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Abstract—The All-Pairs similarity search, or self-similarity join
problem, finds all pairs of vectors in a high dimensional sparse
dataset with a similarity value higher than a given threshold. The
problem has been classically solved using a dynamically built
inverted index. The search time is reduced by early pruning of
candidates using size and value-based bounds on the similarity. In
the context of cosine similarity and weighted vectors, leveraging
the Cauchy-Schwarz inequality, we propose new `2-norm bounds
for reducing the inverted index size, candidate pool size, and the
number of full dot-product computations. We tighten previous
candidate generation and verification bounds and introduce sev-
eral new ones to further improve our algorithm’s performance.
Our new pruning strategies enable significant speedups over
baseline approaches, most times outperforming even approximate
solutions. We perform an extensive evaluation of our algorithm,
L2AP, and compare against state-of-the-art exact and approxi-
mate methods, AllPairs, MMJoin, and BayesLSH, across a variety
of real-world datasets and similarity thresholds.

I. INTRODUCTION

Similarity search is a crucial component in many real-world
applications, such as near-duplicate document detection [1],
query refinement [2], [3], clustering [4], [5], and collaborative
filtering [6]. Given a function sim(x,y) and a threshold t,
similarity search finds all objects in a dataset with a similarity
value of at least t when compared to some query object. All-
Pairs similarity search (APSS) is a more specific version of
the problem, where the search is repeated for each object.

Objects in the real-world are generally numerically repre-
sented by high dimensional vectors, where each dimension is
a feature extracted from the object. When only the presence
of features is of interest, binary vectors suffice to encode the
set of features in an object. However, weighted vectors often
better represent objects for search [7], [8], and are standard in
fields like information retrieval [9] and text mining [10].

A naı̈ve approach to solving APSS executes O(n2) object
comparisons for a dataset of n objects. Exact algorithms for
solving the problem thus rely on filtering techniques that allow
pruning most of the n − 1 possible similarity candidates for
each query object. They often proceed in two stages. First,
during candidate generation, a list of objects is compiled
whose similarity scores to the query object are believed to
exceed the threshold. Potential candidates during this stage are
vetted based on their prefix, size, suffix and length, which we
describe below. The candidate verification stage finalizes the
similarity computation for identified candidates and compares
it against the threshold. Additional pruning based on suffix

size or magnitude reduce the number of full similarities being
computed.

Prefix filtering allows identifying candidates based only on a
small number of prefix features, given a global feature order-
ing [11]. Size and suffix filtering eliminate candidates based
on the number of their non-zero values (size), or based on
suffix similarity estimates [3]. Length filtering [8] was recently
introduced, which uses the magnitude of the suffix to further
reduce prefix length (and thus index size), intending to reduce
the size of the candidate set. As we will show, length filtering
based index reduction can only be effective for similarity
values higher than 0.5. However, many emerging applications
(e.g. 3D scene reconstruction, plagiarism detection) require the
use of relatively low similarity thresholds [12].

In this paper, we introduce new filtering strategies that
allow the exact APSS problem to be solved efficiently for
cosine similarity of weighted vectors. Prefix filtering based
on the `2-norm achieves better index reduction than previous
approaches. Additionally, we propose positional and enhanced
suffix filtering methods that successfully prune most false
positive candidates, resulting in relatively few object pairs
having their similarity value computed in full. While previ-
ous algorithms do not scale well as the similarity threshold
decreases, our new pruning techniques make our method
effective at both high and low similarity thresholds.

The main contributions of this paper are as follows:
• We provide more effective `2-norm filtering by leveraging

the Cauchy-Schwarz inequality. We show that `2-norm
bounds lead to smaller prefix sizes and allow pruning
more candidates than length filtering in general.

• We provide tighter positional and suffix-based bounds that
allow pruning the majority of candidates without fully
performing the similarity computation. This complements
our `2-norm filtering and leads to orders of magnitude
improvement over previous approaches.

• Based on these ideas, we develop a new filtering-based
exact cosine similarity search algorithm called L2AP,
which works well at both high and low similarity thresh-
olds. We evaluate our prototype experimentally on a
variety of real-world datasets and similarity thresholds.

• We develop L2AP-approx, in which we extend L2AP with
state-of-the-art approximate BayesLSH-Lite candidate
pruning, and compare against our exact algorithm variant.
In most cases, we find that L2AP’s filtering strategies out-



perform approximate candidate pruning in L2AP-approx
and other baselines.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem and notation used throughout
the paper. Section III summarizes existing approaches to
solving APSS. Section IV details existing filtering techniques,
which we extend in our proposed algorithms, L2AP and L2AP-
approx, presented in Section V. We describe our evaluation
methodology and analyze experimental results in Section VI,
and Section VII concludes the paper.

II. PROBLEM STATEMENT

Let a set of real-valued vectors be represented as the rows of
a matrix D of size n×m, and let sim(x,y) be a commutative
similarity function between row vectors x and y of D. Given
a similarity threshold t, we solve the APSS problem by
computing the similarity values of all row pairs (x, y) having
sim(x,y) ≥ t, for all x, y in D, x 6= y. Note that x is a
row ID, and x (bold) is the row vector associated with row
x in D. Assuming sim(·, ·) to be the cosine similarity and
that all rows in D have been normalized to have unit length
(||x||2 = 1, ∀ x in D), the similarity computation reduces to
finding the dot-product between the two vectors,

sim(x,y) = dot(x,y) = xyT =

m∑
j=1

xj × yj ,

where xj is the j-th feature of x, i.e. element D(x, j). Going
forward, we will note the `2-norm, magnitude, or length of a
vector by the shorthand ||x|| = ||x||2 =

√∑m
j=1 xj

2.
We denote by |x| the size of, or number of non-zeros in the

vector x, not to be confused with its length, ||x||. At times,
we are interested in the maximum value of some row i in D,
which we denote by rwi, of some vector x, which we denote
by rwx, or of some column j, which we denote by cwj . Let
Σx =

∑m
j=1 xj be the sum of elements in vector x.

An inverted index representation of D is a set of m lists,
I = {I1, I2, . . . , Im}, one for each column in D, where list Ij
contains pairs (x,D(x, j)) s.t. x is a row in D, and D(x, j) =
xj 6= 0. We construct the inverted index dynamically, and
choose to index only a subset of the less frequent features,
the suffix of the vector, which we denote as x′′ = x′′p =
〈0, . . . , 0, xp, . . . , xm〉, where p is the first feature we index in
the vector. We denote by rw′′x the maximum value in the suffix
x′′, and by Σ′′x the sum of the suffix elements. Similarly, the
prefix of x is noted as x′ = x′p = 〈x1, . . . , xp−1, 0, . . . , 0〉,
and has maximum value rw′x and element sum Σ′x. Given these
representations of prefix and suffix, one can verify that,

x = x′ + x′′,

||x||2 = ||x′||2 + ||x′′||2,

dot(x,y) =

p−1∑
j=1

xj × yj +

m∑
j=p

xj × yj ,

= dot(x′,y) + dot(x′′,y).

