
Data Structure for Efficient Line of SightQueries
Swapnil Gaikwad
Computer Science

San José State University
San José, California

swapnil.gaikwad@sjsu.edu

Melody Moh
Computer Science

San José State University
San José, California

melody.moh@sjsu.edu

David C. Anastasiu∗
Computer Engineering
San José State University

San José, California
david.anastasiu@sjsu.edu

ABSTRACT
Given the great amounts of data being transmitted between devices
in the 21st century, existing channels of wireless communication
are getting congested. In the wireless space, the focus up to now has
been on the microwave frequency range. An alternative for high-
speed medium- and long-range communication is the millimeter
wave spectrum, which is most effectively used through point-to-
point links. In this paper, we develop and compare methods for
verifying the Line of Sight (LOS) constraint between two points in a
city. To be useful for online wireless network planning systems, the
methods must be able to process terabytes of 3D city geolocation
data and provide answers in milliseconds. We evaluate our methods
using data for the city of San José, a major metropolitan area in
Silicon Valley, California. Our results indicate that our Hierarchical
Polygon Aggregation (HPA) method is able to achieve millisecond-
level query times with very little loss of precision.

CCS CONCEPTS
• Information systems→ Data structures; Specialized informa-
tion retrieval;

KEYWORDS
Wireless Emergency Network, Millimeter Waves, Line of Sight,
Data Structures, Information Retrieval.
ACM Reference Format:
Swapnil Gaikwad, Melody Moh, and David C. Anastasiu. 2018. Data Struc-
ture for Efficient Line of Sight Queries. In The 27th ACM International
Conference on Information and Knowledge Management (CIKM ’18), Octo-
ber 22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3269206.3269238

1 INTRODUCTION
Wireless communication primarily uses the 3 KHz to 6 GHz fre-
quency spectrum. The spectrum includes all major communication
applications in use today, including government and military com-
munication, AM/FM radio, TV broadcasting, cellular transmissions,
aviation and radar, wireless LAN, GPS, and many more [1]. With
∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269238

such a wide variety of applications, the microwave frequency range
is rapidly getting congested. The data deluge from newly intro-
duced smart devices and Internet of things (IoT) sensors are adding
even more stress to this crowded spectrum.

One solution to the congestion problem is to develop novel com-
munication strategies over the sparsely used millimeter wave spec-
trum, which utilizes the 6 GHz to 300 GHz frequency spectrum.
Operating in such a wide spectrum will relieve the pressure cur-
rently placed on the microwave spectrum and improve our current
congestion related problems. Advantages of millimeter wave com-
munication include increased reliability, ultra-low latency and high
security. This advantage is more pronounced when using direc-
tional antennae, which are capable of transmitting gigabytes of
data per second between two points without the need to broadcast
the signal in 360 degrees. This leads to reduced energy consump-
tion, but has the disadvantage of requiring direct line-of-sight (LOS)
between the communicating antennae.

Millimeter wave networks are often deployed in concert with
microwave communication infrastructure. Point-to-point segments
provide fast aggregate signal transmissions over long distances,
while local transmissions happen over WiFi or WiMax connections.
Designing such a heterogeneous wireless communication network
at scale, however, is a difficult task, complicated by the LOS require-
ment of the millimeter wave network. Given the 3D layout of a city
and a set of requirements, such as the desired coverage, number of
long-range nodes, minimum LOS cardinality for each node, and a
set of preferred and unaccessible structures in the city, an optimiza-
tion algorithm may need to execute hundreds of thousands of LOS
queries to find the optimal placement of antennae for the desired
network.

In this paper, we develop and compare novel data structures and
methods for efficiently verifying the LOS constraint between two
points in a city. To be useful for online wireless network planning
systems, the methods must be able to process terabytes of 3D city
geolocation data and provide answers in milliseconds. As a test case
for our method, we evaluate tens of thousands of LOS queries with
points located in the city of San José, a major metropolitan area in
Silicon Valley, California, housing more than 1 million people. This
city has an odd elongated shape and is nestled against hills that
cut off LOS access to some areas. Our experiments show that our
Hierarchical Polygon Aggregation (HPA) method is able to achieve
millisecond-level query times with very little loss of precision.

