
L2Knng: Fast Exact K-Nearest Neighbor Graph
Construction with L2-Norm Pruning

David C. Anastasiu
University of Minnesota, Twin Cities

Minneapolis, USA
dragos@cs.umn.edu

George Karypis
University of Minnesota, Twin Cities

Minneapolis, USA
karypis@cs.umn.edu

ABSTRACT
The k-nearest neighbor graph is often used as a building block
in information retrieval, clustering, online advertising, and recom-
mender systems algorithms. The complexity of constructing the ex-
act k-nearest neighbor graph is quadratic on the number of objects
that are compared, and most existing methods solve the problem
approximately. We present L2Knng, an efficient algorithm that finds
the exact cosine similarity k-nearest neighbor graph for a set of
sparse high-dimensional objects. Our algorithm quickly builds an
approximate solution to the problem, identifying many of the most
similar neighbors, and then uses theoretic bounds on the similar-
ity of two vectors, based on the `2-norm of part of the vectors,
to find each object’s exact k-neighborhood. We perform an ex-
tensive evaluation of our algorithm, comparing against both exact
and approximate baselines, and demonstrate the efficiency of our
method across a variety of real-world datasets and neighborhood
sizes. Our approximate and exact L2Knng variants compute the k-
nearest neighbor graph up to an order of magnitude faster than their
respective baselines.

Keywords
k-nearest neighbor graph, similarity search, top-k, cosine similarity

1. INTRODUCTION
Computing the k-nearest neighbor graph (k-NNG) for a set of

objects is a common task in fields such as information retrieval,
clustering, recommender systems, and online advertising. For ex-
ample, item-based nearest neighbor collaborative filtering algo-
rithms recommend items (e.g., books or movies) to a user based on
the k most similar items to each of the user’s preferred items [16].

The task of computing the k-NNG is computationally expensive,
requiring O(n2) similarity comparisons, given a set of n objects.
As a result, current methods that tackle the problem focus on ei-
ther pruning the similarity search space, or solving the problem
approximately. Exact methods either rely on efficient index struc-
tures to limit computation to only those object pairs with non-
zero similarities (e.g., IDX [21], BMM [9]) or on effective prun-
ing techniques that enable efficient discovery of all object pairs
with similarity above a threshold t, which is iteratively lowered
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2806416.2806534.

until all objects have at least k neighbors (e.g., SIM [21]). Ap-
proximate methods employ heuristic strategies that aim to return a
neighborhood that contains the majority of the true neighbors, i.e.,
those that would be found by an exhaustive search. These strate-
gies include focusing on object pairs that share high-weight fea-
tures (e.g., Greedy Filtering [21]) and iterative improvement of an
initial random k-NNG by considering neighbors’ neighbors as po-
tential neighbors (e.g., NN-Descent [11]).

Despite this extensive body of work, each of these two classes of
methods have their limitations. Exact methods either do not rely on
pruning, use computationally expensive pruning estimates, or re-
peat many similarity estimations in the search for the true minimum
neighborhood similarity threshold across all neighborhoods. Ap-
proximate methods use candidate selection and comparison strate-
gies that can lead to unnecessary similarity computations.

In this work, we introduce L2Knng, which solves the exact cosine
similarity k-NNG construction problem efficiently by effectively
pruning much of the similarity search space. We focus on input
objects that are encoded by sparse high-dimensional non-negative
vectors. Some examples include Web pages, and user/item profiles
in a recommender system. In this context, cosine similarity has long
been a standard comparison measure, especially in the fields of in-
formation retrieval [19] and text mining [14]. To solve the k-NNG
construction problem, L2Knng first obtains an initial approximate
solution by considering, for each query object, a set of candidates
that are likely to be part of the final k-NNG. Then, using the ap-
proximate graph as a guide to prune the search space, L2Knng exe-
cutes a neighbor search for each input object. We introduce several
filtering methods specific to the problem at hand that successfully
prune most objects that will not be part of the final k-NNG, result-
ing in few objects having their similarity to a query object com-
puted in full. We evaluate our methods experimentally on a variety
of real-world datasets and neighborhood sizes, against both exact
and approximate baselines. We find that L2Knng can provide over
an order of magnitude performance improvement over baselines.

The remainder of the paper is organized as follows. Section 2
introduces the problem and notation used throughout the paper.
Section 3 summarizes existing approaches to solving the k-NNG
construction problem. Section 4 introduces our methods for con-
structing the exact and approximate k-NNG. We describe our eval-
uation methodology in Section 5 and analyze experimental results
in Section 6, and Section 7 concludes the paper.

2. DEFINITION & NOTATIONS
Let D = {d1, d2, . . . , dn} be a set of objects such that each

object di is a (sparse) vector in an m dimensional feature space.
We will use di to indicate the ith object, di to indicate the feature
vector associated with the ith object, and di,j to indicate the value
(or weight) of the jth feature of object di.

We use the cosine function to measure vector similarity. To sim-
plify the presentation of the algorithms, we assume that all vectors
have been scaled to be of unit length (||di|| = 1,∀di ∈ D). Given
that, the cosine between two vectors di and dj is simply their dot-
product, which we denote by dot(di,dj).

Given object di, its k nearest neighbors inD, denoted byNdi , is
the set of objects inD\{di}whose similarity with di is the highest
among all objects inD\{di}. The k-NNG ofD is a directed graph
G = (V,E) where vertices correspond to the objects and an edge
(vi, vj) indicates that the jth object is among the k nearest neigh-
bors of the ith object. An approximate k-NNG is one in which the
k neighbors of each vertex do not necessarily correspond to the k
most similar objects.

During its execution, our method keeps track of up to k neigh-
bors in each object’s neighborhood. We denote by the minimum
(neighborhood) similarity σdi the minimum similarity between ob-
ject di and one of its current k neighbors. We say that a neighbor-
hood is improved when its minimum similarity σdi increases in
value, and it is complete once all true neighbors that belong to a
neighborhood have been added to it. Note that subsequently pro-
cessed objects that have σdi similarity with the query object will
not be added to the neighborhood as they do not improve it.

An inverted index representation of D is a set of m lists,
I = {I1, I2, . . . , Im}, one for each feature. List Ij contains pairs
(di, di,j), also called postings, where di is an indexed object that
has a non-zero value for feature j and di,j is that value. Postings
may store additional information, such as the position of the feature
in the given document or other statistics.

Given a vector di and a dimension p, we will denote by d≤pi the
vector 〈di,1, . . . , di,p, 0, . . . , 0〉, obtained by keeping the p leading
dimensions in di, which we call the prefix (vector) of di. Similarly,
we refer to d>pi = 〈0, . . . , 0, di,p+1, . . . , di,m〉 as the suffix of di,
obtained by setting the first p dimensions of di to 0. One can then
verify that

di = d≤pi + d>pi , and

dot(di,dj) = dot(di,d≤pj) + dot(di,d>pj).

Table 1 provides a summary of notation used in this work.