III. RELATED WORK

APSS has its roots in the similarity join problem from
the database community [11], [13]. Chaudhuri et al. first
formalized the prefix-filtering principle [11], showing that only
a few elements from the beginning of a query vector must
be checked against other vectors to find all necessary candi-
dates. Bayardo et al. [3] disconnected the problem from the
underlying database system and developed additional pruning
strategies based on a pre-defined vector order in the dataset.
They also introduced dynamic indexing, leveraging the prefix-
filtering principle to index only a portion of each vector after
its candidate list was generated. The majority of subsequently
developed methods for solving the APSS problem follow the
same format as in Bayardo et al.’s method.

A number of extensions focused on the set-based or binary
representation of objects. Xiao et al. [1] first introduced a
tighter indexing bound and positional filtering in PPJoin.
During candidate generation, positional filtering provides addi-
tional pruning based on the remaining size of the vectors once
a feature is found in common. Xiao et al. then push filtering
into the candidate verification stage through Hamming dis-
tance based suffix filtering. When considering string similarity
search using the edit distance measure, Xiao et al. [14] show
that the problem can be efficiently solved using q-gram-based
mismatch filtering. Xiao et al. [15] provide further AllPairs
optimizations to answer top-k queries efficiently.

While previous algorithms focused on reducing the gener-
ated candidate pool size, Ribeiro and Härder [16] sought to re-
duce overall search time by minimizing the size of the inverted
index through dynamic min-prefix indexing. They coupled a
cheap candidate generation step with additional stoping criteria
in the verification stage to improve on AllPairs and PPJoin.
Wang et al. [17] sought to reach a balance between the prefix
and candidate pool sizes and developed a cost-based scheme
for choosing variable-length prefixes. We borrow some ideas
from set-based similarity search algorithms, such as positional
and suffix filtering, but their details are not applicable, as we
focus on cosine similarity search of weighted vectors.

There has been little focus, in comparison, on solving
the APSS problem for weighted vectors and cosine similar-
ity. Bayardo et al. [3] gave the first integrated solution for
the problem, the AllPairs algorithm. In APT, Awekar and
Samatova [18] provide tighter bounds over AllPairs on the
candidate vector minimum size and similarity score estimate.
Lee et al. [8] introduce length filtering and length-based suffix
filtering in MMJoin. As they are pertinent to our problem,
we detail these methods in Section IV. We then show, both
theoretically and experimentally, that our pruning strategies
outperform those in these methods.

Although emphasis has recently shifted to solving APSS
exactly, approximate methods remain popular, especially in
domains only interested in objects with high similarity thresh-
olds. In the context of near-duplicate object detection, Broder
et al. [4] apply similarity search to sketches built using min-
wise independent permutations of shingled Web documents.



A popular alternative, Locality Sensitive Hashing (LSH) [19],
[20], uses families of functions that hash similar objects to
the same bucket with high probability to generate candi-
date sets. Zhai et al. [12] present a probabilistic algorithm
for similarity search based on random filters. Satuluri and
Parthasarathy [21] introduce BayesLSH, a principled Bayesian
approach for candidate pruning and similarity estimation,
which they combine with candidate generation steps from
AllPairs and LSH. Unlike approximate methods, our method
outputs all objects at or above the similarity threshold. Yet
we show that, in most cases, L2AP outperforms BayesLSH.
L2AP often performs better even than our approximate variant,
L2AP-approx, showing that pruning the search space is a very
effective strategy for solving the APSS problem.

IV. FILTERING FRAMEWORK

AllPairs is an algorithm for exact all-pairs similarity
search introduced by Bayardo et al. [3] and extended by many
other filtering-based APSS approaches. Our extension, L2AP,
improves AllPairs by obtaining tighter similarity bounds
in all stages of the algorithm. Here, we detail the filtering
framework in AllPairs and subsequent extensions.

One could solve the APSS problem by finding all nearest
neighbors in the dataset for each vector. However, given a
sparse dataset, a vector x may not have features in common
with many candidate vectors. AllPairs avoids computing x’s
similarity with these vectors by using an inverted index, a set
of lists, one for each feature, containing vectors with non-
zero values in D for that feature, and their associated feature
values. One can then traverse the inverted lists for only the
terms in x to find its possible neighbors. Score accumulation
using the values stored in the index can be used to compute the
similarity value, and the original vector can be discarded [22].
AllPairs improves these standard similarity search tech-

niques in several ways. It builds the index dynamically and
exploits the threshold t and a pre-defined sort order on D
to limit the feature values being indexed, the candidate pairs
being generated, and for which candidate pairs the exact
similarity value should be computed. Algorithms 1 and 2
present the pseudo-code for AllPairs. As we continue, we
will also detail pruning strategies employed in subsequent
extensions APT and MMJoin.

A. Prefix and Suffix Filtering

Chaudhuri et al. introduced the prefix-filtering principle,
which has been used to limit the size of the inverted index.
It states informally that, given a global ordering of features
in the dataset, one can stop indexing features in x as soon as
they can ensure that x will have at least one feature in the
index in common with all its true neighbors (those vectors
y s.t. sim(x,y) ≥ t). Chaudhuri et al. and Lee et al. order
their datasets in increasing column frequency order and index
features at the beginning of x, i.e. its prefix. They use the
remaining part of the vector, its suffix, to estimate and complete
similarity computations. While they do not expressly state it,
Bayardo et al. also use the prefix-filtering principle in their

algorithm, AllPairs. Yet they choose an opposite ordering of
the features, index the suffix of each vector, and use the prefix
to complete the similarity computation. To avoid confusion, we
will refer to prefix filtering, henceforward, as index filtering,
since its goal is to reduce the index size. Similarity, we will
refer to suffix filtering as residual filtering, since it operates
on the remaining (un-indexed) portion of the vector.

B. Index Construction

Lines 3 and 7-14 in Algorithm 1 highlight the index size
reduction via index filtering in AllPairs. The algorithm does
not start indexing feature values from x until the variable b1
reaches the similarity threshold t. Once a value is indexed,
it is erased form x (line 12). Bayardo et. al [3] show that
enough features will be indexed using this method to ensure
that any vector y that has the potential to meet the similarity
threshold t against x will be identified during the similarity
search. While a certain column order is not necessary, sorting
D’s columns in decreasing frequency order (line 3) ensures
only less frequent features are indexed, leading to a smaller
index size.