The remainder of the paper is organized as follows. Section 2
introduces existing solutions, giving an overview of their imple-
mentations and limitations. Section 3 presents two methods for
estimating LOS between two locations in a city. We describe our
evaluation methodology in Section 4, analyze our experimental
results in Section 5, and Section 6 concludes the paper.

https://doi.org/10.1145/3269206.3269238
https://doi.org/10.1145/3269206.3269238
https://doi.org/10.1145/3269206.3269238

Figure 1: Line of Sight for call-sign 3428484 Figure 2: OSM polygons, San José

𝛩

TX RXP

h1

h2

h
m

ax
 h

ei
gh

t

dist
(total)

dist

Figure 3: Line of Sight computation

2 RELATEDWORK
Existing solutions for the LOS identification problem are developed
by millimeter antennae manufacturers [3, 5, 7, 8]. For establishing
clear LOS between just two locations, these solution are more than
enough. However, tens or hundreds of thousands of such queries
should be executed when solving an optimization problem for a city-
wide wireless network planning. Given a pair of locations, these
solutions check every point on the segment between the locations,
attempting to locate possible obstructions.

Figure 1 shows a real world microwave network transmission
segment for FCC call-sign 3428484. A typical GIS database stores
data at every 1/3 arc seconds (10 meters) in a 3-parameter tuple, de-
noting latitude, longitude and height. For a relatively small distance
of around 2 miles shown in Figure 1, it will take around 320 point
checks to confirm clear LOS. Retrieving the correct points from the
database takes a significant amount of time, even if the GIS data is
properly indexed. Hence, it is necessary to reduce query execution
time for LOS queries. In addition to this shortcoming, most of the
existing solutions do not consider man-made objects or vegetation
as possible LOS obstructions. The methods we devise should be
extensible with diverse data that may improve effectiveness.

3 METHODS
In our proposed framework for classifying LOS, we significantly
reduce the number of point height checks required to address a
LOS query by preprocessing and aggregating GIS data. We develop
two techniques and algorithms to solve this problem. The first
technique utilizes natural polygon structures for buildings found
in OpenStreetMaps as the basis for data aggregation. In the second
technique, we use artificially drawn polygons to aggregate data.
We discuss these techniques in the remainder of this section.

3.1 Natural Polygon Aggregation
In our Natural Polygon Aggregation LOS method (NPA), we utilized
readily available OpenStreetMap polygons for data aggregation.
OpenStreetMap stores 2 dimensional layout of buildings, roads,
open spaces, etc., in the form of polygons. We imported these poly-
gon data in a PostgreSQL database and overlapped elevation data
from NED satellites on these polygons with the help of the PostGIS
PostgreSQL extension, which allowed us to determine the max-
imum height in each polygon. We stored the maximum height
information as an additional polygon parameter in the PostreSQL
database and used it in NPA to answer LOS queries.

Given a pair of locations for transmitting antenna (TX) and
receiving antenna (RX), we determine all intersecting polygons
along the way with the help of readily available PostGIS methods.
Based on the input heights h1 and h2 of two TX and RX points at a
distance of disttotal from each other, we first compute the angle of
elevation, which is then used to determine the allowed height for
each intersection polygon, namelyh1+dist× h2−h1

disttotal
,wheredist is

the distance from the source to the checked point. Any violation of
the allowedmaximumheight results in an obstructed result. Figure 3
demonstrates this process in graphical form. This approximation
for classifying LOS greatly reduces the number of comparisons
required to check a potential network segment. A disadvantage of
the NPA methods is that all data must be stored in the PostgreSQL
database and takes up a great deal of space. We further refine our
NPA method in the Hierarchical Polygon Aggregation method.

3.2 Hierarchical Polygon Aggregation
In NPA, we noticed some discrepancies, such as uneven polygon
sizes and missing polygon structures. If a certain polygon covers a
very big area, storing a single height for that entire area reduces
the accuracy of the LOS queries. In contrast, very small polygon
structures increase the time required for the query.

TX

RX

Level 1 Level 2

Level 3

Figure 4: Surface area tiling. Green tiles have a maximum
height lower than the minimum intersecting point of the
transmission line slope, while red tiles exceed that height.

