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Abstract—The increasing prevalence of video data, particu-
larly from traffic and surveillance cameras, is accompanied by
a growing need for improved object detection, tracking, and
classification techniques. In order to encourage development in
this area, the AI City Challenge, sponsored by IEEE Smart
World and NVIDIA, cultivated a competitive environment in
which teams from all over the world sought to demonstrate
the effectiveness of their models after training and testing on
a common dataset of 114,766 unique traffic camera keyframes.
Models were constructed for two distinct purposes; track 1
designs addressed object detection, localization and classification,
while track 2 designs aimed to produce novel approaches towards
traffic related application development.

Careful tuning of the Darknet framework’s YOLO (You Only
Look Once) architecture allowed us to achieve 2nd place scores
in track 1 of the competition. Our model was able to achieve
inference beyond 50 frames per second (FPS) when performing
on the NVIDIA DGX-1’s Tesla P100 GPU and up to 37 FPS
on a NVIDIA GTX 1070 GPU. However, the NVIDIA Jetson
TX2 edge device had a lackluster 2 FPS inference speed. To
produce truly competitive automated traffic control systems,
either more preferment edge device hardware or revolutionary
neural network architectures are required. While our track 2
model approach demonstrated that it is reasonable to obtain
useful traffic related metrics without the use of the region
proposal networks and classification methods utilized in other
models typically associated with traffic control systems.

Index Terms—Object detection, tracking, classification, au-
tonomous traffic control systems, smart city

I. INTRODUCTION

Video is a powerful medium for conveying information and
data is plentiful wherever there are cameras. From dash, body,
and traffic cams, to YouTube and other social media sites,
there is no shortage of video data. Interesting applications
that exploit this are ripe for development. One particularly
compelling domain where video analytics has tremendous
potential is in automated traffic control and public safety sys-
tems. The mere presence of automated traffic control systems,
like red-light and speed cameras, has been shown to have a
positive effect on the the reduction of traffic violations. A
worldwide analysis of 28 studies has concluded that such
systems have reduced crashes by 8% to 50% [12]. Carnis
and Blais showed in their research that the initial response to
France’s implementation of their automated speed enforcement
program (ASEP) was a 21% reduction in fatal car accidents
and a 26% reduction in non-fatal car accidents [1].

In traffic control systems, recall and precision metrics are
used to gauge the utility of these systems. Recall, in this
case, measures the the number of true traffic infringements
that were detected by the system. Improving this metric is
crucial as revenue brought in by ticketing must be high enough
to justify the cost of installing and maintaining the system.
Revenue brought in by ticketing must be high enough to
justify the cost of the system. Precision, on the other hand,
measures the ability of the system to make correct assessments
and must be maximized to ensure customer satisfaction. As
part of their study, Carnis and Blais found that only 70%
of violations detected were sanctioned. While autonomous
violation detection increases public safety, the less than ideal
precision of this specific system mandates that humans are
still necessary to authorize the ticketing process. Maximizing
precision not only reduces the manpower required to validate
detected violations but is a requirement in progressing towards
fully autonomous traffic control systems.

In this paper, we will provide an overview of techniques
used to address the problems of object detection, tracking, and
classification, and describe methods methods we developed for
these tasks as part of the 2017 IEEE Smart World NVIDIA Al
City Challenge [7]. Our group constructed models using the
Darknet [8] and Keras [2] frameworks utilizing pre-trained
weights for convolutional layers and fitting the remaining
parameters to perform optimally on two independent tasks.
Our track 1 models were designed to perform under the task of
object localization and classification while our track 2 models
were designed to predict traffic density using a regression
network postfixed to a feature map. The remainder of our
article is organized as follows. In Section II, we discuss related
works. Section III introduces our approaches towards pre-
processing, architecture design, and hyper-parameter tuning
of deep-learning models for the challenge tasks. We present
results of our models in Section IV and make considerations
for future work in developing improved models and novel
applications that utilize the state-of-the-art in object detection
in Section V. Finally, we conclude the article in Section VI.

II. RELATED WORKS

There are a multitude of approaches used to detect objects
in an image. Early methods focused on feature descriptors like
histogram of oriented gradients (HOG) [6] and scale-invariant
feature transform (SIFT) [5]. HOG is one of the most popular



computer vision techniques; put simply, it groups together
pixels into cells which are grouped into adjacent blocks. Each
cell votes (bins) on a direction of the pixel gradient and the
bin magnitude according to the votes of the adjacent cells
in a block are pooled to determine the final gradient. The
pattern of gradients across an entire image is used to localize
objects. SIFT works similarly to HOG, but gradient detection
is more localized and does not perform contrast normalization
as it does in HOG. Relative to newer deep learning-based
techniques, these approaches are slow and do not perform as
well.