Algorithm 1 The AllPairs Algorithm
1: function ALLPAIRS(D, t)
2: Reorder D rows in decreasing rw order
3: Reorder D columns in decreasing frequency order
4: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
5: for each x = 1, . . . , n do
6: O ← O ∪ FindMatchesAP(x, I, t)
7: b1 ← 0
8: for each j = 1, . . . ,m, s.t. xj > 0 do
9: b1 ← b1 + xj ×min(cwj , rwx)

10: if b1 ≥ t then
11: Ij ← Ij ∪ {(x, xj)}
12: xj ← 0
13: end if
14: end for
15: end for
16: return O

The variable b1, which we call the pscore (prefix score),
captures an upper bound on the similarity score attainable
by matching the first features in x against any other vector
in the dataset. It is akin to the similarity of x with the
maximum possible valued vector in the dataset, which should
be computed as b1 ←

∑m
j=1 cwj × xj . AllPairs takes

advantage of an imposed order on the rows of D to improve
this bound. By ordering the dataset in decreasing order of
rw (line 2), one obtains a sharper estimate on a candidate’s
feature value. The vectors we are interested in, which are those
that follow x in the dataset, are thus guaranteed to have the
maximum value for feature j of min(cwj , rwx).

Awekar and Samatova focus on candidate pruning in APT,
and make no changes to the index reduction proposed in
AllPairs. Lee et al., however, achieve better index reduction
in MMJoin by using the non-negativity of the square of a real
number property, (a − b)2 ≥ 0 ⇒ a2 + b2 ≥ 2ab. Using this



inequality, they derive

dot(x,y) =
∑

j
xj × yj ≤

∑
j

xj
2 + yj

2

2

=
1

2
||x||2 +

1

2
||y||2, (1)

that also holds for prefixes or suffixes of vectors at a common
feature p, i.e.:

dot(x′p,y
′
p) ≤ 1

2
||x′p||2 +

1

2
||y′p||2. (2)

As all vectors are unit length normalized, the dot-product
of x with any other vector can then be approximated by
dot(x, ·) ≤ 1

2 ||x||
2 + 1

2 , which provides another upper bound
for the pscore. MMJoin combines this new bound with the
original one in AllPairs by using the minimum of the two
upper bounds, min(b1, b2) ≥ t in line 10 of Algorithm 1,
where b2 = 1

2 ||x
′
j+1||2 + 1

2 . Lee et al. also use Equation 2
during candidate generation and verification, and thus store
the value 1

2 ||x
′
j ||2, in addition to xj , for each indexed term

(line 11 becomes Ij ← Ij ∪ {(x, xj , 12 ||x
′
j ||2)}).

Note that our explanation and notation of Lee et al.’s
algorithm has been adjusted to follow the column ordering
in AllPairs. Their original presentation follows the opposite
column ordering. Therefore, they initially pre-compute b1 ←∑m

j=1 xj × min(cwj , rwx) in line 7, and then roll back the
computation, indexing until b1 falls below t. We have found
that this step slows down the overall algorithm performance
if applied to AllPairs.

Algorithm 2 AllPairs FindMatches
1: function FINDMATCHESAP(x, I, t)
2: A← ∅ . accumulator array
3: M ← ∅ . set of matches
4: sz1 ← t/rwx

5: rs1 ←
∑m

j=1 xj × cwj

6: for each j = m, . . . , 1, s.t. xj > 0 do
7: Ij ← Ij \ {(y, yj)}, ∀ y s.t. |y| < sz1
8: for each (y, yj) ∈ Ij do
9: if A[y] > 0 or rs1 ≥ t then

10: A[y]← A[y] + xj × yj
11: end if
12: end for
13: rs1 ← rs1 − xj × cwj

14: end for
15: for each y s.t. A[y] > 0 do
16: if A[y] + min(|x|, |y′|)× rwx × rw′y ≥ t then
17: s← A[y] + dot(x,y′)
18: if s ≥ t then
19: M ←M ∪ {(x, y, s)}
20: end if
21: end if
22: end for
23: return M

C. Candidate Generation

Candidate generation and verification in AllPairs are
detailed in Algorithm 2. AllPairs uses a lower bound (sz1),
which we call minsize, to eliminate unpromising indexed

vectors that are too short (lines 4 and 7). Bayardo et al. name
this process size filtering. They show that any candidate vector
must have at least t/rwx non-zero values to possibly achieve
t similarity with x. Additionally, since the dataset rows are
ordered in decreasing rw order, the minimum candidate size
increases monotonically with each iteration. Those vectors that
fail this check will then fail it for all future row vectors and
can be safely removed from the inverted index (line 7).
APT and MMJoin both provide stronger bounds for the

minsize. Awekar and Samatova use an upper bound on the
dot-product, dot(x,y) ≤ rwx×

∑m
j=1 yj , to derive minsize

as sz2 ≤ (t/rwx)2. On the other hand, Lee et al. use the upper
bound

dot(x,y) ≤ min(|x|, |y|)× rwx × rwy

to drive it as sz3 ≤ t/(rwx × rwy).
Residual filtering uses an upper bound on the similarity

of the un-indexed portion of the vectors, along with the
already accumulated dot-product, to prune additional potential
candidates. As we accumulate over the features of x, there
comes a point when there are not enough features left to
allow any new vector without accumulated weight to reach the
similarity threshold. AllPairs finds this point by maintaining
an upper bound remscore value (rs1) on the similarity score
that a non-accumulated vector y could achieve with x (lines 5
and 13). Accumulation only starts as long as the remscore
is still above the threshold t (line 9). Once accumulation has
started for a vector, it becomes a candidate.
APT uses the same remscore bound as in AllPairs.

MMJoin capitalizes on Equation 2 in two ways to enhance
residual filtering. First, it augments the remscore bound
in line 9 by checking min(rs1, rs2) ≥ t, where rs2 =
1
2 ||x

′
j+1||2 + 1

2 . Note that accumulation occurs from left to
right. If the vector y has not started accumulating, and rs2 < t,
the similarity value cannot possibly pass the threshold t, and
the potential candidate is skipped. Second, for those candidates
that have started accumulating, MMJoin pushes a verification
step into the candidate generation stage. It keeps checking,
after each accumulation change, whether A[y] + 1

2 ||x
′
j ||2 +

1
2 ||y

′
j ||2 is below the threshold t. When this estimate falls

below t, MMJoin stops accumulating y and sets A[y] = 0.
Lee et. al. call this process length filtering.

D. Candidate Verification

The similarity sim(x,y) has already been partially com-
puted and stored in the accumulator A[y]. AllPairs then
tries to estimate the similarity of x with the un-indexed prefix
of each candidate y′ (line 16). This bound, which we call
the dpscore (dot-product score), allows skipping the full
similarity score computation of x with the candidate if the
estimate is still below t. Otherwise, AllPairs computes the
remaining similarity between x and the prefix y′ exactly and
adds the pair to the result M as necessary (lines 18-20).

Lee et al. employ the same dpscore bound as Bayardo et
al. Leveraging the dot-product upper bound they considered
in the minsize estimation, Awekar and Samatova propose a



new dpscore, which they prove is a tighter bound than that
of Bayardo et al., and is given by:

dot(x,y) ≤ A[y] + min(rwx × Σ′y, rw′y × Σx).