Table 1: Notation used throughout the work
Description

D set of objects
k size of desired neighborhoods
di vector representing object di
di,j value for jth feature in di
d≤pi ,d>pi prefix and suffix of di at dimension p
Ndi neighborhood for object di
σdi smallest similarity value in Ndi
tdi similarity threshold used when indexing di
N set of neighborhoods
N̂ set of initial approximate neighborhoods
I inverted index
it minimum indexing threshold for indexed objects
µ candidate list sizes
γ number of neighborhood enhancement updates
δ early neighborhood enhancement termination
ν number of completion blocks

3. RELATED WORK
Relatively few k-NNG construction algorithms have been de-

signed to address cosine similarity. Park et al. [21] describe
Greedy Filtering, an approximate filtering-based approach which
prioritizes computing similarities between objects with high weight
features in common. After first reordering the dimensions of each

vector based on their weight, in decreasing weight order, the algo-
rithm builds a partial inverted index, which it uses to find candi-
dates for each object. Candidates for an object di are those objects
in the inverted index lists associated with the leading dimensions in
di, i.e., the prefix of di. Greedy Filtering indexes enough of each
vector’s prefix as to lead to at least µ candidates for each object.
After all prefixes are identified and the partial inverted index is con-
structed, Greedy Filtering computes pairwise similarities of objects
in each inverted index list, which can lead to much more than µ sim-
ilarity computations for each object, and repeated computations for
pairs of objects with two or more common features in their prefixes.

In NN-Descent, Dong et al. [11] follow an iterative neighborhood
improvement strategy based on the intuition that similar objects are
likely to be found among the neighborhoods of objects in a query
object’s neighborhood. Starting with a randomly chosen initial k-
NNG, they iteratively improve the graph by computing, for each
object di, via a local join, pairwise similarities between di, ob-
jects in its neighborhood, and those objects that contain di in their
neighborhoods. The neighborhoods of both objects participating in
a similarity computation are updated with the result. They avoid
duplication of effort between iterations by only allowing an object
to participate in the local join if it has been added to some neighbor-
hood in the last update. Sampling and early termination parameters
provide a way to control the compromise between algorithm run-
time and recall. However, NN-Descent computes O(n×k2) object
similarities in its first iteration. Furthermore, the algorithm does not
provide a way to filter out candidates that are unlikely to improve
the query object’s neighborhood.

A number of k-NNG construction algorithms have been pro-
posed for metric spaces, where we seek the k objects with the
smallest metric distance from the query. Tree-based data structures
are often used to facilitate partitioning the search space, allowing
neighbor searches to be prioritized within grids close to the one the
query object is in [5]. These types of methods have been shown
effective in low dimensional spaces, but do not scale well as di-
mensionality increases.

Top-k document retrieval is a related problem from information
retrieval, which has had many proposed solutions over the years.
Most methods in this class have been designed for very large doc-
ument collections, focused on minimizing and/or parallelizing op-
erations needed to quickly answer fairly short input queries. Result
sets are in most cases inexact. Some recent works use an in-memory
inverted index and pruning, called safe early termination, to return
the same result set as an exhaustive search [6, 9, 10, 22, 23]. One
could then solve the exact k-NNG problem by executing n top-k
queries with one of these methods, one for each of the input ob-
jects. In their Block-Max WAND (BMW) method [10], Ding and
Suel use an augmented index structure, called a Block-Max index,
which stores inverted lists as compressed blocks of postings, along
with the maximum score that could be achieved given the values in
the block postings. By using the block maximum scores for early
termination, many blocks can be skipped, resulting in improved ex-
ecution. Dimopoulos et al. [9] extended the work of Ding and Suel
and designed several methods that take advantage of Block-Max
type indexes. Among them, docID-oriented Block-Max Maxscore
with variable block sizes (BMM) has been shown to outperform
the others and several baselines (including BMW) for long queries.
The method partitions the postings in each inverted list into blocks
of equally-sized ID ranges, allowing fast look-up for the block a
document’s posting may be found in. Block sizes vary based on the
number of postings in each list. For each block, BMM also keeps
track of the maximum document ID and maximum score for any of
the postings in the block. The Maxscore [24] algorithm described

by Turtle and Flood is then adapted to use block maximum scores
for early termination.

Locality Sensitive Hashing (LSH) [13,15] uses families of func-
tions that hash signatures of similar objects to the same bucket
with high probability. The objects in the buckets that a query ob-
ject hashes to can be considered its neighbors. The similarity with
a neighbor can then either be estimated by comparing the object
signatures or computed exactly. Created initially to solve the top-
k retrieval problem, LSH has been shown effective at solving the
nearest-neighbor problem (1-NNG), but suffers from low recall as
the required neighborhood size increases [10]. In this work, we
specifically focus on results with high recall (at least 95%). Some
recent LSH variations have tackled the k-NNG problem specifi-
cally (e.g., E2LSH [2] and DSH [12]), but focus on metric distance
functions between objects, such as the Euclidean distance.

Another related problem is All-Pairs Similarity Search (APSS),
or similarity join, which returns all object pairs in D with a sim-
ilarity value of at least some threshold t. Bayardo et al. [4] pro-
posed an initial algorithm to solve APSS which employed several
strategies to prune the search space, based on a predefined object
processing order. The majority of subsequently developed APSS
methods [1, 3, 17] use the same framework as in their work. In the
context of cosine similarity, Anastasiu and Karypis recently intro-
duced L2AP [1], which has been shown to outperform all previous
APSS methods by introducing tighter pruning bounds in each phase
of the framework.

There have been a large number of top-k retrieval and approxi-
mate k-NN search methods designed for distributed or parallel ar-
chitectures, which can be used to search Web-scale datasets. The
focus in these methods are query objects outside the input set. In
contrast, L2Knng is an in-memory serial method designed for the
efficient construction of a k-NNG from the input set of objects. We
leave parallel and distributed extensions as future work.

4. METHODS
The L2Knng algorithm consists of two distinct steps. In the first

step, it uses a fast method that identifies, for each object, k similar
objects that may not necessarily be the k nearest neighbors. In the
second step, it scans over all the objects and progressively updates
the k most similar objects of each object. Specifically, while pro-
cessing an object di, which we call the query, L2Knng updates the
k nearest neighbors of all previously processed objects by taking
into account their similarity to the query object. At the same time,
it updates the k most similar objects of the query object by consid-
ering its similarity to the preceding objects. Since the second step
potentially considers all pairs of objects, the final set of the k most
similar objects for each object are guaranteed to be their k nearest
neighbors.

The key to L2Knng’s efficiency stems from the following: (i) It
uses an index data structure that enables it to quickly find potential
neighbors, while pruning some that do not have enough features
in common with the object being indexed. (ii) When searching for
neighbors, it uses several vector similarity theoretic bounds to filter
out many of the potential neighbors found by traversing the index.
(iii) It uses a block processing strategy, which leads to efficient
traversal of the inverted index lists and additionally improves the
effectiveness of the pruning bounds. (iv) Finally, the initial approx-
imate k-NNG built in its first step is instrumental towards effective
indexing and pruning in L2Knng.

4.1 Approximate graph construction
L2KnngApprox is the inexact k-NNG construction method used

by L2Knng to build an initial approximate graph. It consists of two

steps. First, it builds a set of initial neighborhoods, relying on the
idea that high-weight features count heavily towards the similarity
of two vectors [7,21]. Then, given that an object’s neighbor’s neigh-
bor is also likely their neighbor [11, 20], it iteratively enhances the
k-NNG by looking for new candidates in each neighbor’s neigh-
borhood.

The first step is achieved as follows. For each object di,
L2KnngApprox builds a list of up to µ (µ ≥ k) candidates, choos-
ing among those objects that have features in common with di until
there are no more features to check or µ candidates were found. It
then computes the exact similarities of all candidates with di and
adds the objects with the top k values to di’s initial neighborhood.

