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Candidate generation

Introduction

» All-Pairs Similarity Search (APSS): For each object in a set, find all other objects within
the same set with a similarity value of at least t.

Experimental Evaluation

» During the candidate generation stage, we traverse the inverted
index lists /; corresponding to non-zero features j of x and keep
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column j. We stop accumulating new candidates once rsy < t.
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similarity threshold t

» Compute similarity of each object with all others, keep results > t. max column values of processed columns instead, w = (r;\<a)>(< Z1, .., Max Zm) (bound rs3). 3 ‘ N
» Equivalent to sparse matrix-matrix multiplication: APSS ~ DD'. > ¢ . By the Cauchy—Schwarz inequality, sim(x},y) < HX}H < [yl = HX}H» since |ly|| = 1 (bound I*’ T w
foreachrow x =1,...,n do CwAEE rs4). Once the /2 norm of x;. falls below t, we ignore potential candidates y if A[y] = 0. |
foreachrow y =1,....n do » While rs, is superior in most cases, it is not theoretically guaranteed to be so. We thus L S e TIE T X i

similarity threshold t

if x £y & sim(x,y) >t then
Add {x, y,sim(x,y)} to result

choose the best of both worlds, and check min(rss, rs4) < t during residual filtering.
» We estimate sim(x, y}) < |]yjl[, which is stored in the index, to prune some of the
candidates (bound /2cg).

Execution times in seconds, exact methods Execution times in seconds, approximate methods

» L2AP outperforms exact baselines in most cases and achieves significant speedups, up to
1600x against A11Pairs, and 2x-13x in general over the best exact baseline.

» L2AP’s much smaller index and effective candidate pruning strategies allow it to finish the
similarity search in a few seconds for high values of t, while A11Pairs and IdxJoin
spend hours to accomplish the same task.

» L2AP generally outperforms approximate baselines, especially at low similarity thresholds.
It even outperforms L2AP-approx in most cases. L2AP is able to prune most candidates
before the approximate BayesLSH-Lite candidate pruning step in L2AP-approx.

Effectiveness testing

Extensions:

» Leverage sparsity in D. Build an inverted index, a sparse column-wise representation of
D, then traverse the inverted lists for only X’s features to find its possible neighbors.

» Leverage commutativity of cos(x,y). Compute sim(x,y) only among vectors y with id less
than x (Sarawagi and Kirpal, 2004).

» Build a partial index. We only need to index enough features of x to ensure its discovery
as a potential neighbor (similarity candidate) during candidate generation for subsequent
rows. (Chaudhuri et al., 2006)

» Leads to the straight-forward and practical A11Pairs framework (Bayardo et al., 2007):

Candidate verification

» During the candidate verification stage, we use the forward index ’
to finish computing the dot products for the encountered Forwar d'

candidates, vectors y with A[y] > 0. ldx

Inv.
for each y s.t. Aly] >0 do —

next y if Aly] +sim(x,y’) < t
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cost associated with this bound is in the
initial computation of the prefix #2-norm.
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Effectiveness of the new ¢2-norm filtering

» By the Cauchy—Schwarz inequality, sim(x,y) = xy” < ||x|| x ||y||, which also holds for
sim(x}H,y) < Hx}+1 | < |ly]| = Hx;.+1 |, since ||y|| = 1 (bound b3). We store Hx}H along
with x; in the index to use for later pruning.

» We use the minimum of the two bounds, min(b4, b3), and store
ps[x] < min(sim(x},v“v), |X;|]) to use in later candidate pruning.
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which is not as tight as our /2 norm estimate, sim(x},y) < HX}H, especially for low t values.
»AllPairs+BayesLSH-Lite and LSH+BayesLSH-Lite are variants of BayesLSH that
take as input the candidate set generated by A11Pairs and LSH, respectively.

» Source code for exact methods, along with L.2AP and L2AP-approx, available at
http://cs.umn.edu/~dragos/l2ap.
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