As an alternate means of pruning, based on their length
filtering idea, Lee et al. use the prefix similarity estimates they
stored in the index and check whether A[y]+ 1

2 ||x
′
j ||2+ 1

2 ||y
′
j ||2

drops below the threshold, even while computing the rest of
the dot-product. To alleviate excessive checking, they only test
this bound at every non-consecutive feature common to x and
y. The candidate y is pruned if the bound falls below t.

V. L2AP

We now present our algorithm, L2AP, which leverages the
Cauchy-Schwarz inequality to obtain tighter `2-norm similar-
ity estimate bounds for both index reduction and candidate
generation and verification. In addition, L2AP improves on
and introduces new residual filtering techniques that help
eliminate the majority of candidates before fully computing
their similarity value.

A. `2-norm Bounds

The majority of the improvement in L2AP is due to much
tighter bounds obtained by leveraging the Cauchy-Schwarz
inequality in partial dot-product estimations. Recall that,
dot(x,y) = dot(x′,y) + dot(x′′,y), where x′ is the prefix,
or un-indexed portion of the vector, and x′′ is its suffix. By
the Cauchy-Schwarz inequality we have that:

dot(x′,y) ≤ ||x′|| × ||y||. (3)

Since all vectors are unit length normalized, the prefix dot-
product can then be approximated by dot(x′,y) ≤ ||x′||. This
new bound has profound consequences during indexing and
candidate generation. Vectors are accumulated from right to
left. If ||x′|| < t, no terms in x′ can lead to new candidates
that have not yet been identified.

The `2-norm bound is tighter than the one proposed by Lee
et al., dot(x′,y) ≤ 1

2 ||x
′||2 + 1

2 , since

(||x′|| − 1)
2 ≥ 0 ⇒ 1

2
||x′||2 +

1

2
≥ ||x′||.

Their estimate will always exceed 0.5, while ours is closer to
the true dot-product.

Similarly, an estimate for the dot-product of the prefixes of
x and y at a common term j is given by,

dot(x′j ,y
′
j) ≤ ||x′j || × ||y′j ||. (4)

Candidates can be pruned at a common term j if the sum of
their accumulated score and this prefix dot-product estimate
falls below the threshold t. Again, this bound is tighter than the
similar bound proposed by Lee et al., dot(x′,y′) ≤ 1

2 ||x
′||2 +

1
2 ||y

′||2, since

(||x′|| − ||y′||)2 ≥ 0 ⇒ 1

2
||x′||2 +

1

2
||y′||2 ≥ ||x′|| × ||y′||.

B. Index Construction

Algorithm 3 delineates our proposed method, L2AP. We will
now highlight the improvements we introduce over the AP
framework we discussed in Section IV.

Algorithm 3 The L2AP Algorithm
1: function L2AP(D, t)
2: Reorder D rows in decreasing rw order
3: Reorder D columns in decreasing frequency order
4: O ← ∅; Ij ← ∅; ĉwj ← 0, for j = 1, . . . ,m
5: for each x = 1, . . . , n do
6: O ← O ∪ FindMatchesL2AP(x, I, ps, ĉw, t)
7: b1 ← 0; bt ← 0; b3 ← 0
8: for each j = 1, . . . ,m, s.t. xj > 0 do
9: pscore← min(b1, b3)

10: b1 ← b1 + xj ×min(cwj , rwx)
11: bt ← bt + x2

j ; b3 ←
√
bt

12: if min(b1, b3) ≥ t then
13: ps[x]← pscore if ps[x] = 0
14: Ij ← Ij ∪ {(x, xj , ||x′j ||)}
15: xj ← 0
16: end if
17: end for
18: end for
19: return O

We improve the pscore bound in the AllPairs frame-
work using our tighter `2-norm bound. The variable b3 com-
putes ||x′j+1||, the `2-norm of the prefix of x ending at index
j, inclusive. As shown in Section V-A, no new candidates
can be identified during accumulation once the prefix norm
||x′j || falls below t. To postpone indexing further, we use
the lesser of our new bound, b3, and the bound proposed by
Bayardo et al., to find the minimum number of features we
must index. Additionally, we store the prefix `2-norm ||x′j || in
the index (line 14), to be used during the candidate generation
and verification stages of the algorithm.

The pscore bound estimates the similarity of x′ with any
other vector in the dataset. We store the pscore value for x′j
(lines 9 and 13) and use it during candidate verification as an
effective pruning strategy for false positive candidates.

C. Candidate Generation

Candidate generation and verification in L2AP are detailed
in Algorithm 4. L2AP uses the same minsize upper bound as
in MMJoin, sz3 ≤ t/(rwx×rwy), which is a better bound than
the respective one in APT, sz2 ≤ t2/rw2

x. Note that t2 ≤ t,
since t ∈ [0, 1]. Given the decreasing rw order of the dataset,
rwy ≥ rwx, and rw2

x ≤ rwx × rwy . It follows that sz3 ≥ sz2.
The remscore bound enables our algorithm to stop adding

new candidates once the estimated dot-product between the
prefix of x and all possible candidates falls below t. We
improve this bound in two ways. First, note that the similarity
of x is computed only against vectors in the inverted index,
which come before it in dataset processing order. We use
a tighter feature maximum value, ĉwj , in rs3, an enhanced
version of Bayardo’s proposed remscore bound (line 4),
which is computed only over those vectors in the inverted



Algorithm 4 L2AP FindMatches
1: function FINDMATCHESL2AP(x, I, ps, ĉw, t)
2: A← ∅; M ← ∅
3: sz ← t/rwx

4: rs3 ←
∑m

j=1 xj × ĉwj ; rst ← 1; rs4 ← 1

5: rw′xj
← max(x′j), Σ′xj

←
∑j−1

i=1 xi, ∀ xj > 0
6: for each j = m, . . . , 1, s.t. xj > 0 do
7: Ij ← Ij \ {(y, yj , ||y′j ||)}, ∀ y s.t. |y| × rwy < sz
8: for each (y, yj , ||y′j ||) ∈ Ij do
9: if A[y] > 0 or min(rs3, rs4) ≥ t then

10: A[y]← A[y] + xj × yj
11: if A[y] + ||x′j || × ||y′j || < t then
12: A[y]← 0
13: end if
14: end if
15: end for
16: rs3 ← rs3 − xj × ĉwj

17: rst ← rst − x2
j ; rs4 ←

√
rst

18: end for
19: for each y s.t. A[y] > 0 do
20: next y if A[y] + ps[y] < t
21: next y if A[y] + min(rwx × Σ′y, rw′y × Σx) < t
22: find p s.t. yp ∈ y′ ∧ yp > 0 ∧ xp > 0
23: s← A[y] + xp × yp
24: next y if s + min(rw′xp

× Σ′yp , rw′y × Σ′xp
) < t

25: for each j > p s.t. yj > 0 ∧ xj > 0 do
26: s← s + xj × yj
27: if s + ||x′j || × ||y′j || < t then
28: next y
29: end if
30: end for
31: if s ≥ t then
32: M ←M ∪ {(x, y, s)}
33: end if
34: end for
35: ĉwj ← max(xj , ĉwj), ∀ xj > 0
36: return M

index. Each ĉwj is updated to the new maximum value after
completing the current search (line 35).