To address these issues, we created artificial polygons of even
sizes, which we call tiles. Unlike OSM polygons, tiles are adjacent

to each another. This reduces the possibility for errors due to non-
polygon structures, such as those immediately outside a building.
Moreover, an LOS query can be answered by relying on aggregate
statistics stored in each tile along the path from the source RX to
the destination TX, without any need to query the database.

Algorithm 1 and Figure 4 describe our HPA LOS query procedure.
The HPA data structure consists of a hierarchy of l tile levels with
consistent h ×w layout. Given a designated surface area of a city
and parameters h,w, and l , we compute the total number of tiles
required at the lowest level to cover the city and generate latitude
and longitude bounds for each tile. The height of each tile is then
calculated by finding the point with the maximum height in the
specified tile. Tiles are then further aggregated hierarchically at
higher levels of the data structure. Figure 4 shows an example tile
representation and the pooling procedure, which we previously
described in [10].

With the HPA data structure, we can use hierarchically stored
tile statistics to further reduce the number of checks required to an-
swer an LOS query. We store only the bottommost level of tiles on
disk. When loading the data structure in memory, further levels are
aggregated using convolution style max pooling. In order to answer
an LOS query, we compute the angle of elevation in the same way
as in our NPA method. We then start checking the intersecting tiles
at the topmost level, which has the highest aggregation. Here, in-
tersecting tiles are determined by computing the angle of direction
along the transmission path. If a tile fails the maximum allowed
height check, the method drills down the failed tile, checking tiles
along the path in the next level. This hierarchical check is extended
until the last available level is reached. If the tile in the last level
fails the check, the method returns the query result as obstructed.

Algorithm 1: Hierarchical Polygon Aggregation LOS
Input: Points TX (lat1, lonд1) and RX (lat2, lonд2), level l
Output: Binary Line of Sight Result
t1 = T[lat1, lonд1, l], t2 = T[lat2, lonд2, l]
d = distance(t1, t2)
∆ = height(t1) - height(t2)
θ1 = ∆ / d
θ2 = lonд1 - lonд2 / lat1 - lat2
lonд = minLong(t1), lat = minLat(t1)
while lonд < lonд2 do

δlonд = lonд − lonд1
δlat = δlonд/θ2
lat = lat(t1) + δlat
t = T[lat , lonд, l]
δh = θ1× distance(t1, t)
if height(t) - height(t1) > δh then

if l = maxLevel then
return False

HPA (l + 1)
Repeat while loop along lat
return T rue

4 EXPERIMENT SETUP
For testing our methods, we used a server with two 12-core 2.5 GHz
Intel Xeon E52680 v3 (Haswell) processors and 384 GB RAM. We
used PostgreSQL version 9.6.1 to host our GIS database. As a proof

of concept, we chose a subset of California OSM and LiDAR data
covering the city of San José.

For our first method, NPA, we retrieved natural 2-dimensional
polygons from Mapzen [6], which internally uses OpenStreetMap
(OSM) [11]. There were 153,935 OSM polygons present in the bound-
ary of the city of San José. Beside building geometries, the dataset
includes polygons for other structures, such as roads and open
plots of land. Figure 2 shows a qGIS rendering of a section of the
imported OSM data. We computed the heights of structures in our
chosen area from highly accurate LiDAR data [9]. These data have
a resolution of 1/3 arc second, i.e., a height reading exists approxi-
mately every 10 meters. We converted these data from their default
Lambert Conformal Conical projection to standard WGS84 pro-
jection before using them in our experiments. The total number
of LiDAR data points in the boundary of the city of San José was
2,668,443,461. Even though this is a lot of elevation data, certain
areas had a very low coverage in the LiDAR data. For those areas,
we used the Google Maps Elevation API [4] to fill in missing data,
adding 98,000 more data points. The total 2,668,541,461 data points
required 794 GB of storage (591 GB for data + 203 GB for indexes).