One of the first deep-learning approaches to object detection
was introduced by Ross Girshick et al. in the form of Regions
with Convolutional Neural Networks (R-CNN) [3]. This early
design details a region proposal system in which images
along with suggested bounding boxes, provided via an external
process like selective search, are fed into a convolutional
neural network. A support vector machine (SVM) uses the
activated features detected by the CNN and the bounding
boxes to classify whether or not the subjects that may be
contained within a given bounding box are indeed objects
of interest. Finally, a regression layer tightens the bounding
boxes around identified objects. R-CNN outperforms HOG
with a mean average precision (mAP) of 54% on the VOC2010
dataset compared to HOG’s mAP of 33%. The drawbacks of
this method include the need of an external system to propose
bounding boxes and the bottleneck introduced by the need for
repeated forward passes through the CNN for each proposed
bounding box. In addition, the system is difficult to train due
to the use of disparate components.

Girshick et al. improved upon R-CNN with Fast R-CNN [4]
by introducing RoiPool (Region of Interest Pooling) which
pools together features shared across multiple region pro-
posals. This advancement greatly speeds up inference by
removing the necessity to make more than one forward pass
through the network for each image. In addition, the external
SVM classifier and regression model are integrated with the
CNN in the form of a softmax layer and regression network,
respectively. This consolidation of components makes it pos-
sible to train the network from beginning to end in one simple
process. On the VOCO7 dataset, Fast R-CNN trains 9 times
faster than R-CNN and is 213 times faster at test time. Fast
R-CNN also shows a 5.9% increase over R-CNN achieving
a mAP of 68.8% on the VOC2010 dataset. However, region
proposal still depends on an external selective search process,
making this the glaring bottleneck of Fast R-CNN.

A final improvement, Faster R-CNN [10] from Girshick et
al., uses the insight that the CNN of Fast R-CNN discovers all
the features captured by selective search. A region proposal
network placed after the CNN’s feature map eliminates the
need for proposed regions to be calculated in advance. Faster
R-CNN continues the trend of incremental improvements on
training and testing speeds and mAP scores. Most importantly,
Faster R-CNN can be trained in an end to end fashion without
the need for externally computed region proposals.

The most recent and preferment models that operate in this

domain simplify the architecture advances that Girshick et al.
made in order to produce models that execute forward passes
extremely efficiently. Perhaps the best performing such model
is YOLO [9]. This model’s architecture utilizes a modified
version of the GoogLeNet [13] model, called Extraction,
which features 21 convolutional layers with 1x1 and 3x3 filters
and max pooling. Although the Extraction model’s predictions
are less accurate than VGG-16 [11], a forward pass through
the Extraction network requires only 8.52 billion floating
point operations instead of VGG-16’s 30.69 billion operations.
This is in part responsible for YOLO’s increased efficiency.
YOLO'’s weakest point is that it predicts using a 13x13 feature
map, which may be too large of a grid for the detection of
small objects or objects in low resolution images.

III. METHODS
A. Materials

Our models were fit using keyframes taken at one second
intervals from several cameras mounted at traffic intersec-
tions. Cameras were positioned at multiple intersections in
the following three areas: Lincoln, NE, Virginia Beach, VA,
and Silicon Valley, CA. More than 75 hours of footage was
captured during daytime as well as nighttime. Videos were
taken at 30 frames per second at either a resolution of 480x720
or 1080x1920. Then, keyframes were extracted at 1 second
intervals from each video. Over 150 volunteers, including
the participants of this competition, collaboratively annotated
these keyframes over the course of two weeks. While more
than the 150,000 keyframes were annotated with over 1.4M
annotations, quality filtering left a total of 114,760 annotated
keyframes across two datasets, including 100,372 taken from
the 1080p footage and 14,388 from the 480p footage. The two
datasets were split into training, validation, and testing subsets
by the challenge organizers. The 1080p footage contained
59,482 training keyframes, 19,272 validation keyframes, and
21,618 test keyframes. The 480p dataset had 7,640 train-
ing keyframes, 3,376 validation keyframes, and 3,372 test
keyframes. Additionally, a downsampled version of the 1080p
dataset was provided at a resolution of 540x960. We performed
no data pre-processing prior to training our track 1 models.
However, for the track 2 models we normalized pixel values
to fall in the range between O and 1 inclusive.