The choice of candidate objects is crucial to obtaining an approx-
imate graph that is close to the exact k-NNG. L2KnngApprox uses
an inverted index to identify candidate objects with common fea-
tures with di. As a heuristic way to prioritize high-weight common
features, it sorts the features in each vector in decreasing weight
order, and sorts each of the lists in the inverted index in decreasing
order of feature weights. L2KnngApprox then traverses two index
lists at a time, in decreasing order of their associated weights in
di. From the two lists, it chooses the candidate dc with the higher
prefix dot product, which is more likely to be a true neighbor.

In the second step, L2KnngApprox executes up to γ iterative
neighborhood enhancement updates, in which, for each object di,
its k neighbors are updated by taking into account its similarity
to some of the objects that are neighbors of its neighbors. This is
done as follows. For each object di, it traverses its neighborhood in
decreasing order of di’s neighbor similarities. Given some neigh-
bor dj , it then traverses its neighborhood, in decreasing order of
dj’s neighbor similarities, to identify potential neighbors for di.
Avoiding objects that are already in di’s neighborhood or have di
in their neighborhood, L2KnngApprox greedily chooses as candi-
dates only those neighbor’s neighbors dk with a similarity value
greater or equal than that between the query vector and its neighbor,
sim(dj ,dk) ≥ sim(di,dj), and limits the size of the candidate
list to be µ. L2KnngApprox then computes similarities between di
and candidates, updating both relevant neighborhoods with the re-
sults. We use δ as an early termination parameter, stopping itera-
tions early if less than δ× k× |D| neighborhood changes occurred
in an update.

Our strategy for choosing candidates in the first step improves
upon the work of Park et al. [21] by limiting, for each object,
the number of computed similarities. High quality candidates are
greedily chosen from few inverted index lists. The neighborhood
enhancement step improves upon the work of Dong et al. [11] in
two ways. First, it ensures an upper bound on the number of sim-
ilarity computations and prioritizes those candidates more likely
to improve the neighborhood. Second, the enhancement steps will
probably converge faster and to higher recall, as the input neigh-
bors likely have higher similarity values than the randomly chosen
neighbors in their method.

4.2 Indexing
L2Knng uses information in the approximate k-NNG to prune

some object pairs by indexing only a subset of the features in each
object. In each iteration, L2Knng needs to identify among the previ-
ously processed objects those whose neighborhoods can be updated
by including the query object di. In order to do this efficiently, it
builds an inverted index incrementally, delaying the indexing of di
until after its processing. However, future potential neighbors can
only improve di’s neighborhood if their similarity with di is higher
than the minimum similarity in di’s neighborhood, σdi . In a similar
context, Chaudhuri et al. [8] noted that, given a predefined feature

order, one can stop indexing features in di as soon as they can en-
sure di will be found when processing future objects that have a
greater similarity with di than σdi . By indexing only the leading
features of the query object, its prefix, those future objects with
common features with di only in its suffix, which will not be able
to improve its neighborhood, will not be encountered when travers-
ing the index and will thus be automatically pruned.
L2Knng indexes objects until their suffix `2-norm falls below the

minimum neighborhood similarity σdi . Given that all vectors in the
dataset have unit length, based on the Cauchy-Schwarz inequality,
the suffix `2-norm of di is an upper bound of the similarity of di’s
suffix with any other object [1], including unprocessed objects in
the set,

dot(d>ji , ·) ≤ ||d>ji || × || · || = ||d
>j
i ||.

Once the suffix norm ||d>ji || falls below σdi , if no common fea-
tures were found between di and some object dc within di’s in-
dexed prefix, then dc cannot improve di’s neighborhood, since,

dot(di,dc) = dot(d≤ji ,dc) + dot(d>ji ,dc) < 0 + σdi .

The query object di must also be identified when processing fu-
ture objects if di can improve their neighborhoods. Let tdi be the
minimum neighborhood similarity for object di at the time of its in-
dexing (indexing threshold), which later may be different than σdi .
Consider indexing an object di at a threshold tdi and then process-
ing an object dj with a smaller minimum neighborhood similarity.
If σdj ≤ sim(di,dj) < tdi , then di is no longer guaranteed to
be found when processing dj , and dj’s neighborhood may be in-
exact at the end of the algorithm execution. Therefore, to ensure
correctness, objects must be indexed in a strictly non-decreasing
indexing threshold order. L2Knng thus fixes the object processing
order based on the minimum similarities in the initial approximate
k-NNG it builds before processing objects.

Algorithm 1 Indexing in L2Knng
1: function INDEX(di, I, se, tdi)
2: b← 1
3: for each j = 1, . . . ,m, s.t. di,j > 0 and

√
b ≥ tdi do

4: b← b− di,j × di,j
5: Ij ← Ij ∪ {(di, di,j , ||d>ji ||)}
6: end for
7: se[di]← ||d>ji ||

Algorithm 1 details the indexing procedure in L2Knng. The pre-
fix of a vector di is indexed while its suffix `2-norm, computed
in b, is above or equal to our threshold tdi (lines 3-6). The suffix
`2-norm at each indexed feature (line 5) and the suffix `2-norm of
the un-indexed portion of di (suffix estimate, line 7) are also stored,
to be used in other stages of the algorithm. We denote by d≤i the
indexed prefix of object di and by d>i its un-indexed suffix.

4.3 Pruning the search space
L2Knng searches for neighbors of an object in two stages. During

the candidate generation stage, L2Knng computes prefix similari-
ties by traversing the index, using an accumulator [19] to keep track
of partial dot-products between the query and encountered objects.
An accumulator is a map based data structure that accumulates val-
ues for given keys. Each object with non-zero accumulated value
becomes a candidate and is added to a candidate list. Then, during
candidate verification, L2Knng traverses the list of candidates and
finalizes their similarity computations with the query, accumulating
suffix similarities for each candidate. In the end, the accumulator
will contain the exact similarity with each un-pruned candidate.

A computed similarity can only improve the neighborhood of a
query object di if it is above σdi . Furthermore, it can only improve

neighborhoods of already processed objects if it is greater than the
minimum of all neighborhood similarities of indexed objects. To
keep track of this value, L2Knng could update a heap data structure
each time the neighborhood of an indexed object is improved, but
we have found this affects overall efficiency. Instead, L2Knng ap-
proximates this value by the minimum indexing threshold among
all indexed objects, denoted by it, which is strictly smaller than the
current minimum of all indexed objects’ neighborhood similarities.
Using a similar idea as during indexing, L2Knng only starts accu-
mulating for an object dc while the query suffix `2-norm is above
the lower of these two bounds, min(it, σdi). Once the suffix `2-
norm falls below this threshold, only index values for objects with
non-zero accumulated partial dot-products are processed. Addition-
ally, L2Knng uses the initial approximate k-NNG and the current
version of the k-NNG to bypass already computed similarities.

During both the candidate generation and verification stages,
there is a further opportunity for pruning when a common fea-
ture j is encountered between the query and candidate vectors. To
be useful, the final similarity value should improve the neighbor-
hoods of either the query or candidate objects. The accumulator
contains the exact similarity of the two prefix vectors, and the sim-
ilarity of the suffix vectors can be estimated, based on the Cauchy-
Schwarz inequality, as upper bounded by the product of their suffix
`2-norms [1]. Thus, a candidate can be pruned if

A[dc] + ||d>ji || × ||d
>j
c || < min(σdi , σdc).

