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Abstract—A smart traffic analysis system could be used to
reduce congestion, prevent accidents, as well as to control traffic
flow. Such a system would need to make use of many technologies,
such as computer networking, communication, image processing,
object detection, and tracking. In this paper, we introduce an
efficient vehicle tracking algorithm which could be used to help
create a smart city traffic control system. Our algorithm is
targeted to solve the multi-object tracking (MOT) problem. Our
method follows a track-by-detection paradigm, i.e., it relies on
vehicle detection results to decide whether a detected vehicle
in sequential frames belong to the same track. Our vehicle
tracker extends the intersection over union (IOU) tracker and
improves upon it by fusing historical tracking information, taking
into consideration the balance between tracking efficiency and
effectiveness. We demonstrate the effectiveness and efficiency of
our approach using the UA-DETRAC benchmark dataset. Our
proposed method runs at an average speed of 1,264 frames
per second. We conclude that our tracker could be useful for
applications running in a real-time environment.

Index Terms—smart traffic, vehicle tracking, intersection over
union, localization, smart city.

I. INTRODUCTION

The maturity of the Internet and hardware breakthroughs

have recently made it possible to use machine-learning in

industry applications. One useful application of machine learn-

ing would be to develop a traffic control system that is able

to think and act like a human being. For this application, the

first priority is to train a machine to recognize as many objects

as possible, track their location changes over time, and then

predict changes in aggregate traffic patterns. Recently, many

researchers have successfully developed methods to recognize

(i.e., detect) diverse objects, e.g., cats, books, computers,

people, and vehicles. At the same time, much research has

been launched to track moving objects, including vehicles

and pedestrians. There are many practical scenarios to which

vehicle tracking can be applied. Smart traffic surveillance

systems, for instance, highly depend on vehicle detection and

tracking algorithms to help a police officer analyze traffic

conditions so as to control traffic flow. A fast running and

highly accurate tracker can also be used to infer movement

statistics for vehicles from video data, such as the current

speed of cars on the road; the officer would be able to

supervise traffic conditions by means of this information.

Generally, a tracking algorithm is given as input a segment

of video data; it analyzes the video, and then generates
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the tracking results by associating a unique ID to the same

vehicle in each of the video frames the vehicle is found in.

The sequence of vehicle positions in frames for a uniquely

identified vehicle is also known as a track. A candidate track,

which may only contain a subset of the vehicle positions or

possibly a subsequence of the track, is called a tracklet. There

is exactly one vehicle in a track or a tracklet. Ideally, we expect

the ID of the vehicle to stay unchanged, from the first frame

in which it emerges in the video to the end of the last frame,

when it disappears from the video.

The tracker should be able to assign different IDs to

different vehicles in the video. Obviously, vehicle tracking is

a complicated problem. We normally solve this problem by

comparing and matching the unique features of each vehicle

across the video frames. We expect that the same vehicle will

still have the same unique features across multiple frames,

which can be used to differentiate it from other vehicles. We

also make the assumption that the vehicle moves at a constant

speed, and the location will not change abruptly between

consecutive frames. However, in reality, there are still many

challenges to overcome in tracking algorithms, since keeping

features unchanged across frames is nearly impossible. Com-

mon features that an algorithm may use to detect recurring

vehicles are the color of the object and the shape and size

of the object. Unfortunately, because of lighting conditions

(illuminations), camera rotation, or vehicles changing direction

of travel, most of the time these features are not constant across

frames. Moreover, the point of view of the camera plays a big

role in how a vehicle is perceived. For example, one can easily

imagine that the size of the vehicle gets smaller and the color

becomes unstable as the vehicle moves away from the camera,

towards the horizon.

Another critical problem that the tracking algorithm should

deal with is the occlusion caused by other vehicles and non-

vehicle objects. This issue is especially prominent when traffic

is heavy: one vehicle is hidden in some frames by another

vehicle that is driving closely in front of it and then appears

again later. We expect the tracker to have the capability to

identify these types of scenarios and correctly track a vehicle,

even if it is lost in traffic for some time. Even when using a

static camera recording traffic in the same position and rotation

over time, the quality of the tracking result could vary greatly

under different weather conditions. In general, a tracker will

likely perform better on sunny days than in rainy conditions.

Our aim is to develop a tracker that works well in all normal
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weather conditions.