B. Procedure

Track 1

Training accurate models on the AI City challenge datasets
was straightforward due to the simplicity of using Darknet
YOLO “out of the box”. This allowed us to quickly begin
training and producing inference results on the dataset. YOLO
object detection is framed as a regression problem. It divides
the image into an SzS grid. We adjusted the filters of
the last convolutional layer to accommodate for the number
of classes. Specifically, num_filters = (num_classes +
num_coords[z,y, h,w] + 1) X num = (154 5) x 5. If the
center of an object falls into a grid cell that cell is responsible
for detecting this object. Each grid cell predicts B bounding
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Fig. 1. YOLO network architecture.

boxes and confidence scores for those boxes. If no object exists
in that cell, the confidence score for that class is 0. We only
predict one set of class probabilities per grid cell, regardless
of the number of boxes B. We modified the input and output
layers of the YOLOvV2 network architecture to accommodate
the input size of the Al City datasets, and left the middle layers
unchanged. The architecture of the neural net is shown in
Figure 1. We utilized transfer learning to speed up the training
process by applying pre-trained convolutional weights from
the Darknet19_448 model available in YOLOv2. This is an
offshoot of the GoogLeNet model, trained on ImageNet with
top-5 accuracy of 93.5% [9]. The ImageNet dataset contains
a significant number of vehicle classes, and loading these pre-
trained weights allowed us to quickly produce an accurate
model for the Al city challenge datasets. We retrained the net-
work from end-to-end after loading the convolutional weights
for 30,000 to 45,000 iterations. Snapshots of weights were
taken every 5, 000 iterations and we periodically evaluated the
performance of the models.

The AIC480 model converged to a desirable loss after
30,000 iterations. Evaluation of this model showed good
localization and accuracy. Due to the low resolution of AIC480
dataset images, the SxS grid (13 x 13) was too large of a
division to properly evaluate the objects in the center of the
grid. This caused objects such as bicyclists and pedestrians
to be undetected. This is a downfall of YOLO, as other
groups using this framework have noticed. The mAP of the
bicycle class for all teams was 0.098 while our score was
0.08. The AIC540 model was trained in the same way as the
AIC480 model, only changing the first layer of the network
to adjust for the resolution change. This model was trained
for 45,000 iterations and, after evaluation, was found to
have good performance. The default threshold value for the
minimum confidence of a bounding box in YOLO is 24%.
Lowering this threshold allowed us to increase our recall score
significantly and without many false positives. Eventually
taking the threshold down to 3-4% allowed us to maximize
our recall and we achieved beyond 90% recall of all classes
and up to 95% recall for the SUV class. We successfully
trained a model for the AIC480 and AIC540 datasets. Training

a model for the AIC1080 dataset was challenging due to the
sheer size of the images. We had to reduce the batch size
to 1 image during training. This caused our model’s training
time to be significantly slower and our loss rate unable to
converge. We fell back on our AIC540 model to run inference
on the AIC1080 dataset since they are identical besides having
different resolutions. However, since we did not re-train the
first layer for the AIC1080 model, our scores were much
lower across the board. We developed a work-around to this
problem by downsizing the AIC1080 images to 540x960, and
then running inference on the downsampled image with our
AIC540 model. Finally, we upsampled the resulting bounding
boxes to fit the AIC1080 image. This step adds to the real-
time processing requirements by having to downscale the input
source image, but performed well in practice with regards
to effectiveness. In particular, using this model increased the
AIC1080 mAP from 0.28 to 0.470.

Track 2

The proposed utility of our track 2 model was to predict
the traffic density at a given keyframe. Instead of proposing
regions, regressing on object localizations, and then classifying
these bounding boxes, our model simply takes in the activated
features from the convolutional feature map and feeds them
into a simple regression network. This model was constructed
using the Keras framework. Pre-trained VGG-16 weights com-
prised the feature detecting convolutional layers of our model.
VGG-16 has 13 convolutional layers (arranged in 5 blocks)
with 3x3 and 2x2 filters and max pooling. A diagram of the
network’s architecture is visible in Figure 2.