Our second improvement involves the `2-norm bound we
discussed in Section V-A. The variable rs4 uses Equation 3
to estimate the dot-product of x′j+1, the prefix of x ending at
term j, inclusive, with any other vector. As long as ||x′j+1||
is not below our threshold t, we can start accumulating a
similarity value for a new candidate (line 9).

We use the lesser of rs3 and rs4 for our remscore bound.
While rs3 can at times be a tighter bound than rs4, we
estimate that most of the time rs4 will provide a better prefix
similarity estimate. At some index p, the two bounds are com-
puted as rsp3 =

∑p
j=1 xj × ĉwj and rsp4 =

√∑p
j=1 xj × xj .

For most values, ĉwj � xj , especially given the decreasing rw
ordering of the vectors, which will likely lead to rsp3 > rsp4.

Similar to MMJoin, we push a verification step into the
candidate generation portion of our algorithm. Based on Equa-
tion 4, after each accumulation operation, we check whether
the estimated prefix similarity, dot(x′,y′) = ||x′j || × ||y′j ||,
will be enough to push the score already accumulated over the
threshold (line 11). If this check fails, we cease accumulating
y and move to the next candidate.

D. Candidate Verification

We introduce a new type of candidate pruning, based on
the pscore bound we computed during indexing, which we
call pscore filtering. At the end of the candidate generation
stage, the accumulator A[y] contains a partial dot-product,
dot(x,y′′). Recall that the pscore bound estimated the dot-
product between the prefix of y and any other vector in
the dataset, dot(y′, ·). We stored this estimate at the end of
indexing y and use it here for candidate verification, for an
estimate of dot(y′,x). If the sum of the accumulated score and
the estimate falls below t, the candidate is discarded (line 20).

We adopt the dpscore bound introduced by Awekar
and Samatova, and provide several enhancements, similar in
spirit to the positioning filtering idea of Xiao et al [1]. We
efficiently compute the dot-product of x with candidates by
pre-hashing x’s values. In addition, we choose to also hash
prefix maximum and prefix sum values of x at each position
j where xj > 0 (line 5), which aid in strengthening the
dpscore bound. Once the first common feature p is found
between x and y′ (line 22), the following possible dpscore
variants can be used,

dot(x,y) ≤ A[y] + min(rwx × Σ′y, rw′y × Σx), (5)

dot(x,y) ≤ A[y] + min(rw′xp
× Σ′yp

, rw′y × Σx), (6)

dot(x,y) ≤ A[y] + min(rwx × Σ′yp
, rw′y × Σ′xp

), (7)

dot(x,y) ≤ A[y] + min(rw′xp
× Σ′yp

, rw′y × Σ′xp
). (8)

Similar enhancements are possible for Bayardo’s dpscore
bound. By hashing prefix maximum and prefix size values in
addition to the values of x, we can utilize the following bounds
once the first common feature p between x and y′ is found,

dot(x,y) ≤ A[y] + min(|x|, |y′|)× rwx × rw′y, (9)

dot(x,y) ≤ A[y] + min(|x|, |y′p|)× rw′xp
× rw′yp

, (10)

dot(x,y) ≤ A[y] + min(|x′p|, |y′p|)× rwx × rw′yp
, (11)

dot(x,y) ≤ A[y] + min(|x′p|, |y′p|)× rw′xp
× rw′yp

. (12)

Note that Equations 5 and 9 can be used before finding the
first common feature p. One could also try the cheaper bound
in Equation 5 or Equation 9 (line 21), followed by one of the
position-based bounds in case of failure (line 24). Equations 8
and 12 provide the tightest bounds among their respective
variants, since rw′xp

≤ rwx, Σ′xp
≤ Σx, and |x′p| ≤ |x|. A

similar proof as provided by Awekar and Samatova (Section
4.4 in [18]), showing that Equation 5 provides a better bound
than Equation 9, can be constructed to show the superiority
of Equation 8 for candidate pruning, making it the best of the
eight proposed dpscore bounds.

If a candidate passes these initial checks, we compute
the full dot-product of its remaining prefix with the query
vector (lines 25-30). After each accumulation, however, we use
our `2-norm based prefix similarity estimate to further prune
unpromising candidates (lines 27-29). Surviving candidates
have their final similarity value checked against the threshold
t and are added to the result M if they still exceed it.



E. L2AP-approx

Using Bayesian inference, BayesLSH finds the probability
that the similarity of two candidates is above the threshold t,
conditional on the observed event of LSH hash matches. Addi-
tionally, it can estimate the similarity value and the probability
that the estimate is within δ of the true similarity. Satuluri and
Parthasarathy provide a way to tractably perform inference
for the Jaccard and cosine similarity functions applied to
both binary and weighted vectors. BayesLSH-Lite is a less
expensive variant of the algorithm that, after examining a fixed
number of hashes h, uses the first probability estimate to
prune candidates, with a theoretically guaranteed maximum
false negative rate of ε. It then computes the exact similarity
value for unpruned candidate pairs. This strategy has been
proven effective, outperforming both AllPairs and LSH.
The remaining details of BayesLSH and BayesLSH-Lite are
beyond the scope of this paper and can be found in [21].

We are interested in exact similarity values in our problem,
so we combine our algorithm with BayesLSH-Lite to form
an approximate variant, L2AP-approx. In Algorithm 4, we
replace `2-norm based candidate verification (lines 25-30) with
BayesLSH-Lite filtering applied to a pair of vectors x and
y (lines 6-14 in Algorithm 2 of [21]). We then complete
accumulation and similarity threshold checking for unpruned
candidates. Using BayesLSH-Lite at this point allows us
to take advantage of most of our pruning strategies before
resorting to approximate estimation. While L2AP-approx may
over-prune in this step, it will provide exact similarity values
for the neighbors it finds.

F. Discussion

Our strategy, so far, has been to improve and provide new
similarity bounds that can lead to better index reduction,
candidate generation, and candidate pruning. Many of the
bounds we proposed come with the added cost of more hashing
or bound computations. In some cases, this cost may outweigh
the benefit of a somewhat smaller candidate set or fewer full
dot-products being computed. For example, using Equation 6
or 7 instead of 8 for the dpscore bound has the benefit
of less hashing, while still being a tighter bound than the
one in Equation 5. With these thoughts in mind, we built our
prototypes, L2AP and L2AP-approx, with the ability to choose,
at compile time, the pruning strategies to employ. This gives
us the added benefit of being able to check the effectiveness
of individual pruning bounds. Table I summarizes some of
the choices available for each bound in our prototype. The
symbols bx, szx, and rsx refer to the respective pscore,
minsize, and remscore bounds described in this paper.
We use dp1−dp8 to reference the dpscore pruning choices
in Equations 5 through 12. The index construction stage
is noted as i.c. We note `2-norm filtering at the candidate
generation (c.g.) and verification (c.v.) stages of the algorithm
as l2cg and l2cv, respectively. We will use this notation to
specify pruning strategies in Section VI.