In our second method, HPA, we chose l = 3, h = 70 and w = 7,
creating 70 × 7 tiles at each of the 3 levels, which covered an area
of roughly 70 × 7 km. The rectangular shape of the top level corre-
sponds to the general shape of the city of San José. The total number
of generated lowest level tiles was 117,649,000, which is consider-
ably higher than the number of polygons in the NPA method.

Both methods were implemented in Java, using standard Java
thread pool mechanisms for shared memory parallel processing. We
used OpenJDK 1.8.0_144 on Arch Linux and ran both methods with
24 threads in all experiments. The NPA method requires database
connections to find the intersecting polygons and their heights. We
used a connection pool of 24 connections for this purpose. Addi-
tional precaution was taken to ensure that no other programs were
running during the execution of either method. We also compared
our method against existing online services for estimating line of
site. Before executing those experiments, we tested the Internet up-
load and download speed of our server and found them on average
to be 80 Mbps and 40 Mbps, respectively.

5 RESULTS & DISCUSSION
We executed two sets of experiments, one measuring the effective-
ness and the other the efficiency of our methods.

5.1 Effectiveness Experiments
In order to test of our methods’ effectiveness to return accurate LOS
information in response to queries, we constructed a test dataset
consisting of 1506 point pairs located in San José. We chose clear
LOS (positive) pairs based on existing FCC tower pair location
data [2]. For negative samples, we made use of an external LOS
testing utility [5] and generated obstructed line of sight location
pairs. In total, we obtained 753 positive and 753 negative samples.
We used Accuracy to measure the effectiveness of our methods,
which is defined as the ratio of correctly classified samples over the
total number of samples.

Both our methods performed really well with regards to effective-
ness. NPAmisclassified 47 queries, resulting in an accuracy of 96.87%,

Figure 5: Distance vs. time for HWT, NPA
and HPA

Figure 6: Query time distribution for
HWT

Figure 7: Query distance and time
correlation

and HPA misclassified 18 queries, resulting in an accuracy of 98.80%.
Six out of the 18 samples misclassified by our HPA method were
obstructed LOS paths that HPA pronounced to be clear. Upon fur-
ther investigation using the external LOS testing utility, we found
existing structures along these paths that our system did not have
data for, causing the false positive results. False negative results
can be further reduced by more carefully tunning the tile size and
number of layers parameters in our HPA method. By simply using
additional data to update our GIS database (for the NPA method) or
our hierarchical height index (for the HPA method), our methods
can further improve their accuracy.

5.2 Efficiency Experiment
Our efficiency experiments were centered around comparison of
our method against baselines with respect to query execution time,
and analyzing the relationship between query point distance and
execution time. In the first experiment, we executed 5,303 queries
using our two methods and the HeyWhatsThat Path Profiler Web
service [5] baseline, which we simply call HWT. Distances for queries
in this experiment range between 2,000 and 2,600 meters, which
were similar to links we found in existing microwave network in-
stallations in San José. Figure 5 shows the distribution of query
times for the three methods. Note that query times are log-scaled
to better portray the differences between the methods. The figure is
best viewed in color. While the HWT method took on average 527.65
(168.30 stdev) ms to execute queries, our NPA and HPA methods an-
swered the same queries in 66.60 (14.59 stdev) ms and 1.08 (0.27
stdev) ms on average, respectively. To get a better understanding
of factors affecting query execution for HWT, we plotted execution
time vs. distance in Figure 6. The red dashed line shows a Gaussian
distribution fitted on the method’s execution time data. Results
show that HWT queries generally execute in 300–800 seconds irre-
spective of query execution distance. Queries times in HWT are likely
dependent on Internet transmission routes and the current load of
the Web server hosting the service.

In a second experiment, we compared our two methods, NPA and
HPA, on a much larger set of 20,000 random queries with distances
ranging between 0 and 5000 meters. Figure 7 plots the query dis-
tance vs. execution time for these queries. The average execution
times were 77.82 (10.51 stdev) ms and 2.35 (1.48 stdev) ms for the
NPA and HPA methods, respectively. While the NPA method takes
a minimum of 58 ms to execute due to the need to execute data-
base queries, HPA maintains an in-memory index data structure

that facilitates very fast LOS queries. Both NPA and HPA show a
positive correlation between query segment distance and execution
time, yet the slope of the HPA increase is smaller than that of the
NPA method, pointing to better scalability of the HPA method as
distances increase. In general, microwave antennae are placed at
distances of at most 10 miles (16 Km). Our HPA method should be
able to produce results in less than 5 ms for most such queries.