We attempted several architectures that were postfixed to
the VGG-16 feature map. All configurations utilized either one
or two hidden layers, rectified linear unit (RELU) activation
functions, and 30%, 50%, or 75% dropout applied to these
hidden layers. The output layer consisted of either a single
linear unit or 14 linear units. The architectures with 14 output
units regressed on the counts for all 14 classes in our dataset
while the single output unit architectures were trained on labels
produced by aggregating all vehicle classes into a single count.

Training on our models used only the 540x960 resolution
dataset. Though we did experiment with training several
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Fig. 2. VGG-16 + regression network architecture.
variants of our models on the 480x720, this was mainly done to AIC480, Team21
configure the network architecture initially and test our meth- 1 *car
-+ SuUvV

ods. We selected a mean-squared-error loss (MSE) function
to train our models and evaluated their performance with a
custom mean-absolute-error (MAE) function which rounded
the real values output by the model to the nearest integer. In
retrospect, the loss and evaluation functions we chose were
not well suited for the regression task. These functions under-
emphasize the significance of differences in true and predicted
counts for low density images while overemphasizing this
significance in high density images. Our multi-class models
had deceptively good MAE scores; despite having low error,
there was high bias towards zero as most classes in most
images have a zero count. Time constraints prevented our
group from pursuing proper pre-processing techniques for the
multi-class models. Instead, we focused most of our time
on the single-class models. We found that our models badly
overfit if we used more than one hidden layer after the feature
map. Our model achieved the best evaluation scores with
relatively high dropout and more units in the hidden layer.
Due to hardware limitations, we were unable to evaluate a
model with more than 1250 hidden units.

IV. RESULTS

Track 1

We placed 2nd overall in track 1 of the challenge by
having the 2nd and 3rd best mAP scores on the AIC540
and AIC480 datasets, respectively. The challenge organizers
evaluated track 1 by averaging the maximum mAP of the
AIC540 and AIC1080 datasets with the mAP of the AIC480
dataset, since the AIC540 and AIC1080 datasets were in
fact the same videos with different resolutions. Teams were
given an additional two weeks after the conference to further
improve their models. We used this time to fine tune our
thresholding and filtering parameters. Specifically we lowered
the threshold criteria for minimum confidence of the detected
bounding boxes, as well as their associated class probabilities.
This resulted in an increased recall score, with the trade off of
an increased number of false positives. However, this improved
the model’s performance overall, and we were able to maintain
our second place rank. Table I shows the overall and per-class
mAP scores for the best models we trained on each of the
three datasets.
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Fig. 3. Track 1 model performance on AIC480 dataset.
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Fig. 4. Track 1 model performance on AIC1080 dataset.

Figures 3 and 4 show our precision/recall curves for our
AIC480 and AIC1080 models. Our models were able to
detect standard-sized vehicles with ease. Many small objects
were not annotated by some of the volunteers. As such, the
organizers ignored bounding boxes smaller than 30x30 during
evaluation. This caused traffic lights and other small objects to
be discarded, which negatively affected our result with respect
to these classes. From our own evaluation on the validation



TABLE I
PERFORMANCE ON DATASETS

Dataset | mAP | Car | SUV | SmTruck | MdTruck | LgTruck | Bus | Van | Bicycle | Traffic-R | Traffic-Y | Traffic-G | Ped | Loc
AIC480 | 0.44 | 0.82 | 0.66 0.62 0.32 0.31 0.5210.26 | 0.08 N/A N/A N/A 0 [0.89
AIC540 | 0.38 | 0.74 | 0.69 0.71 0.48 032 |041]048| 0.28 0 0 0 0.01 | 0.77
AIC1080 | 0.47 | 0.73 | 0.67 0.68 0.46 0.32 04 |045| 0.58 0.36 0.2 0.33 0.29 | 0.67

dataset, we would have achieved an AP of 0.65, 0.57, and
0.60 for Green, Red, and Yellow traffic lights, respectively,
for the AIC540 model if these small bounding boxes had not
been discarded. Similarly, the bicycle class had a score of 0.65
if considering all objects, as opposed to 0.27 after discarding
small boxes.

Fig. 5. A variety of different classes detected.

Our models performed well for the majority of the classes.
The greatest accuracy for all of our models was shown on
the car, small truck, and SUV classes, since these were
the most common and easily distinguishable objects. Our
AIC540 model achieved average precision scores of 0.74,
0.69, and 0.71 for these classes respectively. The models often
mislabeled minivans as SUVs, as shown in Figure 5. Minivans
have a similar shape and size; especially those with rounded
edges. These similarities made it difficult for the neural net to
accurately classify them. Larger freight vans that were boxy
in shape were detected with greater accuracy. We suspect
precision could be increased with van subclasses. The model
performed well on the truck sub-classes because it was divided
into 3 specific categories, small, med, and large. A small,
medium, and large van class could have increased accuracy.

