
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

[1] M. C. Chang, L. D. Parham, E. I. Blanche, A. Schell, C.-P. Chou, M.
Dawson, and F. Clark, “Autonomic and behavioral responses of children
with autism to auditory stimuli,” American Journal of Occupational
Therapy, vol. 66, no. 5, pp. 567–576,
2012,doi:10.5014/ajot.2012.004242.
[2] Anastasiu, David C., Chang Megan C.,& Kapoor Manika (2018). A
Data-Driven Approach for Detecting Autism Spectrum Disorders. In Big
Data (Big Data), 2018 IEEE International Conference. IEEE.(under
review)

A Data-Driven Approach For Detecting 
Autism Spectrum Disorders 

Introduction
 Objective: Predict Autism Spectrum Disorders (ASD) and

characterize the type of stimuli needed for its detection.
 Why?:

• No cure exists, but early diagnosis increases the
chances of patients to function properly in society.

• Current methods are either subjective or based on
responses to single stimulus

 How?:
• Creating machine learning based models using

Electrocardiogram (ECG) and Skin Conductance (SC)
data.

Methods

Results and Conclusions
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 What is ASD?
• Neurodevelopmental disorder in which patients display

diminished capacity of social interaction.
• Instruments used for ASD assessment are lengthy to

administer and are also not accurate.

 Hypothesis:
• We hypothesize that autistic children are greatly affected

by certain sensory stimulation and thus may take longer
to return to normal state.

• In contrast, TD children can quickly recover to a normal
state after the sensory trial.

 Dataset: 
• Collected during Sensory Challenge Protocol (SCP) [1].
• Reactions to multiple stimuli were observed from 25

children with ASD and 25 Typically Developing (TD)
children (5-12 years age).

• Time taken for each protocol: 45–90 minutes.
• Included three phases: baseline, sensory challenge, and

recovery.
• Baseline and Recovery periods: 3 minutes with no

stimulation.
• Sensory Challenge: 6 stimuli, each administered for 3

seconds and was presented at least 8 times.
• Six Stimuli:

a) Auditory tones (at 84 dB)
b) Visual cues (20W strobe light at 10Hz)
c) Auditory siren sound (at 78 dB)
d) Olfactory (wintergreen oil passed under the nose)
e) Tactile (touch along the jaw bone a feather)
f) Vestibular (chair tilted back to a 30 degree angle)
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Fig1: Sample Dataset

 Evidence:
• Compare the sensory data recorded during baseline stage

and during the recovery stage.
• No stimulus was administered during either rest stages.
• Compute the Euclidean DTW distance of the ECG and SC

time series recorded during the rest periods.
• Euclidean DTW is the distance between two time-dependent

sequences which may have different speeds and length.
• Mean distance for the autistic children is approximately 60%

more than that for the TD children.

Fig2: Normal Distribution of Baseline and Recovery Distance using EKG
(left) and SC (right) data

Methods
 Feature Extraction:

• Transform data for each stimulus into a form that is
representative of the data but enables efficient analysis.

• Three methods:
 Equal Width Partition (EWP): SCP has stimuli

administered in specific number of contiguous trials.
Divide each stimulus data into ‘n’ equal parts and then
take
a) mean and standard deviation of each split.
b) slope and intercepts of peaks and slope and intercepts

of valleys in ECG and slope and intercept in SC data.

 Dynamic Time Warping (DTW):
a) Identify similar patterns in two time series even if one

of them is stretched out.
b) Calculate the DTW Euclidean distance between ECG

and SC data of every subject with every other subject.
c) Working with huge time-series is computationally very

expensive, so we divide the data for each stimulus into
8 equal parts with 10% data points from the
neighboring splits.

 Motif Based Segmentation (MBS):
a) Represent each stimulus using motifs.
b) Calculate Euclidean distance between ECG and SC

data of every subject with every other subject.
 Developing Predictive Models for Autism Detection:

• Binary classification problem.
• Built eight different types of models, namely:

a) K-Nearest Neighbors (KNN)              f) Decision Tree (DT)
b) Support Vector Machine (SVM)         g) Naive Bayes (NB)
c) Random Forest (RF)                          h) XGBoost (XGB)
d) DTW-based KNN model (DTW-KNN)
e) Motif-based KNN model (M-KNN)

 Degree with which each stimulus affects Autistic children:
• Contribution of each stimulus towards predicting autism in

children.
• Use Stochastic Gradient Descent (SGD) to find appropriate

weights for each stimulus for predicting autism in children.

 Using EWP, the best model accuracy achieved is 93.33% by
XGBoost model created using only SC data and using slope and
intercept of represent each partition.

Fig6: Model Accuracy Comparison using Equal Width Partition

Fig7: Overall Model Accuracy Comparison

Fig5: SGD Result 

Results and Conclusions

 Using MBS, the best accuracy achieved is 95.83% by KNN model
built using both SC and ECG data.

 Using DTW, the best accuracy achieved is 77.50% by the KNN
model built using both SC and ECG data.

 Stimuli application helps in predicting ASD.
 Without stimuli application, best accuracy achieved is 82.50%

which increases to 95.83% after stimuli application.

 Stimuli contributing towards best performing model are:
Baseline, Tones 84dB, Visual Cues, Siren 78dB, Olfactory &
Vestibular.

Fig9: Contribution of Each Stimuli Towards Best Performing Model

Fig8: Baseline vs Stimuli Application Comparison

Fig10: Model Time Efficiency Comparison

 DTW being one of the best approaches to compare time-series
data in general, doesn’t perform satisfactorily with huge time-
series data and is computationally very expensive, taking 3× the
amount of time to train and 450x time to predict as compared
to the best model.

 The best performing model i.e. M-KNN takes on an average 18.8
hours to train and approximately 30 seconds to make
predictions.

Fig3: Equal Width Partition

Fig4: Initial Splitting for DTW Experiments
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