L2Knng employs one additional pruning strategy during the can-
didate verification stage. The se[dc] suffix estimate value that was
stored when indexing the candidate dc estimates the dot-product
between the un-indexed portion of dc and any other vector in the
dataset, sim(d>c , ·). We use this value here as an estimate for the
similarity between the query and candidate suffix, dot(di,d>c).
If the sum of the accumulated score and the estimate falls below
min(σdi , σdc), the candidate is discarded.

Having presented the different pruning bounds used in L2Knng,
note that their effectiveness would be greatly reduced without first
computing the initial approximate k-NNG. First, indexing thresh-
olds for unprocessed objects would be unknown, and L2Knng

would have to index all object features, missing an important prun-
ing opportunity. Similarly, during a search, the algorithm would
have to consider all possible candidates with common features, as
the minimum indexing threshold it would be 0. Finally, the min-
imum neighborhood similarities of previously processed objects
would likely be smaller, leading to less object pairs being pruned
and more neighborhood updates. While L2Knng does not require
the initial approximate graph to be computed by L2KnngApprox,
an initial graph with high recall will lead to more effective pruning
and higher efficiency in constructing the exact graph.

Algorithm 2 delineates the procedure used to find neighbors in
L2Knng. The variable r computes the suffix `2-norm of the query
vector, which is used to prevent accumulating similarity for objects
that cannot improve neighborhoods (line 6) in the candidate gen-
eration stage. At the end of the verification stage, the accumulator
contains the exact similarity between the query and objects that
survive pruning. These objects are added to the candidate or query
neighborhoods if they can improve them.

4.4 Block processing
Algorithm 3 gives an overview of L2Knng. The initial approx-

imate graph k-NNG (N̂ , line 2) bootstraps the search framework,
providing the necessary processing order for the main loop. As sug-
gested by Bayardo et al. [4], we reorder dimensions in all vectors

Algorithm 2 Searching for neighbors in L2Knng

1: function FINDNEIGHBORS(di, I, se, it, N̂ ,N)
2: r ← 1; A← ∅ . accumulator
3: A[dc]← ∅ for neighbors dc in N̂ andN
4: for each j = 1, . . . ,m, s.t. di,j > 0 do . candidate generation
5: for each (dc, dc,j , ||d>jc ||) ∈ Ij do
6: ifA[dc] > 0 or [A[dc] 6= ∅ and

√
r ≥ min(it, σdi)] then

7: A[dc]← A[dc] + di,j × dc,j
8: if A[dc] + ||d>ji || × ||d

>j
c || < min(σdi , σdc) then

9: A[dc]← ∅
10: end if
11: end if
12: end for
13: r ← r − di,j × di,j
14: end for
15: for each dc s.t. A[dc] > 0 do . candidate verification
16: next dc if A[dc] + se[dc] < min(σdi , σdc)

17: for each j s.t. d>c,j > 0 ∧ di,j > 0 do
18: A[dc]← A[dc] + di,j × dc,j
19: if A[dc] + ||d>ji || × ||d

>j
c || < min(σdi , σdc) then

20: next dc
21: end if
22: end for
23: Ndc ← Ndc ∪ {(di, A[dc])} if A[dc] > σdc
24: Ndi ← Ndi ∪ {(dc, A[dc])} if A[dc] > σdi
25: end for

Algorithm 3 The L2Knng Algorithm
1: function L2KNNG(D, k, µ, γ, δ, ν)
2: N̂ ←L2KnngApprox (D, k, µ, γ, δ)
3: Reorder dimensions in non-decreasing object frequency order
4: N ← N̂ ; tdi ← σdi , it← min(it, tdi), for i = 1, . . . , n
5: Ij ← ∅, I ← I ∪ Ij , for j = 1, . . . ,m
6: for each i = 1, 2, . . . , n s.t. tdi ≤ tdj , ∀j > i do
7: FindNeighbors(di, I, se, it, N̂ ,N)
8: Index(di, I, se, tdi)
9: it← CompleteBlock(i, I, se, N̂ , N , ν) if i% |D|

ν
= 0

10: end for
11: returnN

in non-decreasing object frequency order as a heuristic way to min-
imize the inverted index size.

The index keeps growing as more and more objects are pro-
cessed. The minimum indexing threshold it defined by the initial
k-NNG is likely very small, causing the majority of objects in the
index to become candidates for each subsequent query. While many
candidates will later be eliminated based on pruning bounds that
take advantage of continuously updated neighborhood similarities,
the delayed pruning can lead to slower execution. L2Knng improves
the indexing threshold by periodically “flushing“ the index. After
completing the k-NNG construction for the already indexed ob-
jects, the index can be discarded, speeding up future candidate gen-
eration and providing an improved minimum indexing threshold it.
Neighborhood construction can be finalized for a block of objects
by executing FindNeighbors for all un-processed vectors, without
indexing them. L2Knng then uses the updated minimum neighbor-
hood similarities of unprocessed objects to define a new processing
order. Given a number of blocks parameter ν, L2Knng finalizes a
block of indexed objects after processing every |D|/ν objects.

4.5 L2Knng comparison with APSS
Many of the pruning schemes used by L2Knng are similar in na-

ture with corresponding schemes that were developed to solve the
all pairs similarity search (APSS) problem. However, there are a
number of key differences between the solutions to the two prob-
lems. First, APSS seeks to prune object pairs with a similarity be-

low a threshold t, while L2Knng filters those pairs that cannot im-
prove k-neighborhoods. These distinct goals lead to very different
pruning bounds in the two methods. The threshold t is an input
to the APSS problem. In our problem, t could be chosen to be
the minimum neighborhood similarity σdi among all objects in the
true k-NNG, which is unknown and would nonetheless be a sub-
optimal choice for the k-NNG construction problem. Instead, we
devise better thresholds, detailed in Sections 4.2 and 4.3, that can
be used in each stage of the method to safely prune object pairs that
cannot be a part of the true k-NNG. Second, the APSS solutions
define an object processing order based on feature weights in each
vector, which is not possible in our problem due to the absence of
a common indexing threshold for all objects. L2Knng instead pro-
cesses objects based on the minimum neighborhood similarities of
an initial approximate graph, which ensures correctness and leads
to higher pruning performance. Finally, we further improve per-
formance by periodically finalizing a set of neighborhoods, which
provides better pruning for unprocessed objects.

5. EXPERIMENTAL METHODOLOGY
In this section, we describe the datasets, baseline algorithms, and

performance measures used in our experiments.

5.1 Datasets

Table 2: Dataset Statistics
Dataset n m nnz mrl mcl
RCV1 804414 45669 62e6 76.5 1347.3

RCV1-400k 400000 45669 31e6 76.5 670.3
RCV1-100k 100000 45669 8e6 78.2 187.4

WW200 1017531 663419 437e6 429.9 659.4
WW500 243223 660600 202e6 830.3 305.7

WW200-250k 250000 663410 108e6 430.3 163.7

For each dataset, n is the number of vectors (rows), m is the number of
features (columns), nnz is the number of non-zero values, and mrl and
mcl are the mean row and column lengths (number of non-zeros).

We use six text-based datasets to evaluate each method. They
represent some real-world and benchmark text corpora often used
in text-categorization research. Their characteristics, including
number of rows (n), columns (m), and non-zeros (nnz), and mean
row/column length (mrl/mcl), are detailed in Table 2. Standard
pre-processing, including tokenization, lemmatization, and tf-idf
weighting, were used to encode text documents as vectors. We
present additional details below.

• RCV1 is a standard benchmark corpus containing over 800,000
newswire stories provided by Reuters, Ltd. for research pur-
poses, made available by Lewis et al. [18].

