L2AP: Fast Cosine Similarity Search With Prefix L-2 Norm Bounds

David C. Anastasiu and George Karypis

Karypis Lab, Computer Science & Engineering, University of Minnesota, Twin Cities
http://cs.umn.edu/~dragos/1l2ap

Candidate generation

Introduction

» All-Pairs Similarity Search (APSS): For each object in a set, find all other objects within
the same set with a similarity value of at least t.

Experimental Evaluation

» During the candidate generation stage, we traverse the inverted
index lists /; corresponding to non-zero features j of x and keep

Datasets:

. . ‘ Dataset Statistics
» Crucial component in many data mining algorithms, e.g. near duplicate document track of a partial dot product (Aly]) for the candidates encountered. l‘| . RCV1: standard corpus of > 800, 000 newswire stories. Dataset . N
detection, recommender systems, and clustering. for each columnj=m,... 1s.. Xj > 0 do Forward » WikiWords500k: Wikipedia articles, min length 200. RCV1 804414 43001 61e6
» L2AP leverages the Cauchy—Schwarz inequality to prune more of the search space than for each (y,y)) € /; do I Inv. > WikiWords100k: Wikipedia articles, min length 500. WikiWords500k | 494244 | 343622|197e6
orevious methods. if A[y] > 0 or sim(x’.,y) > ¢ then Idx > ;I'wﬂterl_.lnks. follow relationships of Twitter users that Wlleord§100k 100528 | 339944 | 79e6
J ollow min 1,000 other users. | TwitterLinks | 146170 143469 200e6
» Preliminaries: Aly] < Alyl + X <y ~ WikiLinks: directed graph of hyperlinks between WikiLinks | 1815914 1648879 44e6
. L . / : : : . LD . 4 .
. Let objects be vectors, rows in a sparse matrix, X is row x in D, D € R™ M. Assume all Alyl < O if Aly| + sim(x,y;) < t I Cl— Wikipedia articles. - | OrkutlLinks 3072626 3072441 223e6
: . : - » OrkutLinks: Orkut friendship network.
rows normalized, |[x|| = |[x||o = 1, ¥ X in D. X; is the value of feature j in x. | | | -
. We focus on cosine similarity between objects, thus sim(x, y) — xyT _ Zm1 X X Vi » Leverage t to prune pc_)tentlal canc_jldates (reS|dua_I filtering). Note
f sim(x.y) > £, we say that x and y are neighbors J=1 A that we are accumulating the suffix dot product, sim(x”,y). If the Efficiency testing
>] y / .
We index x”, the suffix of x. We note by x}} = (0 0, x xm) the suffix of x startin prefix similarity sim(x’, y) is below ¢, and Aly] = 0, y cannot be a
" S . ' Y Xp APy o AT . J neighbor of Xx. Alsre 2 MR S BayesLSHLite - L2AP+BayesLSH-Lite —~ L2AP
at feature p. Similarly, X, = (x1,...,Xp_1,0,...,0) is its prefix ending at p — 1, and x" is | | | | g [= e ke appror
the un-indexed portion of x. = x = x’ + x". » Given w defined as before, sim(x’,y) < sim(x’,w) (bound rs¢, Bayardo et al., 2007). We B o e R S
pre-compute rsq = xw ', and roll back the computation as we process each inverted index

100 -

column j. We stop accumulating new candidates once rsy < t.
» Candidates can only be those vectors with lower ids. We can thus improve rsq by using

100 -

Naive solution and initial extensions

10

10 4 RCV1 + WikiWords500k

3e+3 | 0 SV SDNIIY Sy SRPEL LEr 7 CrE SRt e VY g |

total time (s), log-scaled
total time (s), log-scaled
=
(3}

similarity threshold t

» Compute similarity of each object with all others, keep results > t. max column values of processed columns instead, w = (r;\<a)>(< Z1, .., Max Zm) (bound rs3). 3 ‘ N
» Equivalent to sparse matrix-matrix multiplication: APSS ~ DD'. > ¢ . By the Cauchy—Schwarz inequality, sim(x},y) < HX}H < [yl = HX}H» since |ly|| = 1 (bound I*’ T w
foreachrow x =1,...,n do CwAEE rs4). Once the /2 norm of x;. falls below t, we ignore potential candidates y if A[y] = 0. |
foreachrow y =1,....n do » While rs, is superior in most cases, it is not theoretically guaranteed to be so. We thus L S e TIE T X i

