
L2AP: Fast Cosine Similarity Search With Prefix L-2 Norm Bounds
David C. Anastasiu and George Karypis

Karypis Lab, Computer Science & Engineering, University of Minnesota, Twin Cities
http://cs.umn.edu/˜dragos/l2ap

Introduction

I All-Pairs Similarity Search (APSS): For each object in a set, find all other objects within
the same set with a similarity value of at least t .

I Crucial component in many data mining algorithms, e.g. near duplicate document
detection, recommender systems, and clustering.

I L2AP leverages the Cauchy–Schwarz inequality to prune more of the search space than
previous methods.

I Preliminaries:
I Let objects be vectors, rows in a sparse matrix, x is row x in D, D ∈ Rn×m. Assume all

rows normalized, ||x|| = ||x||2 = 1, ∀ x in D. xj is the value of feature j in x.
I We focus on cosine similarity between objects, thus sim(x,y) = xyT =

∑m
j=1 xj × yj .

I If sim(x,y) > t , we say that x and y are neighbors.
I We index x′′, the suffix of x. We note by x′′p = 〈0, . . . ,0, xp, . . . , xm〉 the suffix of x starting

at feature p. Similarly, x′p = 〈x1, . . . , xp−1,0, . . . ,0〉 is its prefix ending at p − 1, and x′ is
the un-indexed portion of x. ⇒ x = x′ + x′′.

Naı̈ve solution and initial extensions

I Compute similarity of each object with all others, keep results ≥ t .
I Equivalent to sparse matrix-matrix multiplication: APSS ∼ DDT . ≥ t

for each row x = 1, . . . ,n do
for each row y = 1, . . . ,n do

if x 6= y & sim(x,y) > t then
Add {x , y , sim(x,y)} to result

× =

Extensions:
I Leverage sparsity in D. Build an inverted index, a sparse column-wise representation of

D, then traverse the inverted lists for only x’s features to find its possible neighbors.
I Leverage commutativity of cos(x,y). Compute sim(x,y) only among vectors y with id less

than x (Sarawagi and Kirpal, 2004).
I Build a partial index. We only need to index enough features of x to ensure its discovery

as a potential neighbor (similarity candidate) during candidate generation for subsequent
rows. (Chaudhuri et al., 2006)

I Leads to the straight-forward and practical AllPairs framework (Bayardo et al., 2007):
AllPairs:
for each rows x = 1, . . . ,n do

Find similarity candidates for x using current inverted index (candidate generation)
Complete similarity computation and prune unpromising candidates (candidate verification)
Index enough of x to ensure all valid similarity pairs are discovered (index construction)

Index construction

I Add a minimum number of non-zero features j of x
to the inverted index lists Ij (index filtering).

I If we can guarantee that sim(x′j ,y) < t , ∀y > x ,
any such y must have at least one feature in
common with x′′j if they are neighbors.

I Ordering D columns in decreasing frequency
order heuristically leads to smaller index sizes.

for each column j = 1, . . . ,m s.t. xj > 0 do
if sim(x′j+1,y) ≥ t , ∀y > x then

Ij ← Ij ∪ {(x , xj)}

I Let w = 〈max
z

z1, . . . ,max
z

zm〉, the vector of max column values in D. z = 1, . . . ,n is some

row in D. We can estimate sim(x′j+1,y) ≤ sim(x′j+1,w).
I Leverage a permutation of D’s rows. Permute rows in decreasing max row value (||x ||∞)

order. Let ŵ = 〈min(x1,max
z

z1), . . . ,min(xm,max
z

zm)〉. Then sim(x′j+1,y) ≤ sim(x′j+1, ŵ),
since the y ’s we seek follow x in the row order (bound b1, Bayardo et al., 2007).

I By the Cauchy–Schwarz inequality, sim(x,y) = xyT ≤ ||x|| × ||y||, which also holds for
sim(x′j+1,y) ≤ ||x

′
j+1|| × ||y|| = ||x

′
j+1||, since ||y|| = 1 (bound b3). We store ||x′j || along

with xj in the index to use for later pruning.
I We use the minimum of the two bounds, min(b1,b3), and store

ps[x]← min(sim(x′j , ŵ), ||xj ||) to use in later candidate pruning.