• RCV1-100k and RCV1-400k are random subsets of 100,000
and 400,000 documents, respectively, from RCV1.

• WW500 contains documents with at least 500 distinct features,
extracted from the October 2014 article dump of the English
Wikipedia1 (Wiki dump).

• WW200 contains documents from the Wiki dump with at least
200 distinct features.

• WW200-250k is a random subset of size 250,000 from WW200.

5.2 Baseline approaches
We compare our methods against the following baselines.

1http://download.wikimedia.org

• kIdxJoin is a straight-forward baseline similar to IDX in [21]
that first builds a full inverted index. Then, without performing
any pruning, it uses the index to compute exactly, via accumula-
tion, the similarity of each object with all other objects in the set,
returning the top-k matches for each query object.

• kL2AP solves the k-NNG problem by executing similarity
searches using L2AP [1]. We modified L2AP to allow specify-
ing a set of input query vectors. Then, as we iteratively reduce
the search threshold t, we provide as input only those objects
with incomplete neighborhoods.

• BMM refers to the docID-oriented with variable block sizes ver-
sion of the Block-Max Maxscore method by Dimopoulos et
al. [9]. The method splits inverted lists into blocks and uses max-
imum scores for postings in each block to prune the similarity
search space. We adapted the method for cosine similarity rank-
ing and chose the same block sizes as in their paper. Blocks were
stored in compressed form, using PForDelta compression [25].

• Maxscore is an in-memory implementation of the max_score in-
formation retrieval algorithm [24], as described by Dimopoulos
et al. in [9], adapted to rank based on cosine similarity.

• Greedy Filtering is a state-of-the-art approach for solving the
approximate k-NNG construction problem applied to sparse
weighted vectors, proposed by Park et al. [21].

• NN-Descent was designed by Dong et al. [11] to work with
generic similarity measures and has been shown effective at solv-
ing the approximate k-NNG construction problem in both sparse
and dense datasets.

While LSH has been a popular method for top-k search, it
does not perform well in the k-NNG construction setting. Both
Greedy Filtering and NN-Descent have been shown to outperform
LSH when applied to this problem, for k typically≥ 10. Addition-
ally, L2AP outperformed LSH in the related APSS problem. As we
will show in Section 6, L2Knng significantly outperforms kL2AP,
the k-NNG method based on L2AP, as well as Greedy Filtering and
NN-Descent. As a result, we have chosen not to compare against
LSH in this work.

5.3 Performance measures
When comparing approximate k-NNG construction methods, we

use average recall to measure the accuracy of the returned result.
We obtain the true k-NNG via a brute-force search, then compute
the average recall as,

R =
1

|D|
∑
di∈D

true neighbors in Ndi
|Ndi |

.

We follow others in using the number of full similarity com-
putations as an architecture and programming language indepen-
dent way to measure k-NNG construction cost [11, 21]. How-
ever, we use a slightly different normalization constant, NC =
|D|(|D| − 1), as our kIdxJoin baseline does not take advantage
of symmetry in similarity computations, and thus may compute up
to n− 1 similarity values for each vector in the dataset. We report,
for all algorithms, scan rate = # similarity evaluations/NC, and
candidate rate = # candidates/NC.

An important characteristic in our experiments is CPU runtime,
which is measured in seconds. Between a method A and a baseline
method B, we report speedup as the ratio of B’s execution time
and that of A’s.

5.4 Execution environment
Our method and all baselines are single-threaded, serial pro-

grams. A C++ based library implementing NN-Descent can be
found at http://www.kgraph.org/. A C based implementation of
L2AP can be found at http://cs.umn.edu/~dragos/l2ap. We imple-
mented2 kIdxJoin, kL2AP, Greedy Filtering3, Maxscore, BMM,
L2Knng, and L2KnngApprox in C and compiled our program us-
ing gcc 4.4.7 with -O3 optimization. Each method was executed on
its own node in a cluster of HP ProLiant BL280c G6 blade servers,
each with 2.8 GHz Intel Xeon processors and 24 Gb RAM.

We executed each method for k ∈ {1, 5, 10, 25, 50, 75, 100}
and tuned parameters to achieve balanced high recall and efficient
execution. For all L2Knng and L2KnngApprox experiments, we set
the parameter δ = 0.0001. We tested kL2AP by decreasing the
threshold t in steps of 0.1, 0.25, and 0.5, and report the best results
among the step choices. For the NN-Descent library4, we set ρ = 1,
S = 20, and indexing K = µ (the candidate list size µ ≥ k). For
all stochastic methods, we executed a minimum of 5 tries for each
set of parameter values and we report averages of all tries.

6. RESULTS & DISCUSSION
We now present our experiment results, along several directions.

First, we test L2KnngApprox against approximate baselines. We
then evaluate the effectiveness of our exact k-NNG building strate-
gies. We measure the influence of the initial approximate graph
quality on L2Knng’s efficiency and the pruning effectiveness of dif-
ferent stages in the L2Knng filtering framework. Finally, we eval-
uate the runtime and memory scalability of L2Knng as the number
of input objects increases, and its efficiency as opposed to exact
baselines.

6.1 Evaluation of L2KnngApprox

6.1.1 Candidate pool size parameter analysis
The efficiency of all the approximate methods under considera-

tion are dependent on the number of candidates they are allowed
to consider for each object, µ. The larger the candidate pool is,
the more likely the true neighborhood is found among the ob-
jects in the pool. We compare the recall and execution time of
L2KnngApprox with other approximate baselines, given the same
candidate list and neighborhood size parameters, µ and k. We
tested each method, without changing any other parameters, given
µ = k, 2 × k, . . . , 10 × k, on the RCV1-400k and WW200-250k
datasets. We tested L2KnngApprox with γ = 0 (L2KnngApprox0),
which does not execute any iterative neighborhood updates, and
with γ = 3 (L2KnngApprox3).

Figure 1 plots recall versus execution time for our experiment
results. For all methods, results for µ = k are marked with a “-"
label, and those for µ = 10 × k with a “+” label. The best results
are those points in the lower-right corner of each quadrant in the
figure, achieving high recall in a short amount of time. Due to lack
of space, we include only results for k ∈ {50, 100}. Results for
other k values exhibit similar trends.

Methods generally exhibit higher recall and higher execu-
tion time for larger µ values. L2KnngApprox0 takes much less
time to execute than Greedy Filtering and, given large enough

2Source code available at http://cs.umn.edu/~dragos/l2knng.
3The authors of Greedy Filtering kindly provided a Java-based im-
plementation of their algorithm for comparison. On average, our C
implementation achieved 1.13x speedup over the Java one.
4We thank Wei Dong for his invaluable assistance with using the
KGraph library and finding NN-Descent evaluation parameters.

200

400

600

800 RCV1-400k,
k=50

L2KnnApprox0

-
+

L2KnnApprox3

-

+

Greedy Filtering

-

+

NN-Descent

-

+

500

1000

1500

2000

2500WW200-250k,
k=50

-
+-

+

-

+

-

+

200

400

600

800

.4 .5 .6 .7 .8 .9 1

RCV1-400k,
k=100

-

+
-

+

-

+
-

+

.4 .5 .6 .7 .8 .9 1

500

1000

1500

2000

2500WW200-250k,
k=100

recall

ti
m

e
 (

s
)

-
+

-

+

-

+
-

+

Figure 1: Recall and execution time of approximate methods
given increasing candidate pool sizes.