In the following sections, we will first review two track-

ing methodologies, known as track-by-estimation paradigm

and track-by-detection paradigm, we will introduce the UA-

DETRAC benchmark, then we will present our tracking algo-

rithm, and finally we will summarize the experiment result.

Our research contributions are as follows: we trained the

well-known YOLO [21] object detector as a general vehicle

detector and measured its effectiveness on the UA-DETRAC

dataset [22]; we evaluated the tracking efficiency and effec-

tiveness of two recent tracking algorithms on the dataset –

the IOU [7] and the MDP [23] trackers; we developed a

novel tracker that extends the IOU tracker by taking into

consideration historical IOU data; finally, we show that our

tracker achieves a good balance of tracking effectiveness and

efficiency performance.

II. RELATED WORKS

In this section, we will review some tracking approaches

following the prediction-correction and track-by-detection

paradigms.

A. The Prediction-Correction Algorithm

The prediction-correction formulation is usually based on

statistical estimation and assumption. One of the most typical

approaches is based on the theory of Kalman filters, which

has seen wide use in many real-world applications [6], [8],

[9], [10], [18], [19]. However, most of the authors derive this

algorithm by using complex mathematical representations that

are sometimes too complicated for the novice to understand.

In this section, we are going to review papers by Pei et al. [19]

and Faragher [10]. Pei et al. gave a straightforward definition

of Kalman filtering: it is an algorithm that combines two

imprecise estimations, one which comes from the prediction,

and the other which is generated by the measurement. The

algorithm fuses these two estimations linearly to obtain a more

precise result. One advantage of this article is that it derives a

complex mathematical theory from simple concepts, helping

readers that do not have a strong mathematical background

better understand Kalman filtering.

In the second article [10], Faragher presented an example

that demonstrates the simple and intuitive idea behind deriving

the Kalman filter. Faragher’s publication is especially targeted

for the reader who does not have a strong mathematical back-

ground. Faragher used car movement as his practical example,

which is pertinent to our research domain. Readers that have

a basic understanding of Newtonian movement should be able

to quickly grasp the Kalman filter approach via this simple

example.

B. The Track-by-Detection Algorithm

Advances in object detection technology provide another

approach to solve the object tracking problem, through a

method known as track-by-detection. This method has been

mainly used in the tracking of pedestrians and vehicles. Much

research has been published on the problem of object detec-

tion. Naphade et al. released a vehicle detection benchmark,

which is known as NVIDIA AI City Challenge [16], [17],

in order to encourage more researchers to get involved in

building a smart traffic system. General object detectors, such

as the you only look once (YOLO) detector [20], have been

successfully used by teams competing in the 2017 AI City

Challenge to accurately localize and classify traffic-related

objects, such as cars, buses, trucks, motorcycles, bicycles,

pedestrians, and traffic lights [5]. Farhadi and Redmon [21]

further improved the efficiency of YOLO by using multi-

scale predictions without specifying the anchor boxes. Fergus

and Zeiler [24] presented a way to visualize and understand

convolutional neural networks (CNNs), which are the core

of most deep learning-based detection algorithms. Ahmed

et al. proposed a CNN to solve the image re-identification

problem [1].

Object tracking research has also gained popularity recently.

Hua et al. proposed an approach for vehicle speed estimation

in the 2018 NVIDIA AI City Challenge [11] that also follows

the track-by-detection paradigm. They relied on YOLO as

the vehicle detector of choice, and used the Lucas-Kanade

tracker [15] for establishing vehicle tracks. Bochinski et al.

published an intuitive idea for the vehicle tracking problem,

known as the IOU tracker [7]. The authors mainly used the

bounding box information provided by the detector to track

the vehicle. This benefits efficiency and makes it possible to

be used in a variety of pragmatic applications. In this paper,

we used this algorithm as one of our baselines.

Bewley et al. implemented a simple online and real-time

tracking algorithm based on the IOU tracker, called SORT [4].

The tracking algorithm follows a similar track-by-detection

framework and identifies the tracking problem as a data associ-

ation problem. In the SORT algorithm, tracked features include

the central point of the bounding box, the ratio between

the bounding box width and height, as well as the object

movement speed, which is usually assumed to be constant.

Xiang et al. formulated the tracking problem as a decision

making problem [23]. The authors relied on the Markov

decision process to solve the problem. Hence, they named

their method the MDP tracker. Our paper will also use this

algorithm as one of our baselines.

Kalal et al. proposed a tracking algorithm called median

flow (MF) [12]. The authors used the forward-backward error

(FB error) algorithm to detect the failure in the tracking task.