similarity threshold t

if x £y & sim(x,y) >t then
Add {x, y,sim(x,y)} to result

choose the best of both worlds, and check min(rss, rs4) < t during residual filtering.
» We estimate sim(x, y}) < |]yjl[, which is stored in the index, to prune some of the
candidates (bound /2cg).

Execution times in seconds, exact methods Execution times in seconds, approximate methods

» L2AP outperforms exact baselines in most cases and achieves significant speedups, up to
1600x against A11Pairs, and 2x-13x in general over the best exact baseline.

» L2AP’s much smaller index and effective candidate pruning strategies allow it to finish the
similarity search in a few seconds for high values of t, while A11Pairs and IdxJoin
spend hours to accomplish the same task.

» L2AP generally outperforms approximate baselines, especially at low similarity thresholds.
It even outperforms L2AP-approx in most cases. L2AP is able to prune most candidates
before the approximate BayesLSH-Lite candidate pruning step in L2AP-approx.

Effectiveness testing

Extensions:

» Leverage sparsity in D. Build an inverted index, a sparse column-wise representation of
D, then traverse the inverted lists for only X’s features to find its possible neighbors.

» Leverage commutativity of cos(x,y). Compute sim(x,y) only among vectors y with id less
than x (Sarawagi and Kirpal, 2004).

» Build a partial index. We only need to index enough features of x to ensure its discovery
as a potential neighbor (similarity candidate) during candidate generation for subsequent
rows. (Chaudhuri et al., 2006)

» Leads to the straight-forward and practical A11Pairs framework (Bayardo et al., 2007):

Candidate verification

» During the candidate verification stage, we use the forward index ’
to finish computing the dot products for the encountered Forwar d'

candidates, vectors y with A[y] > 0. ldx

Inv.
for each y s.t. Aly] >0 do —

next y if Aly] +sim(x,y’) < t
for each columnjs.t. y;>0Ay; ¢ [;AX; >0 do

AllPairs: A[y] — A[y] + Xj X yj
for eaCh FOWS X = 17 Tty n do nEXt y if A[y] —|_ Slm(X, y/) < t AllPairs ------ MMJoin e L2AP —=— :\-\/III:/IFi]aci)ﬁ : min(rs3,r::;) —f— 1S4 —=—
Find similarity candidates for x using current inverted index (candidate generation) _ / e i 7
Complete similarity computation and prune unpromising candidates (candidate verification) Add {x, y,Aly]} toresultif Aly| >t |
Index enough of x to ensure all valid similarity pairs are discovered (index construction) _ _ _ _ UMM e ie a
» Leverage t and the stored pscore ps[y] obtained when indexing y to prune candidates]
) re filtering). N hat, after candi neration, Aly] = sim(x, y"). iS an
Index construction (pspo e filteri Q) ?tet at, after car ddatg generatio , ly] = sim(x,y) psly] is a g I ——
estimate of sim(z,y’),Vz > y, including x, i.e., sim(x,y’) < ps[y]. Prune if Aly] + ps[y] < t. T e Bk el
- . D ing Freq. ' i ' ' ' / / / ' E 1se0n
. Add a minimum number of non-zero features j of x ecreasing Freq » While com.p.utmg the fllnal dot product, we estimate S|m(x,yj) < ijH X ||y:|| and use it to - 2 s \
to the inverted index lists l] (index f||ter|ng) prune additional candidates. (bound IZCV). :Z:Z: 3.5e+09:
- If we can guarantee that sim(x},y) <t Yy > x i rld—il » Additional pruning obtained via dpscore and minsize filtering is described in the paper. o NN SV
orwa 1e+07 | WikiWords5 + TwitterLinks 5e+08 | TwitterLinks