µ, can achieve similar or higher recall. Both L2KnngApprox

and Greedy Filtering require larger µ values than NN-Descent to
achieve high recall. Yet, NN-Descent does not improve much as µ
increases. L2KnngApprox3 is able to outperform both competitors,
with regards to both time and recall, for large enough µ.

6.1.2 L2KnngApprox efficiency
In this work, we focused on building the exact k-NNG. While

approximate methods cannot easily achieve perfect recall, we com-
pared their efficiency when seeking a close approximation of the
true k-NNG. We executed each approximate method under a wide
range of parameters and report the smallest time for which a mini-
mum recall value of 0.95 was achieved. Figure 2 presents execution
times for the approximate methods, for four of the datasets. Re-
sults for the other datasets are similar and we omit them here due
to lack of space. We also include the times for our exact variant,
L2Knng, as comparison. Note that execution times are log-scaled.
Lower values are preferred. The NN-Descent result is not included
for the WW200 dataset, as we could not obtain high enough recall
(the highest recall for k = 1 was 0.8854, even with µ = 850).

100

1e+3

1e+4

1e+5

WW200 WW500

10

100

1e+3

1e+4

5 25 50 75 100

RCV1

5 25 50 75 100

RCV1-100k

k

to
ta

l
ti
m

e
 (

s
),

 l
o

g
-s

c
a

le
d

NN-Descent

Greedy Filtering

L2KnngApprox

L2Knng

Figure 2: Approximate k-NNG construction efficiency.

L2KnngApprox was more efficient than Greedy Filtering in all
cases and than NN-Descent in most cases, while achieving an order
of magnitude improvement over our exact solution. For problems
where perfect recall is not needed, L2KnngApprox can provide a
close approximation in much less time. Even though NN-Descent
had similar execution times as L2KnngApprox for some neighbor-

hood sizes of the RCV1 datasets, it performed poorly on the WW
datasets. This may be explained by the much higher dimension-
ality and mean row length of the WW datasets as compared to
the RCV1 datasets, which can lead to repeated inclusion of ob-
jects in computationally expensive NN-Descent local joins. In con-
trast, L2KnngApprox uses several strategies that limit the number
of computed dot-products. It builds a higher quality initial graph
than NN-Descent, prioritizes candidate inclusion, and sets a hard
limit on the candidate list size in each iterative update.

6.2 Evaluation of L2Knng

6.2.1 Initial graph influence
While the final recall for an L2Knng execution is 1.0, our method

uses an initial approximate graph N̂ as a guide in its k-NN search.
A graph N̂ with high recall provides L2Knng with higher minimum
neighborhood similarity values, which translate into tighter pruning
bounds and leads to fewer full vector dot-products being computed
(smaller scan rate) and faster runtime. We tested the influence of
the initial graph quality in three scenarios on the RCV1-400k and
WW200-250k datasets. In the first scenario (random), we gener-
ated an initial graph by randomly picking k neighbors for each ob-
ject from the set of objects with which they shared at least one
feature in common. In the second scenario (fast), we chose param-
eters that ensure fast execution, without guaranteeing high recall
(µ = k, γ = 1). We executed the search using 10 completion
blocks in both scenarios (ν = 10). Finally, we include for compar-
ison the best results we achieved after a parameter search (best).

0.2

0.6

1.0

RCV1-400k

0.2

0.6

1.0

WW200-250k

.05

.15

.25

.35

RCV1-400k
.25

.35

.45

.55

WW200-250k

.5K

1.5K

2.5K

3.5K

5 25 50 75 100

RCV1-400k

5 25 50 75 100

1K

3K

5K

7K

WW200-250k

in
it
ia

l
g
ra

p
h

re
c
a
ll

c
a
n
d
id

a
te

ra
te

ti
m

e
 (

s
)

k

random fast best

Figure 3: Initial graph influence over L2Knng efficiency.
Figure 3 presents our experiment results. The top of the figure

shows, for each k value, the recall of the initial graph for the two
tested datasets. The middle and bottom of the figure show, for each
k value, the candidate rate and execution time after completing the
exact k-NNG construction. The results emphasize the importance
of the initial graph quality in L2Knng. The initial graph N̂ for the
random test case had recall 0.018 and 0.009 on average across all
k values for the RCV1-400k and WW200-250k datasets, respec-
tively. The recall was 0.496 and 0.628 in the fast and 0.883 and
0.929 in the best test cases. These better initial graphs translate into
both lower candidate rates and smaller execution times. The fast
case performed similarly to the best case, showing that L2Knng can
be used with reasonable parameter values and does not require ex-
tensive parameter tuning.

6.2.2 Parameter sensitivity
The parameters µ, γ, and ν can influence the effectiveness and

efficiency of our exact and approximate algorithms. Larger values

for µ increase the number of candidates considered for building
the initial graph and will likely lead to increased recall for this
stage. Similarly, higher γ values translate to more iterations of ini-
tial neighborhood enhancement, at the cost of more similarity com-
putations. Increasing ν values can lead to improved candidate gen-
eration pruning and faster index traversal, at the cost of reading
vectors in unprocessed blocks several times to find similarities with
indexed vectors. There is a trade-off between the benefit of more
efficacious pruning bounds and the time taken to achieve them.

We executed parameter sensitivity experiments on the RCV1-400k
and WW200-250k datasets, for k ∈ {25, 50, 75, 100}. In each ex-
periment, we fixed two of the parameters and varied the third. In
the first experiment, given γ = 0, and ν = 10, we varied µ be-
tween 100 and 1000. In the second experiment, given µ = 300,
and ν = 10, we varied γ between 0 (no initial neighborhood en-
hancement) and 10. Finally, to verify the sensitivity of the num-
ber of blocks parameter, ν, given µ = 300, and γ = 1, we var-
ied ν between 1 and 500. Due to lack of space, we include here
only a summary of the parameter study results. As expected, we
found recall improves when either µ or γ are increased. While the
rise is sharp at first, it levels off quickly as the parameter values
get larger, showing that the most benefit is gained from checking
a relatively small number of initial candidates and executing few
neighborhood enhancement rounds. In general, the best results we
obtained after parameter tuning were executed with 1 ≤ γ ≤ 3 and
300 ≤ µ ≤ 500. The execution time was not greatly affected as
we increased the values of µ or γ, showing that L2Knng is not very
sensitive to these parameter choices. We found that increasing the
number of blocks ν initially leads to improved performance for all
k values. While the improvement is more drastic at first, ν values
greater than 50 do not improve the results much, and can eventually
lead to decreased efficiency.

6.2.3 Pruning effectiveness
L2Knng works by pruning the majority of the candidates that

are not true neighbors. Candidates can be pruned while checking
the suffix `2-norm at a common feature during the candidate gen-
eration stage (cg), during the candidate verification stage (cv), or
after checking the suffix estimate score (ses). Since a partial dot-
product is accumulated for each candidate before being pruned,
it is important that candidates be pruned as early as possible. In
an experiment in which we used fast defaults for all parameters
(µ = k, γ = 1, ν = 10), we counted the number of candi-
dates that were pruned in each stage of the algorithm. Additionally,
we display the number of candidates that survived all pruning and
had full dot-products computed (dps). Figure 4 shows the results
of this experiment for the RCV1-400k and WW200-250k datasets,
as stacked bar charts showing the number of candidates for each
category.