In their paper, the authors first explained the general idea and

gave the mathematical derivation for the FB error. Then, they

demonstrated the idea by tracking a single point and then

extended it to tracking multiple points. Particularly, the authors

built their model based on the MF tracker, which was itself

originally invented based on the Lucas-Kanade tracker [14].

On the basis of the Lucas-Kanade tracker, the MF tracker

requires the FB error of the points between two consecutive

frames to be less than a threshold, which is normally 50%,

as the median flow name indicates. Points with an error rate

greater than this threshold will be removed.
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Fig. 1. An example of the UA-DETRAC dataset under different conditions.

Kalal et al. also developed a novel tracking-learning-
detection framework on the detection and tracking task, known

as TLD [13]. As indicated by the paper title, “Forward-

Backward Error: Automatic Detection of Tracking Failures,”

the authors pointed out that there have to be three independent

components to successfully build a TLD tracking algorithm:

the tracker, the learner, and the detector. One of the creative

contributions in this paper is the idea of positive-negative (P-

N) learning for the detection. Kalal et al. used the random

forest classifier to simulate the P-N learner. The tracker in

TLD is based on the MF results, which they improved on

by adding a failure detection algorithm to reliably tackle the

fast occlusion problem which commonly happens in object

tracking. Moreover, they used the FB error to identify the

failure of a trajectory.

In addition to the tracking algorithms, many researchers also

worked on the evaluation of tracking performance. Bashir and

Porikli [2] presented a metric to evaluate object detection and

tracking systems in early 2006. Bernardin and Stiefelhagen [3]

also developed the evaluation for the Multi-object tracking

(MOT) system, which is known as the CLEAR metric. Wen

et al. described the state-of-the-art MOT system protocol [22],

which they called the UA-DETRAC MOT benchmark. We

evaluated the performance of the baseline trackers and our

method by using this protocol.

III. THE UA-DETRAC BENCHMARK

In this section, we focus on reviewing the UA-DETRAC

benchmark which we used for vehicle tracking and evalua-

tion. Wen et al. released the UA-DETRAC annotated traffic

dataset, which they described in their “UA-DETRACK: A

new benchmark and protocol for multi-object detection and

tracking” article [22], and they also introduced a new protocol

to evaluate the MOT system, which they called the UA-

DETRAC MOT protocol.

A. Dataset

This dataset includes a total of 10 hours of video segments

recorded at 24 different locations in China, with a resolution

of 960 × 540 and a speed of 25 fps. The total number of

annotated objects is 1.21 million, consisting of 140,000 frames

TABLE I
2D GROUND TRUTH LABEL FILE

Frame Top Left Width Height
0 0.96 0.29 0.049 0.087
0 0.87 0.24 0.044 0.078
1 0.77 0.29 0.057 0.091
1 0.27 0.30 0.069 0.091

and 8,250 vehicles. The annotated objects include car, bus,

van, and other, where “other” represents some low-resolution

regions within the image. According to the weather conditions,

illuminations, occlusions, and traffic conditions, the dataset is

also partitioned into three different levels: easy (10 sequences),

medium (20 sequences), and hard (10 sequences). We illustrate

a snapshot of the UA-DETRAC benchmark in Fig. 1.

For each annotated image, there exists one corresponding

text file containing ground truth annotations. An example of

such a ground truth file is given in the Table I. Each line of

this file is used to indicate one object and contains 5 columns

separated by a space. The first column represents the vehicle

type, including car, van, bus, and other. The vehicle type is

represented by a number starting from 0. The last four columns

are used to store the 2D coordinate of the bounding box of

that object, including the top-left corner coordinates, the width,

and the height of a bounding box, relative to the size of the

image in pixels.

B. Evaluation Protocol

Wen et al. proposed an approach that jointly evaluates the

detector and the tracker and generates scores indicating the

overall performance of the MOT system [22]. This has been

widely known as the UA-DETRAC benchmark.

1) Detector Evaluation: The UA-DETRAC protocol uses

the precision versus recall (PR) curve to learn the performance

of the detector. Another metric that could be used to measure

detection performance is average precision (AP). The higher

the AP score is, the better the detector’s performance is as

well.

2) Tracker Evaluation: There are different indicators de-

scribing the performance of the tracker from variable view-

points. We will briefly explain each metric in this section.