TABLE I
PRUNING STRATEGIES IN L2AP

Stage Bound Bound Choices
i.c. pscore b1, min(b1, b2), min(b1, b3)
c.g. minsize sz1, sz3

remscore rs1, rs2, rs3, rs4,
min(rs1, rs2),min(rs1, rs4),min(rs3, rs4)

`2-norm l2cg
c.v. pscore ps

dpscore {dp1, dp5}+{dp2, dp3, dp4, dp6, dp7, dp8},
dp1 → dp8

`2-norm l2cv

VI. EXPERIMENTAL EVALUATION

We leveraged the modular nature of our prototype, L2AP, to
test the effectiveness of our proposed new similarity estimate
bounds on 6 real datasets. Additionally, we evaluated the
performance of L2AP and L2AP-approx against state-of-the-
art exact and approximate baseline approaches, AllPairs,
MMJoin, and BayesLSH-Lite, measuring the full execution
time for APSS at a wide range of similarity thresholds.

TABLE II
DATASET STATISTICS

Dataset n m nnz mrl mcl
RCV1 804414 43001 61e6 76 1417

WikiWords500k 494244 343622 197e6 399 574
WikiWords100k 100528 339944 79e6 787 233

TwitterLinks 146170 143469 200e6 1370 1395
WikiLinks 1815914 1648879 44e6 24 27
OrkutLinks 3072626 3072441 223e6 73 73

A. Datasets

We use the same 6 datasets to evaluate our prototypes
as were used in [21]. They represent some real-world net-
works and benchmark text corpora popularly used in text-
categorization research. Their characteristics, including num-
ber of rows (n), columns (m), and non-zeros (nnz), and mean
row/column length (mrl/mcl), are detailed in Table II. Both
link and text-based datasets are represented as tf-idf weighted
vectors. We present additional details below.
• RCV1 is a standard benchmark corpus containing over

800,000 newswire stories provided by Reuters, Ltd. for
research purposes, made available by Lewis et al. [23].

• WikiWords500k was kindly provided to the authors by
Satuluri and Parthasarathy [21], along with the Wiki-
Words100k and WikiLinks datasets. It contains doc-
uments with at least 200 distinct features, extracted
from the September 2010 article dump of the English
Wikipedia1 (Wiki dump).

• WikiWords100k contains documents from the Wiki
dump with at least 500 distinct features.

• TwitterLinks, first provided by Kwak et al. [24], contains
follow relationships of a subset of Twitter users that
follow at least 1,000 other users.

1http://download.wikimedia.org

http://download.wikimedia.org


• WikiLinks represents a directed graph of hyperlinks
between Wikipedia articles in the Wiki dump.

• OrkutLinks contains the friendship network of over 3M
users of the Orkut social media site, made available by
Mislove et al. [25].

B. Baseline Approaches

We compare L2AP and L2AP-approx against the following
baseline approaches.

1) IdxJoin is a straight-forward baseline that first builds a
full inverted index. Then, without performing any prun-
ing, it uses the index to compute exactly the similarity
of each vector with all preceding vectors in the dataset.

2) AllPairs is a state-of-the-art approach for solving the
APSS problem proposed by Bayardo et al [3], which we
detailed in Section IV.

3) MMJoin enhances AllPairs by adding length filtering
and a tighter minsize bound. These enhancements are
also detailed in Section IV.

4) AllPairs+BayesLSH-Lite and LSH+BayesLSH-Lite
are state-of-the-art approximate methods proposed by
Satuluri and Parthasarathy [21], variants of BayesLSH

that take as input the candidate set generated by
AllPairs and LSH, respectively. They have been shown
to significantly outperform LSH, which we do not include
in the comparison.

The BayesLSH package2 includes implementations for
LSH, AllPairs+BayesLSH-Lite, LSH+BayesLSH-Lite, and
AllPairs. An implementation of MMJoin was not available.
We implemented IdxJoin, AllPairs3, MMJoin, L2AP, and
L2AP-approx4 in C. Our method and all baselines are single-
threaded, serial programs. Each method was executed on its
own node in a cluster of HP ProLiant BL280c G6 blade
servers, each with 2.8 GHz Intel Xeon processors and 24 Gb
RAM. Methods that took longer than 48 hours to execute
were terminated. For each method, we varied the similarity
threshold between 0.3 and 0.95, in increments of 0.05. To
further qualify the utility of our method for near-duplicate
object detection, we also executed each method for similarities
between 0.96 and 0.99, in increments of 0.01. As suggested by
Satuluri and Parthasarathy, we used ε = 0.03 (97% recall) and
checked h = 128 hashes in both BayesLSH-Lite and L2AP-
approx approximate pruning. For approximate methods, we
executed each test a minimum of three times and report the
average time over all test executions.

C. Effectiveness Testing

In this section, we show the effectiveness of `2-norm
filtering and provide some guidance for other pruning choices.

2See http://www.cse.ohio-state.edu/∼satuluri/research.html
3Unlike the AllPairs implementations by Bayardo et al. and in the

BayesLSH package, ours uses a dense representation of the query vector. We
found our implementation, on average, to be 2.5x faster than the one in the
BayesLSH package and use it as baseline in this paper. This implementation
detail has since been incorporated into the other packages.

4Source code for all methods is available at http://cs.umn.edu/∼dragos/l2ap

Due to space limitations, we do not show results for some
datasets in this section if they follow the same trend as those
presented. All figures are best viewed in color.
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Fig. 1. Index size reduction in L2AP vs. previous methods.

1) Effectiveness of the New pscore Bound for Index
Reduction: A smaller pscore bound at each threshold t leads
to Algorithms 1 and 3 starting the indexing process later, thus
smaller inverted indexes. We proposed that our `2-norm based
prefix similarity estimate is more effective at lowering this
bound than previous strategies. Figure 1 shows the index sizes
achieved using the pscore bound in L2AP, MMJoin, and the
original bound in AllPairs. As expected, the pscore bound
in L2AP produces significantly smaller indexes than previous
bounds. While the bound in MMJoin achieves similar index
sizes at high values for t, it degrades to the performance of the
AllPairs bound as t → 0.5. OrkutLinks is the only dataset
for which our `2-norm bound is unable to reduce the index
size further than the pscore bound in AllPairs, for t < 0.7.