1e+10

2e+10

3e+10

4e+10

1 5 1
0

2
5

5
0

7
5

1
0
0

k

RCV1-400k

#
 c

a
n

d
id

a
te

s

cg
ses

cv
dps

1 5 1
0

2
5

5
0

7
5

1
0
0

0

1e+10

2e+10

3e+10

k

WW200-250k

Figure 4: Candidate pruning in L2Knng.

Table 3: Execution time and memory scalability.
Mean search time (ms) L2Knng L2KnngApprox

dataset # rows ∆sz k = 25 50 75 100 25 50 75 100
WW200-250k 250000 1.00 12.0 14.0 15.2 16.2 0.7 1.3 1.6 1.9
WW200 1017531 4.07 38.9 46.5 50.9 54.1 1.1 1.7 2.6 2.9
RCV1-100k 100000 1.00 1.0 1.3 1.5 1.7 0.1 0.2 0.2 0.3
RCV1-400k 400000 4.00 2.9 3.8 4.4 4.9 0.3 0.4 0.5 0.6
RCV1 804414 8.04 5.3 6.8 8.0 8.1 0.3 0.4 0.6 0.7

Memory usage (Gb) L2Knng L2KnngApprox

dataset # rows ∆sz k = 25 50 75 100 25 50 75 100
WW200-250k 250000 1.00 8.9 9.5 10.0 10.6 7.2 7.8 8.4 9.0
WW200 1017531 4.07 35.9 38.2 40.5 42.8 29.1 31.7 34.0 36.4
RCV1-100k 100000 1.00 0.9 1.1 1.4 1.6 0.7 1.0 1.2 1.4
RCV1-400k 400000 4.00 3.5 4.4 5.3 6.2 2.9 3.8 4.7 5.6
RCV1 804414 8.04 7.0 8.8 10.6 12.4 5.8 7.7 9.5 11.3

Results show that the majority of objects are pruned soon af-
ter becoming candidates, in the candidate generation stage (cg).
Of the remainder, most are pruned by the suffix estimate bound
(ses), which is checked once, at the beginning of the candidate
verification stage, and by additional pruning in the candidate ver-
ification stage (cv). On average, across all k values, 0.15% and
0.02% of candidates survived all pruning for the RCV1-400k and
WW200-250k datasets, respectively. A large number of objects
never become candidates in L2Knng, as a result of either the `2-
norm based candidate acceptance bound in the candidate genera-
tion stage of the algorithm, or due to the prefix-filtering based in-
dex reduction. On average across all k values, only 38.17% and
88.66% of all potential candidates actually became candidates for
the RCV1-400k and WW200-250k datasets.

6.2.4 Scalability testing
As the dataset size increases, the exact k-NNG problem will

take longer to solve, as each object has more potential neighbors
that have to be vetted. As a way to verify scalability, we tested
our methods on three subsets of the RCV1 and two subsets of
the WW200 datasets. For each data subset, Table 3 reports, for
k ∈ {25, 50, 75, 100}, the mean per-vector search time (top) and
the maximum amount of memory used (bottom) for L2Knng and
L2KnngApprox. The ∆sz column shows the relative dataset size
increase. Parameters were tuned to achieve efficient execution, and,
in the case of L2KnngApprox, high recall (95%).

The results show that the performance of both methods scales
linearly compared to the dataset size. As the dataset size increases,
our two methods perform better than they did for the smaller
datasets (e.g., it takes much less than 8.04x the time of search-
ing RCV1-100k to search RCV1 for 100 neighbors), while using
memory directly proportional to the number of objects in the set.

6.3 Comparison with other methods
The primary goal of this work is the efficient construction of the

exact k-NNG. Figure 5 presents execution times for the exact meth-
ods, for all six of the tested datasets. We also include the times for
our approximate algorithm, L2KnngApprox, as comparison. Note
that execution times are log-scaled, and lower values are preferred.
The Maxscore and BMM experiments on the WW200 and WW500
datasets were terminated early, after executing for 5 days, which is
more than twice the execution time of kIdxJoin for these datasets.
Additionally, Table 4 shows the average speedup, across all k val-
ues, of our algorithms against the best time achieved by competing
approximate (left) and exact (right) methods.
L2Knng performed best among all exact methods, achieving over

an order of magnitude improvement versus kIdxJoin for small
values of k. The speedup is less pronounced as the value of k in-
creases. This may be partially due to an increased number of neigh-

10

100

1e+3

1e+4

1e+5

1e+6

WW200 WW500

10

100

1e+3

1e+4

1e+5

1e+6

WW200-250k RCV1

10

100

1e+3

1e+4

1e+5

5 25 50 75 100

RCV1-400k

5 25 50 75 100

RCV1-100k

k

to
ta

l
ti
m

e
 (

s
),

 l
o

g
-s

c
a

le
d

L2KnngApprox

L2Knng

kIdxJoin

kL2AP

Maxscore

BMM

Figure 5: Exact k-NNG construction efficiency comparison.

Table 4: Average speedup of L2Knng and L2KnngApprox over
best competing method.

versus approx versus exact
dataset / method L2Knng L2KnngApprox L2Knng L2KnngApprox

WW200 0.32 9.60 5.57 178.01
WW200-250k 0.41 6.01 3.94 69.08
WW500 0.40 8.68 4.58 110.98
RCV1 0.09 0.87 6.18 61.79
RCV1-100k 0.33 2.19 4.11 27.86
RCV1-400k 0.17 1.19 5.41 40.24

borhood updates during the search, which, in our implementation,
incur the cost of heapifying neighborhood data structures.

While using a similar filtering framework as L2Knng, kL2AP
performs poorly, at times taking longer to execute even than
kIdxJoin, which is equivalent to a brute-force search. This may
be due to repeated indexing in kL2AP and the size of its final in-
dex. As t nears 0, even if we are only interested in finalizing a few
neighborhoods, the inverted index lists will contain the majority of
values in the dataset, and traversing it will produce many candi-
dates. In contrast, L2Knng indexes each vector only once and uses
block completion as an effective strategy to improve pruning.

Maxscore and BMM performed worst among all exact methods,
which may be explained by the length of the query vectors used
in solving the k-NNG problem. The methods were designed for
short queries. They perform a sorting operation with each query
and simultaneously traverse as many inverted lists as the number of
features in the query vector, which can lead to loosing cache local-
ity. In contrast, our method traverses one inverted list at a time and
updates an accumulator in increasing index order, which is much
more cache friendly for long queries.

Table 5 presents timing and scan rate results for the three top
performing exact and approximate methods. As in Section 6.1.2,

we report the smallest time for which a minimum recall value of
0.95 was achieved for all approximate methods. Due to lack of
space, we only include results for the WW500 and RCV1 exper-
iments and k ∈ {1, 25, 100}. We use bold font to highlight the
best result among approximate (top) and exact (bottom) methods,
which are separated in the table by a dashed line. L2Knng and
L2KnngApprox achieve most of the lowest scan rates among the
competing methods, highlighting the ability of L2KnngApprox to
find a quality approximate solution using few similarity compar-
isons and the pruning ability of the L2Knng filtering framework. For
the RCV1 datasets, NN-Descent achieves similar execution times as
L2KnngApprox while having much higher scan rates. NN-Descent
does not use accumulation and can take advantage of cache locality
afforded by the short vector sizes in the RCV1 datasets. However,
much longer vectors, combined with high scan rates, lead to poor
NN-Descent performance on the WW datasets.