Mostly track (MT) is a number used to count the ratio

between the ground truth tracks and the predicted tracklets

with a length of at least m% of the length of the predicted

track. In our work, we set m = 80.

Similar to the MT, mostly lost (ML) represents the total

number of trajectories in which the percentage of the track

that is correctly predicted by some tracklet is less than l%,

where l = 20 in our work.

Identity switches (IDS) is a number used to count the

number of ID changes. A perfect tracker should have IDS=0.

The Fragmentation (FM) score is defined as the percent of

tracks that were fragmented.
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Fig. 2. Pipeline of IOU tracker by YOLO detection.

Fig. 3. PR-MOTA curve. Ω∗ is a value describing the overall performance
of the MOT system.

Multi-object tracking accuracy (MOTA) of a certain se-

quence is defined as

MOTA = 100×
(
1−

∑
t(FNt + FPt + IDSt)∑

t GTt

)
,

where t represents a certain frame, and FNt and FPt are the

false negative and false positive rates for that frame, respec-

tively. GTt represents the number of ground truth instances

in that frame. Particularly, by analyzing the fraction term, one

can see that it is a ratio that accounts for all potential errors

during the tracking. Notably, if IDS is greater than 0, the ratio

may be greater than 1 and, therefore, the MOTA value may be

less than 0 in some cases. If evaluating the tracker performance

on multiple sequences, MOTA is defined as

MOTA = 100×
(
1−

∑
v

∑
t(FNv,t + FPv,t + IDSv,t)∑

v

∑
t GTv,t

)
,

where v indicates that the score will be accumulated across

all videos.

Multi-object tracking precision (MOTP) is defined as

MOTP =

∑
i,t d

i
t∑

t ct
,

where t represents a certain frame, c is the total number

of matching bounding boxes, and d denotes the difference

between the predicted object i with the ground truth object.

This metric does not provide information about the tracker; it

only indicates the performance of the detector.
3) Comprehensive Evaluation: As mentioned in the pre-

vious section, the goal of the evaluation is to find a way to

consider the detection and tracker results jointly. Using one

of the above metrics alone is not enough. The UA-DETRAC

protocol joins the PR curve detector metrics with the tracking

metrics to generate a comprehensive evaluation result. Typical

UA-DETRAC metrics include the PR-MOTA score, the PR-

MOTP score, the PR-IDS score, the PR-MT score, the PR-ML

score, and the PR-FM score. We are particularly interested in

the PR-MOTA curve, which can be used to evaluate the overall

performance among trackers. A typical PR-MOTA curve is

shown in Fig. 3. In this figure, the red curve is the PR-MOTA

curve, while the blue curve is the precision-recall curve used

to rank the performance of the detector.

IV. VEHICLE TRACKING USING THE IOU TRACKER

In this section, we will provide more details about the

IOU tracker, since our idea is motivated by this algorithm.

As its name (intersection over union) indicates, Bochinski et

al. [7] mainly used the IOU between bounding boxes in two

consecutive frames to associate the objects in their algorithm.

They assumed that the detector is able to perform well in

each frame. In this situation, it is reasonable to assume that

two bounding boxes belonging to the same object in two

consecutive frames will have a high IOU score. Given a certain

IOU threshold σ during the tracking, the tracker computes the

IOU between two bounding boxes — one is in the new frame

and the other is from the previous frame — and identifies the

target by looking at the best match IOU above the threshold.

The IOU score is computed as

IOU(a, b) =
Area(a) ∩Area(b)

Area(a) ∪Area(b)
. (1)

Bochinski et al. also proposed other parameters to further im-

prove the performance of the tracker. These parameters include

the maximum confidence score α, the minimum confidence
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score β, and the shortest tracklet length γ. Because the authors

did not consider any image information in their algorithm, the

method is able to outperform others, resulting in very high

tracking speeds.

A. Maximum Confidence Score
One of the hyper-parameters in this approach is the max-

imum confidence score α. With this hyperparameter, at least

one detection in a tracklet should have a confidence score

greater than this threshold. The authors used this parameter to

guarantee that at least one detection in the track is the true

positive detection. We applied different maximum confidence

scores in our experiment, ranging from 0.0 to 0.9, in incre-

ments of 0.1.

B. Minimum Confidence Score
Similar to the maximum confidence score described above,

the authors used the minimum confidence score β to filter

out false alarms. All detections in the tracklet should have a

confidence score which is greater than this threshold. In our

experiment, we ranged the minimum score from 0.0 to 0.9, in

increments of 0.1.