 1e+10

 4e+10

 7e+10

 1e+11

 1.3e+11

 1.6e+11

RCV1

t

#
 c

a
n

d
id

a
te

s

AllPairs
MMJoin

min(rs3,rs4)
rs3

rs4

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

WikiLinks

t

#
 c

a
n

d
id

a
te

s

1e+08

1.1e+09

2.1e+09

3.1e+09

4.1e+09

5.1e+09

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WikiWords100k

t

#
 c

a
n

d
id

a
te

s

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

OrkutLinks

t

#
 c

a
n

d
id

a
te

s

Fig. 2. Candidate pool sizes when using diverse remscore bounds.

http://www.cse.ohio-state.edu/~satuluri/research.html
http://cs.umn.edu/~dragos/l2ap


2) Effectiveness of the New remscore Bound for Can-
didate Generation: In Section V-C, we estimated that our
proposed remscore bound, rs4, is tighter than our en-
hanced version of the bound proposed by Bayardo et al.,
rs3. To verify this intuition, we counted, during the algorithm
execution, how many times rs3 vs. rs4 was the minimum
value in min(rs3, rs4) (line 9 of Algorithm 4). For this
test we used parameters that minimized candidate generation
(min(b1, b3), sz3), and only counted when a new candidate
was being generated, i.e. when min(rs3, rs4) ≥ t and A[y] =
0. The results, which are detailed in Table III, confirmed
our estimation. Our new bound, rs4, was the minimum,
averaged over all similarity values, over 97.6% of the time
the remscore bound was checked. This suggests that L2AP
can be effective, and possibly more efficient, using only the
`2-norm part of the remscore bound, i.e. rs4 ≥ t instead of
min(rs3, rs4) ≥ t in line 9 of Algorithm 4.

TABLE III
PERCENTAGE OF CASES WHERE rs4 IS A LOWER BOUND THAN rs3

Dataset % Dataset %
RCV1 99.82 WikiLinks 99.53

WikiWords500k 99.47 TwitterLinks 98.75
WikiWords100k 98.05 OrkutLinks 97.61

In another test, we compared the effectiveness of the new
remscore bounds, rs3, rs4 and min(rs3, rs4), against pre-
vious bounds rs1 (AllPairs) and min(rs1, rs2) (MMJoin),
by counting the number of candidates being generated when
using the same indexing strategy as in AllPairs (b1). We
did not use any additional pruning or index reduction in this
test. Figure 2 shows the candidate pool sizes achieved when
using the different remscore bounds. The enhanced version
of Bayardo’s bound, rs3 (almost covering the AllPairs line
in the figure), is unable to reduce the number of candidates
much more than the AllPairs bound. On the other hand,
rs4 significantly outperforms both rs3 and the bound in
MMJoin, resulting in significant reductions in the candidate
pool size. The minimum of the two bounds, min(rs3, rs4), is
overshadowed by rs4 in the figure.

3) Effectiveness of the New `2-Norm Filtering: The `2-
norm based similarity estimation in L2AP is the most effective
of our pruning strategies. We have already shown, in Sec-
tion VI-C1, that it greatly reduces the size of the inverted index
being constructed. We now evaluate the effectiveness of `2-
norm based pruning in the candidate generation and candidate
verification stages of our algorithm. For this test, we do not
use the `2-norm during index construction, leveraging only the
AllPairs bound (b1) for this step. We test a baseline with
no `2-norm filtering, then add it in the candidate generation
stage (l2cg), and in the candidate verification stage (l2cv) of
the algorithm. We record, under each scenario, the number of
unpruned dot-products and total execution time.

As can be seen in Figure 3, `2-norm filtering in L2AP is
able to drastically reduce the number of dot-products being
computed, at times by several orders of magnitude. We find
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Fig. 3. Number of dot-products and total time with and w/o `2-norm filtering.

that the majority of the pruning happens in the candidate
generation step, and most of the cost associated with this
bound is in the initial computation of the prefix magnitude,
||x′||, which is stored in the index or hashed. Thus, we find
little difference in execution times when enabling `2-norm
filtering in the c.v. stage in addition to the c.g. stage.
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Fig. 4. Number of dot-products and total time with and w/o pscore filtering.

4) Effectiveness of the New pscore Bound for Candidate
Pruning: We compared our algorithm’s execution with and
without pscore filtering, measuring the number of unpruned
dot-products and total execution time, under two experimental
scenarios. In the first, we used AllPairs bounds in the index
reduction and candidate generation stages (b1, rs1), allowing
pscore filtering to be most productive. The pscore in this
test is based primarily on the dot-product estimate with the
maximum possible vector in the dataset, and does not take
advantage of the `2-norm based prefix similarity estimate. We



note this baseline without pscore filtering as base1 in Fig-
ure 4, and the results of this experiment with pscore filtering
as pscore1. In a second experiment, we enabled the most
pruning possible in the i.c. and c.g. stages of the algorithm
(min(b1, b3), min(rs3, rs4), and l2cg), and no other pruning
during the c.v. stage. The pscore here takes advantage of
the `2-norm based prefix similarity estimate computed during
indexing. We note this baseline without pscore filtering as
base2, and the result with pscore filtering as pscore2.

As can be seen in Figure 4, pscore filtering is quite
effective at reducing the number of unpruned dot-products,
which results in significantly smaller execution times (up to
38% smaller). While its effectiveness is reduced when previous
pruning occurs, as expected, pscore filtering still reduces
execution time by considerable amounts for text datasets.
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Fig. 5. Number of dot-products and total time when using diverse dpscore
bounds.

5) Effectiveness of the New dpscore Bounds for Posi-
tional Filtering: Figure 5 shows the number of unpruned dot-
products and total execution time when pruning using each of
the dpscore bounds we proposed. For this test, we employed
maximal index reduction and candidate generation pruning
(min(b1, b3), min(rs3, rs4), and l2cg), and only dpscore
pruning during candidate verification. We also included a
baseline in which no dpscore pruning was used (no dp).

As predicted, dp4 is able to achieve the best reduction in
the number of unpruned dot-products. However, it requires
the most hashing and can sometimes lead to longer execution
times than other dpscore bounds. Overall, the amount of
pruning achieved using the various dpscore bounds only
leads to modest reductions in the execution time.

We also tested combinations of dp bounds, as noted in
Table I. Space limitations prevent us from showing these
results. Overall, we have found the best dpscore pruning
strategy to be dp5 +dp6 for most datasets. While this strategy
is not able to forego as many dot-product computations as dp4,
it does not require computing and storing vector prefix sums, a

source of delay in dp1−dp4. When testing dpscore pruning
in concert with other filtering strategies at the candidate
verification stage, we found that, for high similarity values,
dpscore pruning is overshadowed by `2-norm and pscore
pruning, and becomes ineffective.

6) A Word on the minsize Bound: Similar to Bayardo et
al., we implement inverted lists as arrays and lazily remove
vectors pruned by the minsize bound, only from the begin-
ning of the lists. Using this strategy, we found that size filtering
provided little additional pruning over the other strategies, and
in most cases slowed down the overall computation. We forego
presenting those results due to lack of space.