Candidate generation

I During the candidate generation stage, we traverse the inverted
index lists Ij corresponding to non-zero features j of x and keep
track of a partial dot product (A[y]) for the candidates encountered.

for each column j = m, . . . ,1 s.t. xj > 0 do
for each (y , yj) ∈ Ij do

if A[y] > 0 or sim(x′j ,y) ≥ t then
A[y]← A[y] + xj × yj
A[y]← 0 if A[y] + sim(x,y′j) < t

I Leverage t to prune potential candidates (residual filtering). Note
that we are accumulating the suffix dot product, sim(x′′,y). If the
prefix similarity sim(x′,y) is below t , and A[y] = 0, y cannot be a
neighbor of x.

Forward
 Idx Inv.

Idx

I Given w defined as before, sim(x′,y) ≤ sim(x′,w) (bound rs1, Bayardo et al., 2007). We
pre-compute rs1 = xwT , and roll back the computation as we process each inverted index
column j . We stop accumulating new candidates once rs1 < t .

I Candidates can only be those vectors with lower ids. We can thus improve rs1 by using
max column values of processed columns instead, w̃ = 〈max

z<x
z1, . . . ,max

z<x
zm〉 (bound rs3).

I By the Cauchy–Schwarz inequality, sim(x′j ,y) ≤ ||x
′
j || × ||y|| = ||x

′
j ||, since ||y|| = 1 (bound

rs4). Once the `2 norm of x′j falls below t , we ignore potential candidates y if A[y] = 0.
I While rs4 is superior in most cases, it is not theoretically guaranteed to be so. We thus

choose the best of both worlds, and check min(rs3, rs4) < t during residual filtering.
I We estimate sim(x,y′j) ≤ ||yj ||, which is stored in the index, to prune some of the

candidates (bound l2cg).

Candidate verification

I During the candidate verification stage, we use the forward index
to finish computing the dot products for the encountered
candidates, vectors y with A[y] > 0.

for each y s.t. A[y] > 0 do
next y if A[y] + sim(x,y′) < t
for each column j s.t. yj > 0 ∧ yj /∈ Ij ∧ xj > 0 do

A[y]← A[y] + xj × yj
next y if A[y] + sim(x,y′j) < t

Add {x , y ,A[y]} to result if A[y] > t

Forward
 Idx Inv.

Idx

I Leverage t and the stored pscore ps[y] obtained when indexing y to prune candidates
(pscore filtering). Note that, after candidate generation, A[y] = sim(x,y′′). ps[y] is an
estimate of sim(z,y′),∀z > y , including x , i.e., sim(x,y′) ≤ ps[y]. Prune if A[y] + ps[y] < t .

I While computing the final dot product, we estimate sim(x,y′j) ≤ ||x
′
j || × ||y

′
j || and use it to

prune additional candidates. (bound l2cv).
I Additional pruning obtained via dpscore and minsize filtering is described in the paper.

Approximate extension

I BayesLSH-Lite (Satuluri and Parthasarathy, 2012) finds the probability that
sim(x,y) > t , conditional on observed LSH hash matches, after checking h hashes.

I We created two approximate APSS methods by combining BayesLSH-Lite with L2AP:
I L2AP+BayesLSH-Lite - replace candidate verification with BayesLSH-Lite
I L2AP-approx - replace only l2cv bound pruning with BayesLSH-Lite

Baseline methods

I IdxJoin builds an inverted index and uses it to find sim(x,y),∀y < x , without pruning.
I AllPairs uses max vector w in similarity estimates (bounds b1 and rs1)
I MMJoin (Lee et al., 2010) enhances AllPairs by adding length filtering and a tighter
minsize bound. Length filtering estimates sim(x′j ,y) ≤

1
2||x
′
j ||

2 + 1
2||y||

2 = 1
2||x
′
j ||

2 + 1
2,

which is not as tight as our `2 norm estimate, sim(x′j ,y) ≤ ||x
′
j ||, especially for low t values.

I AllPairs+BayesLSH-Lite and LSH+BayesLSH-Lite are variants of BayesLSH that
take as input the candidate set generated by AllPairs and LSH, respectively.

I Source code for exact methods, along with L2AP and L2AP-approx, available at
http://cs.umn.edu/˜dragos/l2ap.