C. Shortest Tracklet Length
The authors used the length of the tracklet to indicate the

number of consecutive frames in which a particular vehicle

has been successfully tracked. In any tracking problem, the

minimum tracklet length γ should be 1 frame. In our work,

we fixed this value to be 2.

D. IOU Between Two Consecutive Frames
As the authors expounded in the paper “High-Speed

Tracking-by-Detection Without Using Image Information” [7],

the value of the IOU score plays a key role in this tracking

algorithm. It can be used to find out the same instance of a

vehicle between two consecutive frames by assuming spatial

invariance. We ranged the IOU threshold from 0.3 to 0.8 in

our experiments, in increments of 0.1.

V. METHODOLOGY

The pipeline of our track-by-detection HIOU tracker is

shown in Fig. 2.

A. Vehicle Detection by YOLO
In our method, have to train a detector to predict the

vehicles in order to implement a tracker following the track-

by-detection paradigm. We used the YOLO algorithm [21] as

our vehicle detector, which has been shown to be a very good

detector for traffic-related objects [5].

B. Pre-processing the Detection Result
When setting the confidence threshold to 0.0, the size of the

prediction output is 42 GB. We found that this predicted result

includes an excessive number of false alarms, which in turn

have very small confidence scores and significantly slow down

tracking. In order to increase tracking efficiency, we chose a

minimum confidence score of 0.0001 to approximate the ideal

threshold 0.0, which reduced the total size of the detection

result to only 1.3 GB.

C. Historical Based IOU Tracker
Motivated by the IOU tracker mentioned above, we de-

veloped a history-based IOU (HIOU) tracker, which has the

capability to overcome the detection of false alarms. Bochinski

et al. [7] used the overlap between two consecutive frames to

associate a new detection with an object in the previous frame

if their overlap is greater than a threshold. This algorithm

works well if the detector is able to generate high accuracy

predictions; however, their approach becomes ineffective when

there is interference. Occlusion is one of the typical noises

in vehicle tracking. Normally, occlusion happens when the

tracked vehicle is hidden by another vehicle, or hidden by

a non-vehicle object. Unfortunately, our tracker is unable to

handle the occlusion caused by a vehicle, because it lacks

image information. However, our tracker’s advantage over the

IOU tracker is in its ability to deal with the interference of

non-vehicle occlusions. We will demonstrate this in the next

section.

Algorithm 1 HIOU Tracker

1: Input
2: D = {DI

0 , DJ
1 , ..., DK

F−1} = {{d00, d10, ..., dI−1
0 }, ...,

3: {d0F−1, d1F−1, ..., dK−1
F−1 }}, where dji = (bji , sji , idji ).

4: α ← max confidence score
5: β ← min confidence score
6: γ ← min track length
7: η ← max backward frame, θ ← min IOU, ID ← 1
8: for dj0 ∈ DI

0 do
9: idj0 = ID and ID ← ID + 1 only when sj0 > β

10: End
11: Start
12: for f = 1 to F-1 do
13: for djf ∈ DJ

f do
14: for dif−1 ∈ DI

f−1 and sjf ≥ β do
15: if IOU(bif−1, bjf ) ≥ θ then
16: idjf ← idif−1

17: else
18: djf → untrack

19: if length(untrack) > 0 then
20: for dmf ∈ untrack and max(0, f-η-1) ≤ η

′ ≤ f-2 do
21: try to match dmf with historical frame η

′

22: if length(untrack) > 0 then
23: for dmf ∈ untrack do
24: assign new ID: idmf ← ID, ID ← ID + 1

25: for f = 0 to F-1 do
26: aggregate dif by the ID and save to tracki

27: for tracki, where i ∈ [1, max(ID)] do
28: if max score(tracki) < α then
29: remove tracki
30: if length(tracki) < γ then
31: remove tracki
32: End