6 CONCLUSIONS
In this paper, we presented two techniques for efficiently solving
the problem of identifying whether a clear line of sight (LOS) ex-
ists between two points in the 3D geometry of a large city. Our
first baseline algorithm, Natural Polygon Aggregation LOS, uses
off-the-shelf GIS aware database systems and open-source data
to effectively solve the problem, resulting in 96.87% accuracy and
78 ms average query execution time. Its long execution time may
be prohibitive when trying to solve a multi-constrained optimiza-
tion problem for city-wide wireless network planning. We thus
designed a novel index data structure and the Hierarchical Polygon
Aggregation LOS method to improve LOS query efficiency. Our HPA
method works by drastically reducing the number of points whose
height must be checked to ensure clear LOS between two locations
and resulted in improved 98.80% accuracy and 2 ms average query
execution time.

REFERENCES
[1] 2015. Introduction to RF andWireless Communications Systems. (2015). Retrieved

April 15, 2018 from http://www.ni.com/tutorial/3541/en/
[2] 2017. fcc67GHz_20170720. https://fusiontables.google.com/DataSource?docid=

1-teDJHcmE21UMaaWnhCb2oy92eFD6m046UrbpGtQ#rows:id=1. (2017). Ac-
cessed: 2018-04-18.

[3] 2018. airLink - Outdoor Wireless Link Calculator. https://airlink.ubnt.com/#/.
(2018). Accessed: 2018-04-18.

[4] 2018. Developer’s Guide | Google Maps Elevation API. https://developers.google.
com/maps/documentation/elevation/intro. (2018). Accessed: 2018-04-18.

[5] 2018. HeyWhatsThat Path Profiler. http://www.heywhatsthat.com/profiler.html.
(2018). Accessed: 2018-04-18.

[6] 2018. Mapzen ? start where you are. http://mapzen.com/. (2018). Accessed:
2017-02-01.

[7] 2018. RF Line of Sight - SCADACore. http://www.scadacore.com/field-tools/
rf-path/rf-line-of-sight/. (2018). Accessed: 2018-04-18.

[8] 2018. Solwise - Surface Elevation Tool. http://www.solwise.co.uk/
wireless-elevationtool.html. (2018). Accessed: 2018-04-18.

[9] 2018. TNM Download. https://viewer.nationalmap.gov/basic/. (2018). Accessed:
2018-04-18.

[10] Swapnil Gaikwad and David C. Anastasiu. 2017. Optimal Constrained Wireless
Emergency Network Antenna Placement. In Proceedings of the IEEE Smart City
Innovations 2017 Conference (IEEE SCI 2017).

[11] OpenStreetMap contributors. 2017. Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org. (2017).

http://www.ni.com/tutorial/3541/en/
https://fusiontables.google.com/DataSource?docid=1-teDJHcmE21UMaaWnhCb2oy92eFD6m046UrbpGtQ#rows:id=1
https://fusiontables.google.com/DataSource?docid=1-teDJHcmE21UMaaWnhCb2oy92eFD6m046UrbpGtQ#rows:id=1
https://airlink.ubnt.com/#/
https://developers.google.com/maps/documentation/elevation/intro
https://developers.google.com/maps/documentation/elevation/intro
http://www.heywhatsthat.com/profiler.html
http://mapzen.com/
http://www.scadacore.com/field-tools/rf-path/rf-line-of-sight/
http://www.scadacore.com/field-tools/rf-path/rf-line-of-sight/
http://www.solwise.co.uk/wireless-elevationtool.html
http://www.solwise.co.uk/wireless-elevationtool.html
https://viewer.nationalmap.gov/basic/
 https://www.openstreetmap.org

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Natural Polygon Aggregation
	3.2 Hierarchical Polygon Aggregation

	4 Experiment setup
	5 Results & Discussion
	5.1 Effectiveness Experiments
	5.2 Efficiency Experiment

	6 Conclusions
	References