Experimental Evaluation

Datasets:

I RCV1: standard corpus of > 800,000 newswire stories.
I WikiWords500k: Wikipedia articles, min length 200.
I WikiWords100k: Wikipedia articles, min length 500.
I TwitterLinks: follow relationships of Twitter users that

follow min 1,000 other users.
I WikiLinks: directed graph of hyperlinks between

Wikipedia articles.
I OrkutLinks: Orkut friendship network.

Dataset Statistics

Dataset n m nnz
RCV1 804414 43001 61e6

WikiWords500k 494244 343622 197e6
WikiWords100k 100528 339944 79e6

TwitterLinks 146170 143469 200e6
WikiLinks 1815914 1648879 44e6

OrkutLinks 3072626 3072441 223e6

Efficiency testing

10

100

1e+3

1e+4

1e+5

RCV1

IdxJoin
AllPairs

MMJoin
L2AP

WikiWords500k

10

30

100

300

1e+3

3e+3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TwitterLinks

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiLinks

similarity threshold t

to
ta

lt
im

e
(s

),
lo

g
-s

ca
le

d

Execution times in seconds, exact methods

10

100

1e+3

1e+4

1e+5

RCV1

LSH+BayesLSH-Lite
AllPairs+BayesLSH-Lite

L2AP+BayesLSH-Lite
L2AP-approx

L2AP

WikiWords500k

10

100

1e+3

1e+4

1e+5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TwitterLinks

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiLinks

similarity threshold t

to
ta

lt
im

e
(s

),
lo

g
-s

ca
le

d

Execution times in seconds, approximate methods

I L2AP outperforms exact baselines in most cases and achieves significant speedups, up to
1600x against AllPairs, and 2x-13x in general over the best exact baseline.

I L2AP’s much smaller index and effective candidate pruning strategies allow it to finish the
similarity search in a few seconds for high values of t , while AllPairs and IdxJoin
spend hours to accomplish the same task.

I L2AP generally outperforms approximate baselines, especially at low similarity thresholds.
It even outperforms L2AP-approx in most cases. L2AP is able to prune most candidates
before the approximate BayesLSH-Lite candidate pruning step in L2AP-approx.

Effectiveness testing

6e+06

1.2e+07

1.8e+07

2.4e+07

3e+07

3.6e+07

4.2e+07

4.8e+07

RCV1

AllPairs MMJoin L2AP

WikiLinks

1e+07

3e+07

5e+07

7e+07

9e+07

1.1e+08

1.3e+08

1.5e+08

1.7e+08

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiWords500k

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TwitterLinks

similarity threshold t

in
d

ex
si

ze

Index size reduction vs. previous methods

1e+10

4e+10

7e+10

1e+11

1.3e+11

1.6e+11

RCV1

AllPairs
MMJoin

min(rs3,rs4)
rs3

rs4

WikiWords500k

5e+08

1.5e+09

2.5e+09

3.5e+09

4.5e+09

5.5e+09

6.5e+09

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TwitterLinks

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiLinks

similarity threshold t

#
ca

n
d

id
at

es

Effectiveness of residual filtering strategies

I L2AP produces significantly smaller
indexes than previous methods. While
MMJoin achieves similar index sizes at
high t , its performance degrades to that of
AllPairs as t → 0.5.

I `2-norm filtering drastically reduces the
number of generated candidates. The
majority of the pruning happens in the
candidate generation step, and most of the
cost associated with this bound is in the
initial computation of the prefix `2-norm.

0

200

400

600

800

1000

1200

1400

1600

1800

OrkutLinks

no l2pruning l2cg l2cg+l2cv

WikiLinks

0

2000

4000

6000

8000

10000

12000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiWords100k

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TwitterLinks

to
ta
lt
im
e
(s
)

similarity threshold t

Effectiveness of the new `2-norm filtering

Acknowledgements

This work was supported in part by NSF (IOS-0820730, IIS-0905220, OCI-1048018, CNS-1162405, and
IIS-1247632) and the Digital Technology Center at the University of Minnesota. Access to computing and
research facilities provided by the Digital Technology Center and the Minnesota Supercomputing Institute.

Karypis Lab - Computer Science & Engineering - University of Minnesota, Twin Cities http://cs.umn.edu/∼karypis

http://cs.umn.edu/~dragos/l2ap
http://cs.umn.edu/~dragos/l2ap