We mainly use the IOU to associate the bounding boxes

and do not introduce any image information in our proposal;

therefore, we can simplify the complicated vehicle tracking

task to a bounding box association problem. We differentiate

our algorithm with the IOU tracker by considering tracking

history in solving the association problem. Similar with the

71



IOU tracker, we only track those detections in which the

confidence scores are above a certain threshold. We use

this threshold to prevent adding false alarms to the tracker

and increase tracking accuracy. The IOU tracker assigned

a new ID to the detection immediately when it finds that

the overlap is less than the threshold. This might lead to

some mistakes in some circumstances, such as occlusions, or

detection deviations, meaning a detector may only predict part

of the object. These two interference scenarios will cause the

overlap between two consecutive frames to drop slightly below

the threshold; consequently, the IOU tracker will separate the

track into two or more tracks. Moreover, it is common to

have the detector generate false predictions. In this case, the

IOU tracker is unable to realize the detection failure and will

split a track into multiple tracks. Fortunately, our algorithm

is able to fix these issues. When there is a car that failed

to be detected in a previous frame, or that has an overlap

score slightly below the threshold, our method will continue

to compare the target frame with at most η historical frames

to see if it is possible to link the current detection with some

detections in the earlier frames. To ensure robustness, our

method slightly decreases the IOU threshold proportional with

the history distance (number of intermediate frames) between

the current frame and the historical frame being searched, as

follows:

θ
′
= θ − 0.1, where min

θ
≥ 0.3. (2)

Our method assumes that the value of the IOU score varies

linearly, and that very small overlap (below 0.3 in our ex-

periments) may not indicate a good match. Our method is

described in Algorithm 1. We use DJ
i to indicate one of the

detections, where i represents the frame ID, beginning from

0, and J indicates the total number of detections within that

frame. Similarly, the jth object in frame i is denoted as dji ,

where dji is made up of the bounding box, the confidence

score, and the vehicle id, which are aggregated as (bji , sji , id
j
i ).

Next, we will provide more details about our algorithm. Note

that we initialize the hyper-parameters of our tracker in lines

2−5. When processing the first frame, our method also assigns

unique IDs to the detections in that frame. It is then reasonable

to start tracking from the second frame. The method first

iterates across each detection to compute the overlap with all

detections in the previous frame and tries to associate the best

matched bounding box among the ones being compared. If it is

unable to find a matched detection among previous detections,

it will store this detection in a cache called untrack (lines

10−13). After finishing this stage, if there exist any bounding

boxes in untrack, the method starts the trace back process by

looking at the historical frames (lines 14 − 16). Finally, if it

is still unable to match the bounding box with one in earlier

frames, it assigns a new ID to the detection.

We further improve the performance of our tracker with two

other parameters. We can tune the length of the tracklet γ to

get rid of some false alarms. For example, it is meaningless to

have a tracklet with a length of less than 2 frames in reality. In

Fig. 4. An example of the visualization of the YOLO detection results versus
ground truth annotation.

order to increase the quality of the track, we can also use the

maximum confidence score α and minimum confidence score

β to filter out false alarms.

VI. EXPERIMENTS

We executed the model training and vehicle prediction on

a server equipped with an Intel i7 2.8 GHz CPU, 16 GB

memory, and an NVIDIA Titan Xp GPU. We used another

server equipped with 2 Intel(R) Xeon(R) E5-2680 v3 CPUs

and 384 GB memory to run the tracking experiments for our

tracker.

In our experiment, we used YOLO to localize vehicles in

the UA-DETRAC benchmark dataset. We split the annotated

training set with a ratio of 8:2 samples. In order to equally

evaluate the performance of the detector, we intentionally kept

a similar distribution of weather conditions in our training

and test sets. Our training dataset includes 48 sequences with

67,745 images. It took our method 50.35 hours to finish the

training. We used the remaining 12 sequences to evaluate the

performance of the detector. The method spent 11.12 hours

to generate vehicle detections. We also reserved 4 sequences

with 4,451 images to evaluate the performance of the tracker.

Fig. 4 depicts an example of the detection and ground truth

bounding boxes. In this figure, we plotted the detected vehicles

with their type and confidence score on the top-right side of

the bounding box in red and the ground truth vehicle type on

the top-left side of the bounding box in green.

We generated the precision-recall curve by evaluating the

training sequences, test sequences, and track sequences. Ac-

cording to the UA-DETRAC MOT metric, we set the IOU

between the prediction and ground truth bounding box to

0.7. We generated the precision recall curve by changing the

threshold of the confidence score, ranging from 0.0 to 1.0, in

increments of 0.1. Each curve was plotted using 11 different

precision-recall pairs. Fig. 5 shows the precision-recall curves

among the training sequences (left), test sequences (middle),

and track sequences (right).