03 04 05 06 07 08 09 103 04 05 06 07 08 09 1
similarity threshold t

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 03 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity threshold t

any such y must have at least one feature in Idx | A — tensi
common with x! if they are neighbors. — I

| J | . Decreasing |dx Index size reduction vs. previous methods Effectiveness of residual filtering strategies
" Ofer'ﬁg D C.O'“lrlnf;s " decreashng Trzquency Max Row % » BayesLSH-Lite (Satuluri and Parthasarathy, 2012) finds the probability that ; SN otz ey gy
order heuristically leads to smaller index sizes. — sim(x,y) > t, conditional on observed LSH hash matches, after checking h hashes. g _ijAP pr(t)h uces signi 'Ca”’f[%’ SdmaV\?rZ'I o
for each columnj=1,...,mst. x; > 0do » We created two approximate APSS methods by combining BayesLSH-Lite with L2AP: n exgs an previous metnods. YYhie g

e | . . . , MMJoin achieves similar index sizes at 2000
if sim(x:, ,,y) > t, Vy > x then » L2ZAP+BayesLSH-Lite - replace candidate verification with BayesLSH-Lite . . o0
/ //+ Y L2AP- - replace only /2cv bound pruning with B LSH-Lit high £ its performance degrades to that of -
e 0%, %)) - 1L2AF-approx - replace only pruning with BayesLSH-Lite Al1Pairs as f - 05. s
. ¢/2-norm filtering drastically reduces the 3
_ - _ - Baseline methods g . 5 wwo
»Letw = <mzax Z1;. .., max Zm), the vector of max column values inD. z=1,... nis some number of generated candidates. The o
. . [/ . / 6000 -
row in D. We can estimate sim(x; 4, y) < sim(x; ;, w). » IdxJoin builds an inverted index and uses it to find sim(x,y),Vy < x, without pruning. majority of the pruning happens in the o

~ Leverage a permutation of D’s rows. Permute rows in decreasing max row value (|| X||oc) » AllPairs uses max vector w in similarity estimates (bounds by and rsy) candidate generation step, and most of the ===~

order. Let W = (min(xy, max zy), ..., min(xm, max zm)). Then sim(x;_ ;,y) < sim(x;_ ;, W), » MMJoin (Lee et al., 2010) enhances A11Pairs by adding length filtering and a tighter

since the y’s we seek follow x in the row order (bound b4, Bayardo et al., 2007). minsize bound. Length filtering estimates sim(x}, y) < %\ \x}Hz + %\ y|[% = %\ \x}l\Z + %

cost associated with this bound is in the
initial computation of the prefix #2-norm.

03 04 05 06 07 08 09 103 04 05 06 07 08 09 1
similarity threshold t

Effectiveness of the new ¢2-norm filtering

» By the Cauchy—Schwarz inequality, sim(x,y) = xy” < ||x|| x ||y||, which also holds for
sim(x}H,y) < Hx}+1 | < |ly]| = Hx;.+1 |, since ||y|| = 1 (bound b3). We store Hx}H along
with x; in the index to use for later pruning.

» We use the minimum of the two bounds, min(b4, b3), and store
ps[x] < min(sim(x},v“v), |X;|]) to use in later candidate pruning.

Karypis Lab - Computer Science & Engineering - University of Minnesota, Twin Cities

which is not as tight as our /2 norm estimate, sim(x},y) < HX}H, especially for low t values.
»AllPairs+BayesLSH-Lite and LSH+BayesLSH-Lite are variants of BayesLSH that
take as input the candidate set generated by A11Pairs and LSH, respectively.

» Source code for exact methods, along with L.2AP and L2AP-approx, available at
http://cs.umn.edu/~dragos/l2ap.

Acknowledgements

This work was supported in part by NSF (10S-0820730, 11S-0905220, OCI-1048018, CNS-1162405, and
[1S-1247632) and the Digital Technology Center at the University of Minnesota. Access to computing and
research facilities provided by the Digital Technology Center and the Minnesota Supercomputing Institute.

http://cs.umn.edu/~karypis

http://cs.umn.edu/~dragos/l2ap
http://cs.umn.edu/~dragos/l2ap