D. Efficiency Testing

We compare the total execution time of L2AP in relation to
exact and approximate baselines. Figures are best viewed in
color.
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1) Comparison with Exact Baselines: In the previous sec-
tion, we noted the effectiveness of the individual pruning
strategies proposed in this paper. Each pruning strategy comes
with additional bounds computation and checking costs, and
leads to efficient similarity search only when it is highly effec-
tive at reducing the index size, pruning candidates, or stopping
accumulation early for false positive candidates. Combining
strategies is not always straight-forward, as pruning in one
stage of the algorithm can affect the effectiveness of bounds
in later stages. We found the most efficient combination of
pruning strategies across datasets and similarity thresholds



to be `2-norm enhanced index construction (min(b1, b3)), `2-
norm based candidate generation (rs4, l2cg), and `2-norm and
dpscore filtering in the candidate verification stage (ps, dp5,
dp6, l2cv). We use this pruning strategy across all datasets and
similarity thresholds as representative of our algorithm, L2AP.

Figure 6 shows the total execution times for L2AP and the
other exact baselines, IdxJoin, AllPairs, and MMJoin. We
also include results for L2AP∗, in which we choose the best
performing pruning strategy for each dataset and similarity
threshold combination. L2AP∗ will then always perform as well
as or better than L2AP. However, L2AP performs almost as well
as it could, given optimal pruning choices. For text datasets,
the two schemes have nearly identical timings, the line for
L2AP in Figure 6 almost completely hiding the one for L2AP∗,
and their differences are rather small for the other datasets.
L2AP is able to outperform exact baselines in most cases and

achieves significant speedups, up to 1600x against AllPairs,
and 2x-13x in general over the best exact baseline. Its best
performance is at high similarity thresholds, showing its
usefulness in tasks such as near-duplicate object detection.
The most drastic performance difference is between L2AP and
AllPairs or IdxJoin at t = 0.99. L2AP’s much smaller
index and effective candidate pruning strategies allow it to
finish the similarity search in a few seconds, while AllPairs

and IdxJoin spend hours to accomplish the same task. An
interesting observation is that our straight-forward IdxJoin

baseline, which does no pruning and fully computes vector
similarities, outperforms AllPairs in several datasets. This
shows that excessive bounds checking which does not lead to
enough pruning can be detrimental in similarity search.
MMJoin uses similar index reduction and pruning strategies

as L2AP, and is able to achieve comparable performance at
high similarity thresholds. L2AP’s `2-norm filtering is shown
more effective than MMJoin’s length filtering, however, espe-
cially at low similarity thresholds. While MMJoin degrades to
the same efficiency as AllPairs at t = 0.5, L2AP is able to
finish the task an order of magnitude faster for text datasets.

Link datasets present different challenges, often having
much smaller vector and inverted list sizes than text datasets.
This limits the effectiveness of the type of pruning that filtering
APSS methods utilize. The smaller dimensionality and varied
term usage within documents lead to longer inverted lists and
better pruning potential in text datasets. While the speedup is
not as dramatic as for text datasets, the pruning strategies in
L2AP are effective for link datasets also, achieving up to 4.7x
speedup. As Bayardo et al. have also noted [3], OrkutLinks
has an artificial 1000 friend limit that prevents highly frequent
features, leading to the least possibility of improvement for
L2AP over prefix-filtering baselines.

E. Comparison with Approximate Baselines

Figure 7 gives a different view into the total time com-
parison, showing speedups obtained by L2AP against both
exact and approximate baselines. We executed L2AP-approx
with the same pruning parameters we used for L2AP, other
than l2cv, which is replaced by BayesLSH-Lite pruning. In
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Fig. 7. L2AP speedup over competing methods.

addition, we tested a version in which L2AP was used only
for candidate generation, and BayesLSH-Lite was used for
candidate verification and pruning, similar to LSH+BayesLSH-
Lite and AllPairs+BayesLSH-Lite. We denote this version
in the Figure as L2AP+BayesLSH-Lite.
L2AP generally outperforms approximate baselines, espe-

cially at low similarity thresholds. LSH+BayesLSH-Lite out-
performs L2AP only for the WikiWords100k and TwitterLinks
datasets, and only at similarity values above 0.6. For other
datasets, such as WikiLinks and OrkutLinks, LSH+BayesLSH-
Lite was not able to finish APSS at low similarities in the time
allotted (48 hours). LSH degrades quickly for high dimensional
datasets and as t decreases, producing large candidate pools
that cannot be pruned fast enough even by BayesLSH-Lite. In
contrast, L2AP performs well for all datasets and for both high
and low similarity thresholds, and returns all similar enough
object pairs after the search.

It is interesting to note, looking at Figure 7, that L2AP out-
performs L2AP-approx in most cases, even as their execution
times are often close. L2AP is able to prune most candidates
before the approximate BayesLSH-Lite candidate pruning
step in L2AP-approx. The remaining pruning is not enough
to outweigh the cost associated with LSH hashing or Bayesian
inference in BayesLSH-Lite. L2AP+BayesLSH-Lite is able to
outperform L2AP for only a few high similarity values on two
of the datasets we tested. As candidate pool sizes increase, at
lower similarity values, L2AP-approx is substantially slowed
down by excessive hashing in BayesLSH-Lite.



VII. CONCLUSIONS AND FUTURE WORK

The all-pairs similarity search problem is of utmost im-
portance in applications such as near-duplicate object de-
tection, clustering, and collaborative filtering. In the context
of weighted vectors and cosine similarity, we fit previous
methods for solving the problem in a general framework
proposed by Bayardo et al. Within the framework, we in-
troduced `2-norm index, residual, and positional filtering,
pscore filtering, and improvements on several other existing
similarity estimation bounds. These lead to drastic reductions
in the inverted index size, candidate pool, and number of
unpruned dot-products which must be computed fully. We
proved the effectiveness of the new bounds both theoretically
and experimentally, and estimated our method’s efficiency
against state-of-the-art baseline methods AllPairs, MMJoin,
and BayesLSH-Lite. Our prototype, L2AP, was able to achieve
significant speedups over all exact baselines, up to 1600x
against AllPairs, and 2x-13x in general over the best al-
ternative. Finally, we showed BayesLSH-Lite approximate
candidate pruning cannot improve significantly over the exact
pruning strategies introduced in L2AP.

Our method was proven very effective, especially at high
similarity thresholds. It would be interesting to evaluate the
efficiency of `2-norm filtering in the context of other similarity
functions, e.g. the Dice and Tanimoto similarities, or in related
problems such as Nearest Neighbor or k-Nearest Neighbor
search. Another avenue of research involves scaling up the
number of threads and processors used to solve the problem,
which in turn will scale the size of the problem that can be
efficiently solved.
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