We chose the UA-DETRAC MOT evaluation protocol to

evaluate the tracking performance of our tracker. In order to

learn how the hyper-parameters affect the performance of the
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TABLE II
COMPREHENSIVE PERFORMANCE OF HIOU, IOU, AND MDP TRACKER

Tracker PR-MOTA PR-MOTP PR-MT PR-IDS PR-FM PR-MOTAL PR-ML
Overall (Sunny, Night, Cloudy, Rainy)

HIOU 7.83 8.53 8.90 1.39 4.23 8.12 0.21
IOU 6.48 8.23 6.81 12.24 16.14 6.59 0.40
MDP 6.55 7.97 7.55 3.79 10.28 6.56 0.42

Sunny
HIOU 8.08 8.85 7.01 1.03 6.73 8.10 0.71
IOU 7.07 9.23 6.94 2.37 3.80 7.22 0.73
MDP 8.12 8.86 8.34 0.63 2.33 8.13 0.52

Night
HIOU 7.72 11.11 6.58 3.89 7.22 7.82 0.57
IOU 6.68 10.60 6.67 4.91 6.73 7.06 0.62
MDP 7.35 9.74 8.69 1.72 4.23 7.38 0.50

Cloudy
HIOU 6.21 6.49 6.81 0.51 3.07 6.23 0.17
IOU 5.31 6.34 6.82 3.91 4.73 5.47 0.19
MDP 4.65 6.27 6.65 0.93 3.07 4.65 0.34

Rainy
HIOU 10.21 10.61 10.95 0.34 4.40 10.24 0.27
IOU 9.24 10.64 6.46 1.58 1.50 9.37 0.45
MDP 10.07 10.26 8.30 0.37 1.18 10.08 0.40

In the table, note that, for the PR-MOTA, PR-MOTP, PR-MT, and PR-MOTAL metrics, higher values are better.
For the PR-IDS, PR-FM, and PR-ML metrics, lower values represent higher tracker performance. The best
performing result for each metric has been highlighted in bold.

Fig. 5. Precision-recall curve under different weather conditions.

tracker, we ran the experiment multiple times. For the HIOU

tracker and the IOU tracker, we ranged the minimum con-

fidence score between 0.0 and 0.9, the maximum confidence

score between 0.5 and 0.9, and fixed the minimum track length

to 2 frames. For the MDP tracker, we ranged the confidence

score between 0.0 and 0.9. For both trackers, we ranged the

IOU score between 0.3 and 0.8, in increments of 0.1. For the

historical length parameter in our HIOU tracker, we tested

with a length of 3 frames.

We show a typical tracking result for the HIOU, IOU, and

MDP trackers in Fig. 6. Furthermore, Fig. 7 illustrates the

capability of trackers to overcome the non-vehicle occlusion.

In this figure, there is a non-vehicle occlusion, which is a pole.

At the top of the figure, we can see that the pole had little

impact on our HIOU tracker (note the vehicle with ID 124),

while it caused the vehicle ID to change from 29 to 38 in the

middle figure, in which the vehicle was tracked using the IOU

tracker. The bottom figures demonstrate that the MDP tracker

is able to overcome this type of occlusion as well (note the

vehicle with an ID 55).

In order to obtain comprehensive evaluation scores, we first

have to compute the precision-recall values by changing the

minimum confidence score threshold. Then, with these values,

we are able to generate comprehensive metrics by using the

UA-DETRAC MOT evaluation toolkit. In our experiments,

we obtained multiple results by applying different hyper-

parameters, and selected the best results for each method,

which we include in Table II.

According to the definition of the PR-MOTA, PR-MOTP,

PR-MT, and PR-MOTAL metrics, the higher these values, the

better the tracker. For metrics PR-IDS, PR-FM, and PR-ML,

lower values represent higher tracker performance. Table II

shows that the overall performance of our proposed tracker is

better than that of the IOU and MDP trackers. In other words,

the performance of the IOU tracker has been improved using

historical tracking information. We also highlight the best

performing method according to each metric using bold script.

Our tracker outperforms the IOU tracker in most metrics, even

though in some metrics the MDP performs the best. Consid-

ering method efficiency results described in Table III also, we

conclude that the HIOU tracker can balance tracking efficiency

and effectiveness, resulting in the best oveall performance.

We also used the metrics MT, MOTA, MOTP, IDS, FM,

FAR, and ML without considering the performance of the de-
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Fig. 6. Visualization of the tracking results among three trackers.

