Given w defined as before, $sim(x', y) \le sim(x', w)$ (bound rs_1 , Bayardo et al., 2007). We pre-compute $rs_1 = \mathbf{x}\mathbf{w}^T$, and roll back the computation as we process each inverted index column *j*. We stop accumulating *new candidates* once $rs_1 < t$.
- Candidates can only be those vectors with lower ids. We can thus improve rs_1 by using max column values of processed columns instead, $\widetilde{\mathbf{w}} = \langle \max_{z < x} z_1, \dots, \max_{z < x} z_m \rangle$ (bound rs_3).
- ► By the Cauchy–Schwarz inequality, $sim(\mathbf{x}'_i, \mathbf{y}) \le ||\mathbf{x}'_i|| \times ||\mathbf{y}|| = ||\mathbf{x}'_i||$, since $||\mathbf{y}|| = 1$ (bound *rs*₄). Once the ℓ^2 norm of \mathbf{x}'_i falls below *t*, we ignore potential candidates \mathbf{y} if A[y] = 0.
- While rs_4 is superior in most cases, it is not theoretically guaranteed to be so. We thus
- choose the best of both worlds, and check $min(rs_3, rs_4) < t$ during residual filtering. • We estimate sim $(\mathbf{x}, \mathbf{y}'_i) \le ||\mathbf{y}_i||$, which is stored in the index, to prune some of the candidates (bound l2cg).

Candidate verification

During the candidate verification stage, we use the forward index to finish computing the dot products for the encountered candidates, vectors **y** with A[y] > 0.

for each y s.t. A[y] > 0 do next y if $A[y] + sim(\mathbf{x}, \mathbf{y}') < t$ for each column *j* s.t. $y_i > 0 \land y_i \notin I_i \land x_i > 0$ do $A[y] \leftarrow A[y] + x_i \times y_i$ **next** y if $A[y] + sim(\mathbf{x}, \mathbf{y}'_i) < t$

Add $\{x, y, A[y]\}$ to result if A[y] > t

- Leverage t and the stored pscore ps[y] obtained when indexing y to prune candidates (pscore filtering). Note that, after candidate generation, $A[y] = sim(\mathbf{x}, \mathbf{y}'')$. ps[y] is an estimate of sim(\mathbf{z}, \mathbf{y}'), $\forall z > y$, including x, i.e., sim(\mathbf{x}, \mathbf{y}') $\leq ps[y]$. Prune if A[y] + ps[y] < t. ▶ While computing the final dot product, we estimate $sim(\mathbf{x}, \mathbf{y}'_i) \le ||x'_i|| \times ||y'_i||$ and use it to
- prune additional candidates. (bound /2cv).
- Additional pruning obtained via dpscore and minsize filtering is described in the paper.

Approximate extension

- ► BayesLSH-Lite (Satuluri and Parthasarathy, 2012) finds the probability that $sim(\mathbf{x}, \mathbf{y}) > t$, conditional on observed LSH hash matches, after checking h hashes.
- ► We created two approximate APSS methods by combining BayesLSH-Lite with L2AP: L2AP+BayesLSH-Lite - replace candidate verification with BayesLSH-Lite
- L2AP-approx replace only /2cv bound pruning with BayesLSH-Lite

Baseline methods

- IdxJoin builds an inverted index and uses it to find $sim(\mathbf{x}, \mathbf{y}), \forall y < x$, without pruning.
- AllPairs uses max vector w in similarity estimates (bounds b₁ and rs₁)
- MMJoin (Lee et al., 2010) enhances AllPairs by adding length filtering and a tighter minsize bound. Length filtering estimates $sim(\mathbf{x}'_i, \mathbf{y}) \leq \frac{1}{2} ||\mathbf{x}'_i||^2 + \frac{1}{2} ||\mathbf{y}||^2 = \frac{1}{2} ||\mathbf{x}'_i||^2 + \frac{1}{2}$ which is not as tight as our ℓ^2 norm estimate, $sim(\mathbf{x}'_i, \mathbf{y}) \le ||\mathbf{x}'_i||$, especially for low t values.
- ► AllPairs+BayesLSH-Lite and LSH+BayesLSH-Lite are variants of BayesLSH that take as input the candidate set generated by AllPairs and LSH, respectively.
- **Source code for exact methods, along with** L2AP and L2AP-approx, available at http://cs.umn.edu/~dragos/l2ap.

Experimental Evaluation

Datasets:

- ▶ RCV1: standard corpus of > 800,000 newswire st
- WikiWords500k: Wikipedia articles, min length 20
- WikiWords100k: Wikipedia articles, min length 50 **TwitterLinks**: *follow* relationships of Twitter users
- follow min 1,000 other users.
- ► WikiLinks: directed graph of hyperlinks between Wikipedia articles.
- OrkutLinks: Orkut friendship network.

Efficiency testing

Execution times in seconds, exact methods

- **1600x against** AllPairs, and 2x-13x in general over the best exact baseline.
- L2AP's much smaller index and effective candidate pruning strategies allow it to finish the spend hours to accomplish the same task.

Effectiveness testing

- ► L2AP produces significantly smaller indexes than previous methods. While MMJoin achieves similar index sizes at AllPairs as $t \rightarrow 0.5$.
- $\sim \ell^2$ -norm filtering drastically reduces the number of generated candidates. The majority of the pruning happens in the cost associated with this bound is in the initial computation of the prefix ℓ^2 -norm.

This work was supported in part by NSF (IOS-0820730, IIS-0905220, OCI-1048018, CNS-1162405, and IIS-1247632) and the Digital Technology Center at the University of Minnesota. Access to computing and research facilities provided by the Digital Technology Center and the Minnesota Supercomputing Institute.

Dataset Statistics

tories.)0.)0. that	Dataset	n	т	nnz
	RCV1	804414	43001	61e6
	WikiWords500k	494244	343622	197e6
	WikiWords100k	100528	339944	79e6
	TwitterLinks	146170	143469	200e6
	WikiLinks	1815914	1648879	44e6
	OrkutLinks	3072626	3072441	223e6

Execution times in seconds, approximate methods

▶ L2AP outperforms exact baselines in most cases and achieves significant speedups, up to

similarity search in a few seconds for high values of t, while AllPairs and IdxJoin

► L2AP generally outperforms approximate baselines, especially at low similarity thresholds. It even outperforms L2AP-approx in most cases. L2AP is able to prune most candidates **before the approximate** BayesLSH-Lite **candidate pruning step in** L2AP-approx.