7. CONCLUSIONS AND FUTURE WORK
We presented L2Knng, our exact filtering-based solution to the

cosine similarity k-NNG construction problem. L2Knng uses an
initial approximate solution graph as a guide to find the desired
true neighborhoods, through a modified similarity search frame-
work. We introduced several new pruning bounds specific to this
problem, which leverage the Cauchy-Schwarz inequality in partial
vector dot-products at each stage in the framework to prevent full
similarity computation for most object pairs. L2Knng achieves an
order of magnitude improvement against exact baselines. Our in-
exact k-NNG construction method, L2KnngApprox, achieves high
recall in less time than competing approximate methods, and is an
order of magnitude faster than our approximate baselines.

In this paper, we have focused on the cosine similarity function
for building the k-NNG. It would be interesting to evaluate the ef-
ficiency of `2-norm filtering in the context of other similarity func-
tions, such as the Dice and Tanimoto similarities. Another avenue
of research involves scaling up the number of threads and proces-
sors used to solve the problem, which in turn will scale the size of
the problem that can be efficiently solved.

Acknowledgment
This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788),
Army Research Office (W911NF-14-1-0316), Intel Software and
Services Group, and the Digital Technology Center at the Univer-
sity of Minnesota. Access to research and computing facilities was
provided by the Digital Technology Center and the Minnesota Su-
percomputing Institute. We thank the reviewers for their helpful
comments.

Table 5: Execution time and scan rate for competing algo-
rithms. Best results are emphasized in bold.

WW500 RCV1
result method / k 1 25 100 1 25 100
time: Greedy Filtering 766.3 2135.5 4239.3 2039.9 1846.0 3809.8

NN-Descent 15586.8 5562.9 3547.1 289.6 377.9 350.0
L2KnngApprox 90.0 209.9 667.3 550.1 275.1 596.3
kIdxJoin 29389.8 29412.7 29243.9 45456.7 45585.6 38914.4
kL2AP 17201.7 19626.5 19588.1 15823.6 21067.7 37705.9
L2Knng 1923.2 5543.6 8340.0 1614.8 4280.5 6550.6

scan Greedy Filtering 0.0017 0.0045 0.0086 0.0046 0.0034 0.0049
rate: NN-Descent 1.2913 0.1071 0.8568 0.6805 0.8402 0.6914

L2KnngApprox 0.0005 0.0014 0.0045 0.0022 0.0010 0.0018
kIdxJoin 1.0000 1.0000 1.0000 0.8951 0.8951 0.8951
kL2AP 0.0407 0.4981 0.5003 0.0003 0.0249 0.0017
L2Knng 0.0005 0.0011 0.0036 0.0004 0.0012 0.0013

8. REFERENCES
[1] David C. Anastasiu and George Karypis. L2ap: Fast cosine

similarity search with prefix l-2 norm bounds. In 30th IEEE
International Conference on Data Engineering, ICDE ’14,
2014.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, January 2008.

[3] Amit Awekar and Nagiza F. Samatova. Fast matching for all
pairs similarity search. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology - Volume 01,
WI-IAT ’09, pages 295–300, Washington, DC, USA, 2009.
IEEE Computer Society.

[4] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant.
Scaling up all pairs similarity search. In Proceedings of the
16th International Conference on World Wide Web, WWW
’07, pages 131–140, New York, NY, USA, 2007. ACM.

[5] Alina Beygelzimer, Sham Kakade, and John Langford.
Cover trees for nearest neighbor. In Proceedings of the 23rd
International Conference on Machine Learning, ICML ’06,
pages 97–104, New York, NY, USA, 2006. ACM.

[6] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya
Soffer, and Jason Zien. Efficient query evaluation using a
two-level retrieval process. In Proceedings of the Twelfth
International Conference on Information and Knowledge
Management, CIKM ’03, pages 426–434, New York, NY,
USA, 2003. ACM.

[7] Chris Buckley and Alan F. Lewit. Optimization of inverted
vector searches. In Proceedings of the 8th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’85, pages
97–110, New York, NY, USA, 1985. ACM.

[8] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A
primitive operator for similarity joins in data cleaning. In
Proceedings of the 22nd International Conference on Data
Engineering, ICDE ’06, pages 5–, Washington, DC, USA,
2006. IEEE Computer Society.

[9] Constantinos Dimopoulos, Sergey Nepomnyachiy, and
Torsten Suel. Optimizing top-k document retrieval strategies
for block-max indexes. In Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining,
WSDM ’13, pages 113–122, New York, NY, USA, 2013.
ACM.

[10] Shuai Ding and Torsten Suel. Faster top-k document retrieval
using block-max indexes. In Proceedings of the 34th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’11, pages
993–1002, New York, NY, USA, 2011. ACM.

[11] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest
neighbor graph construction for generic similarity measures.
In Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 577–586, New York,
NY, USA, 2011. ACM.

[12] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu,
and Beng Chin Ooi. Dsh: Data sensitive hashing for
high-dimensional k-nnsearch. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 1127–1138, New York, NY,
USA, 2014. ACM.

[13] Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity search in high dimensions via hashing. In

Proceedings of the 25th International Conference on Very
Large Data Bases, VLDB ’99, pages 518–529, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers.

[14] Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A
brief survey of text mining. LDV Forum - GLDV Journal for
Computational Linguistics and Language Technology, 2005.

[15] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, STOC ’98, pages 604–613, New York,
NY, USA, 1998. ACM.

[16] George Karypis. Evaluation of item-based top-n
recommendation algorithms. In Proceedings of the Tenth
International Conference on Information and Knowledge
Management, CIKM ’01, pages 247–254, New York, NY,
USA, 2001. ACM.

[17] Dongjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee.
An efficient similarity join algorithm with cosine similarity
predicate. In Proceedings of the 21st International
Conference on Database and Expert Systems Applications:
Part II, DEXA’10, pages 422–436, Berlin, Heidelberg, 2010.
Springer-Verlag.

[18] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.
Rcv1: A new benchmark collection for text categorization
research. J. Mach. Learn. Res., 5:361–397, December 2004.

[19] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[20] Rodrigo Paredes, Edgar Chávez, Karina Figueroa, and
Gonzalo Navarro. Practical construction of k-nearest
neighbor graphs in metric spaces. In Proceedings of the 5th
International Conference on Experimental Algorithms,
WEA’06, pages 85–97, Berlin, Heidelberg, 2006.
Springer-Verlag.

[21] Youngki Park, Sungchan Park, Sang-goo Lee, and Woosung
Jung. Greedy filtering: A scalable algorithm for k-nearest
neighbor graph construction. In Database Systems for
Advanced Applications, volume 8421 of Lecture Notes in
Computer Science, pages 327–341. Springer-Verlag, 2014.

[22] Cristian Rossi, Edleno S. de Moura, Andre L. Carvalho, and
Altigran S. da Silva. Fast document-at-a-time query
processing using two-tier indexes. In Proceedings of the 36th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13, pages
183–192, New York, NY, USA, 2013. ACM.

[23] Trevor Strohman and W. Bruce Croft. Efficient document
retrieval in main memory. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’07, pages
175–182, New York, NY, USA, 2007. ACM.

[24] Howard Turtle and James Flood. Query evaluation:
Strategies and optimizations. Inf. Process. Manage.,
31(6):831–850, November 1995.

[25] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter
Boncz. Super-scalar ram-cpu cache compression. In
Proceedings of the 22Nd International Conference on Data
Engineering, ICDE ’06, pages 59–, Washington, DC, USA,
2006. IEEE Computer Society.

