A Data-Driven Approach To Predict Autism Spectrum Disorders

By:
David C. Anastasiu and Manika Kapoor
San Jose State University, California, USA
Introduction

- **Objective:** Predict Autism Spectrum Disorders (ASD) and characterize the type of stimuli needed for its detection.

- **Why?**
 - No cure exists
 - Current methods: subjective or responses to single stimulus.

- **How?**
 - Creating machine learning based models using Electrocardiogram (ECG) and Skin Conductance (SC).
Introduction cont …

- Time-series component may provide some discriminatory information.
- Analyzing such huge time-series is costly.
- Efficient data preprocessing techniques.

![Sample Dataset](image)
Background and Related Work

- Based on observation of subjects’ social interaction.
- Subjective (survey-based).
- Social Responsiveness Scale test: not very accurate and tedious.
- Focus on responses to a single stimulus.
- Using physiological responses like ECG using the data collected using computer-based cognitive tasks to train support vector machines (SVM)-based model → predict autism with an accuracy of 82.9%.
Dataset

- 25 children (between 5 and 12 years) of each kind (ASD and TD).
- Time taken for each protocol → 45 to 90 minutes.
- Included three phases: baseline (3 min), sensory challenge, and recovery (3 min).
- 6 stimuli, each administered for 3 seconds and was presented at least 8 times.
 - Auditory tones, Visual, Auditory siren, olfactory, tactile, vestibular
Hypothesis and Supporting Evidence

- Autistic children may take longer to return to normal state.
- Compare the data recorded during baseline and recovery stages.

Shorter distances between baseline and recovery phase for TD children.
Feature Extraction Methods

1. Equal Width Partitioning (EWP):
 - Split data into 8 parts representing the 8 stimuli.
 - Standardized using the mean and standard deviation of the baseline stage.
 - Split each stimulus data is split into \(\pi \) equal parts.
 - Two types:
 - **Mean and standard deviation (MSD)**: splits represented by mean and standard deviation.
 - **Slope and intercept (SI)**: splits represented by slope and intercept.
Feature Extraction Methods

MSD representation:

Mean and Standard deviation values for the autistic subject is higher and shows more variation than a TD subject.
Feature Extraction Methods

Slope and Intercept (SI) representation:

Maximum (peak) values: greater than the value of its two neighboring data points.

Minimum values (valleys): lower than the value of its two neighboring data points.

Slope → variation in trend

Intercept → intensity of signal
Feature Extraction Methods

Higher variation and intensity in autistic child
Feature Extraction Methods

2. Dynamic Time Warping (DTW):

- Calculate the DTW Euclidean distance between ECG and SC data.
- **Challenge:**
 - Large size 2D matrix computation,
- Pairwise distances are used to create a KNN-based machine learning model.
Feature Extraction Methods

3. Symbolic Representation of Time Series:

- Time series represented using Symbolic Aggregate approXimation (SAX)
- Compute pairwise Euclidean DTW distances between all the subjects.
- Create a KNN-based machine learning classification model to predict autism in children.
Methods for Developing Prediction Models

- 10-fold cross-validation
- Using only ECG data, or only SC data, or both ECG and SC data.
- Eight different types of models:
 - Decision Tree (DT),
 - K-Nearest Neighbor (KNN),
 - Support Vector Machine (SVM),
 - Naive Bayes (NB),
 - Random Forest (RF),
 - XGBoost (XGB),
 - DTW-based KNN (DTW-KNN), and
 - SAX-based KNN (S-KNN).

Using MSD and SI features

- **Base Models**: Separate models created for different stimuli.
Methods for Developing Prediction Models: Ensemble Models

- **Majority Votes:**
 - Final prediction \rightarrow majority predicted class
 - Sameweight to all models.

- **Weighted Prediction:**
 - Weight \rightarrow probability of prediction
 - $+$ve value \rightarrow TD; $-$ve value \rightarrow ASD

- **Stochastic Gradient Descent (SGD):**
 - Linear combination of the weight vector and predictions from different stimulus models.
 - SGD to learn weight vector.

\[
y_w = \sum_{i=1}^{8} p_i w_i
\]
Effectiveness Results: Base Models

- The models created using SI features perform better than those created using MSD features.
- SAX features perform better than DTW distances.

Best Base Model Accuracy Values Using Each Stimulus

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Accuracy (%)</th>
<th>Model</th>
<th>Data Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>75.83</td>
<td>SAXNN</td>
<td>SC</td>
</tr>
<tr>
<td>Auditory (Tones)</td>
<td>80.00</td>
<td>SVM</td>
<td>Both</td>
</tr>
<tr>
<td>Visual</td>
<td>80.00</td>
<td>XGB</td>
<td>SC</td>
</tr>
<tr>
<td>Auditory (Siren)</td>
<td>77.50</td>
<td>RF</td>
<td>ECG</td>
</tr>
<tr>
<td>Olfactory</td>
<td>77.50</td>
<td>SAXNN</td>
<td>SC</td>
</tr>
<tr>
<td>Tactile</td>
<td>74.17</td>
<td>SAXNN</td>
<td>SC</td>
</tr>
<tr>
<td>Vestibular</td>
<td>78.33</td>
<td>RF</td>
<td>Both</td>
</tr>
<tr>
<td>Recovery</td>
<td>73.33</td>
<td>SAXNN</td>
<td>Both</td>
</tr>
</tbody>
</table>

Best performing Base model: 80.00%
Effectiveness Results: Ensemble Models

- SI features perform better than those created using MSD.
- Best model: XGB using SI features and SGD → 93.33% accuracy → 13.33% more than base model
- Best accuracy achieved by the DTWNN models was 77.50%.

<table>
<thead>
<tr>
<th>Best Ensemble Model Accuracy Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy(%)</td>
</tr>
<tr>
<td>DT</td>
</tr>
<tr>
<td>KNN</td>
</tr>
<tr>
<td>SVM</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>RF</td>
</tr>
<tr>
<td>XGB</td>
</tr>
<tr>
<td>DTWNN</td>
</tr>
<tr>
<td>SAXNN</td>
</tr>
</tbody>
</table>
Efficiency Results

- XGB: 49,300 sec to train, 1.23e−4 sec to predict (third slowest).
- DTWNN: 4.4 times longer to train, 10⁸ times longer to predict in comparison to the SAXNN.
- DT → second highest accuracy (92.50%) → predicts 7 times faster than XGB.
Future Work

- Plan to work on developing additional time series-based analysis techniques to characterize the SNS and PsNS changes over the time of the SCP.
- An unsupervised optimization procedure will be used to automatically identify prototypical SNS and PsNS states (protos).
- Then, nearest neighbor classification models can be built using this proto sequence representation.
Conclusions

- Autistic children are affected to a higher degree by some stimuli as compared to TD children and take longer to recover.

- The feature extraction methods we developed were both effective and efficient in analyzing multivariate time series with over 2 million values.

- XGB-based model using SI features achieved the best performance (93.33% accuracy) taking only a millisecond to predict samples.

- While DTW is one of the best approaches to compare time series data in general, it does not perform well when working with very large time series data.
Questions?
Thank You!