Fig. 7. The capability of trackers to overcome non-vehicle occlusion (a pole).

tector. We visualized the relationship between the confidence

score and the metric MT, MOTA and MOTP in Fig. 8. In this

figure, we fix the maximum confidence scores of the HIOU

tracker and the IOU tracker to 0.6. We varied the minimum

confidence scores for the HIOU tracker and the IOU tracker,

and varied the IOU threshold for both trackers from 0.5 to

0.8. We found that the best tracking performance can be

obtained with the IOU threshold set to 0.5 and the confidence

score set to 0.7. Additionally, we were interested in how the

IOU threshold affects these tracking metrics. We analyzed

this relationship in Fig. 9. We note that the IOU threshold

affects result quality for both trackers, since the overlap plays

an important role in the HIOU tracker and IOU tracker. One

should note that setting the IOU threshold greater than 0.6 will

drop the most track (MT) performance.

Runtime efficiency is one of the most critical metrics to

evaluate a tracker. We have to balance tracking accuracy and

speed when we apply the algorithm in a practical environment.

The speed of the tracker is measured in processed frames per

second (fps). We compared the speed of the HIOU tracker with

TABLE III
RUNTIME EFFICIENCY (FPS), GIVEN CONFIDENCE SCORE OF 0.5

Trackers 20012 39801 40131 63525

HIOU 1,162.15 1,558.61 890.23 3,285.86
IOU 1,973.97 2,607.94 1,870.67 3,623.36
MDP 2.74 3.79 2.58 7.37

that of the IOU tracker and show these results in Table III.

Results show that the IOU tracker outperforms our tracker

with regards to effectiveness by a small factor, relative to the

efficiency difference between our tracker and the MDP tracker.

VII. FUTURE WORK

Our work mostly considered the trade-off between tracking

efficiency and effectiveness. We ultimately implemented an

approach to solve the vehicle tracking task without adding any

image information. We improved the existing IOU algorithm

by adding historical tracking data into the process, resulting

in a tracker that matches the effectiveness of the MDP state-
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Fig. 8. The overall performance in 4 sequences among the HIOU, IOU, and MDP trackers.

of-the-art tracker at a speed similar to that of the naı̈ve IOU

tracker. Our model is able to handle occlusions caused by

detection false alarms; however, our model is unable to tackle

occlusions caused by another vehicle because it does not use

image information. One possible future improvement would be

to create a new tracker that utilizes some image information,

such as the shape, color, and appearance of the vehicle. It

would be interesting to see if this could be used to decrease

the number of ID switches. One will need to carefully choose

image features that will not be detrimental to the speed of the

tracker.
We only relied on one well-known detector in our work.

Therefore, we were unable to evaluate the impact of that

detector on the tracker. However, many research experiments

suggest that the quality of the detection will impact the

performance of the track-by-detection trackers. Consequently,

it is possible to generate a higher quality tracker by enhancing

existing vehicle detection approaches. We plan to re-execute

our experiments with multiple detectors and quantify the effect

of detection quality improvement on tracking effectiveness.

VIII. CONCLUSION

Our target was to develop a simple, yet fast, tracker with

relatively high tracking performance, and also make it easy

to understand and usable in real MOT tasks. For this, we

implemented a history-based IOU tracker (HIOU), which is an

extension and optimization of the IOU tracker. We followed

the track-by-detection methodology to develop our tracking

algorithm. Our HIOU tracker is able to overcome minor

detection false alarms by looking further back in history than

the IOU tracker. Even without using image information, our

method achieved high tracking performance and relatively high

speed compared to two other baseline trackers.

We relied on the state-of-the-art UA-DETRAC dataset and

its evaluation protocol to measure the effectiveness of our

compared methods. In order to localize vehicles, our methods

used the existing and well-known YOLO object detector. Our

method achieved a relatively high PR-MOTA metric score

compared to the IOU tracker. It is significant to note that the

overall ID switch score in our tracker is much lower than that

of both baseline trackers.

We formulated a complicated vehicle tracking problem

as a simple data association task, without considering any

image information. We hope this work will inspire others to

implement a faster, more accurate tracker that can be better

used in solving real problems. In addition, while convolutional

neural networks have revolutionized object detection technol-

ogy in recent years, we hope this work will further motivate

researchers to improve the performance of object detectors,

which will further improve our ability to track vehicles. These

methods will then become the cornerstone of the intelligent

traffic control systems of tomorrow.
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Fig. 9. The overall performance in 4 sequences among the HIOU, IOU, and MDP trackers.
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