The network had relatively poor precision on large trucks
however, as exemplified in Figure 7. The figure shows ground
truth bounding boxes and labels in red and predicted ones in
blue. Large trucks spanned multiple grids and the model at
times split them into two trucks. Also, when a large truck
drove through an intersection, it was at times split into two by
a light pole, resulting in the model detecting 2 large trucks.
This made the intersection over union of the predicted and
ground truth bounding boxes very low.

The labeling of the dataset was sometimes ambiguous.
Participants were inconsistent with the labeling of vans, SUVs
and trucks. One such example can be seen in the far-left

Fig. 6. Two very different but accurately labeled vans.

Fig. 7. Model performance on AIC540 dataset; ground truth colored red,
predictions colored blue.

section of Figure 7, where an annotator clearly mis-labeled a
small truck as a van. Some keyframes were completely skipped
because participants were unsure what to call these objects.
More consistent and higher quality annotations would have
allowed our model to be trained with higher accuracy.
During the conference, we demonstrated the model’s per-
formance on the NVIDIA Jetson TX2 with live video from
a USB camera and downloaded traffic camera from YouTube
clips. This allowed attendees to observe the performance of the
models on data vastly different from the training and validation
sets, in a real-world setting running on an edge device con-
nected to a live video stream. We noticed the AIC540 model
performed brilliantly when shown images of the same view
angle and height as the training data, but struggled to detect
objects when the camera perspective deviated greatly from
the training set. This demonstration showed the viability of
an edge device to perform inference on live video despite low



FPS.

Track 2

Our best performing track 2 model (without considering the
biased multi-class models) had a MAE of 2.39. As mentioned
before, this metric is less than ideal as it under-emphasizes the
significances of differences between true values and predicted
values when the traffic density is low while overemphasizing
the difference in high traffic density keyframes. Figure 8
exemplifies good performance with this model. Also notable in
this figure is the potential impact that mislabeling may have
had on all models trained using this dataset. This particular
image shows 10 cars present despite the annotators labeling
only 9.

Fig. 8. Example of good performance from track 2 predictions.

The inference speed of this model was a slow 1 FPS on the
Titan X Pascal GPU architecture. If inference was performed
in batches of 11 frames, the frame rate increased to 3.6.
This result stressed the importance of framework selection
when designing models for applications that depend upon real-
time inference. Keras, which emphasize flexibility and rapid
development, is sub-optimal for deployment purposes. Other
frameworks may have performed better in this scenario.

V. FUTURE WORK

We will continue to improve our models for use in traffic
related applications by training on more diverse datasets
with many more hours of video and with special emphasis
on high-definition footage. Due to the time constraints of
the competition, we did not get the opportunity to really
experiment with data pre-processing and tweaking our model
training procedures. The need for data generation was evident
because our models failed to detect images well when the
camera perspective deviated too far from the one in the training
images. We will apply image rotations, flips, scaling, as well
as hue, saturation, contrast, and brightness manipulations in
order to greatly increase the quantity of learned models. Our
individual models performed reasonably well when applied
to test data of the same resolution as the data the respective
model was trained on, but performance fell when trying to
mix training and test resolutions. We would like to produce
a more robust model that could perform well when used

on cameras of varying resolutions. Lastly, we would like to
continue exploring a multitude of novel use cases for this
technology.

VI. CONCLUSION

The richness that video data provides highlights the im-
portance of advancing the state-of-the-art in object detection,
classification and tracking for real-time applications. There
has been a steady progression of image detection techniques
beginning with feature descriptors like HOG and, more re-
cently, deep network-based approaches like Faster R-CNN and
YOLO. YOLO provides extremely fast inference speed with
slight compromise in accuracy, especially at lower resolutions
and with smaller objects. While real-time inference is possible,
applications that utilize edge devices still require improve-
ments in either the architecture’s design or edge device’s hard-
ware. Our track 1 model achieved good performance without
much consideration for data pre-processing which could have
potentially produced a much more robust model. Also, we did
not consider custom convolutional layer training in our track
2 model, which could have greatly reduced the number of
parameters and further increased inference efficiency.
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