A Data-Driven Approach To Predict Autism Spectrum Disorders

By:

David C. Anastasiu and Manika Kapoor San Jose State University, California, USA

Introduction

- **Objective:** Predict Autism Spectrum Disorders (ASD) and characterize the type of stimuli needed for its detection.
- Why?
 - No cure exists
 - Current methods: subjective or responses to single stimulus.
- How?
 - Creating machine learning based models using Electrocardiogram (ECG) and Skin Conductance (SC).

Introduction cont ...

- Time-series component may provide some discriminatory information .
- Analyzing such huge time-series is costly.
- Efficient data preprocessing techniques.

Background and Related Work

- Based on observation of subjects' social interaction.
- Subjective (survey-based).
- Social Responsiveness Scale test: not very accurate and tedious.
- Focus on responses to a single stimulus.
- Using physiological responses like ECG using the data collected using computer-based cognitive tasks to train support vector machines (SVM)-based model \rightarrow predict autism with an accuracy of 82.9%

Dataset

- 25 children (between 5 and 12 years) of each kind (ASD and TD)..
- Time taken for each protocol \rightarrow 45 to 90 minutes.
- Included three phases: baseline (3 min), sensory challenge, and recovery (3 min).
- 6 stimuli, each administered for 3 seconds and was presented at least 8 times.

Auditory tones, Visual, Auditory siren, olfactory, tactile, vestibular

Hypothesis and Supporting Evidence

- Autistic children may take longer to return to normal state.
- Compare the data recorded during baseline and recovery stages.

Shorter distances between baseline and recovery phase for TD children.

- 1. Equal Width Partitioning (EWP):
- Split data into 8 parts representing the 8 stimuli.
- Standardized using the mean and standard deviation of the baseline stage.
- Split each stimulus data is split into "n" equal parts.
- Two types:
 - Mean and standard deviation (MSD): splits represented by mean and standard deviation.
 - Slope and intercept (SI) splits represented by slope and intercept.

MSD representation:

Mean and Standard deviation values for the autistic subject is higher and shows more variation than a TD subject.

Slope and Intercept (SI) representation :

Maximum (peak) values: greater than the value of its two neighboring data points.

Minimum values (valleys): lower than the value of its two neighboring data points.

Slope \rightarrow variation in trend

Intercept \rightarrow intensity of signal

SI representation

Higher variation and intensity in autistic child

Calculate the DTW Euclidean distance between ECG and SC

Dynamic Time Warping (DTW):

data.

2.

- Challenge:
 - Large size 2D matrix computation,
- Pairwise distances are used to create a KNN-based machine learning model.

- 3. Symbolic Representation of Time Series:
 - Time series represented using Symbolic Aggregate approXimation (SAX)
 - Compute pairwise Euclidean DTW distances, between all the subjects.
 - Create a KNN-based machine learning classification model to predict autism in children.

Methods for Developing Prediction Models

- 10-fold cross-validation
- Using only ECGdata, or only SCdata, or both ECGand SCdata.
- Eight different types of models:
 - Decision Tree (DT),
 - K-Nearest Neighbor (KNN),
 - Support Vector Machine (SVM)
 - Naive Bayes(NB),
 - Random Forest (RF),
 - XGBoost (XGB),
 - DTW-basedKNN (DTW-KNN), and
 - SAX-based KNN (S-KNN).
- **BaseModels:** Separate models created for different stimuli.

- Using MSD and SI features

Methods for Developing Prediction Models: Ensemble Models

- Majority Votes:
 - Final prediction -> majority predicted class
 - Sameweight to all models.
- Weighted Prediction :
 - \circ Weight \rightarrow probability of prediction
 - +ve value \rightarrow TD; -ve value \rightarrow ASD
- Stochastic Gradient Descent (SGD)
 - Linear combination of the weight vector and predictions from different stimulus models.
 - SGDto learn weight vector.

$$y_{\rm w} = \sum_{i=1}^8 p_i w_i$$

Effectiveness Results : Base Models

- The models created using SI features perform better than those created using MSD features.
- SAX features perform better than DTW distances.

	Accuracy(%)	Model	Data Used
Baseline	75.83	SAXNN	SC
Auditory (Tones)	80.00	SVM	Both
Visual	80.00	XGB	SC
Auditory (Siren)	77.50	RF	ECG
Olfactory	77.50	SAXNN	SC
Tactile	74.17	SAXNN	SC
Vestibular	78.33	RF	Both
Recovery	73.33	SAXNN	Both

BEST BASE MODEL ACCURACY VALUES USING EACH STIMULUS

Best performing Base model: 80.00%

Base model comparison for Auditory (Tones)

Effectiveness Results : Ensemble Models

- SI features perform better than those created using MSD.
- Best model: XGB using SI features and SG₽ 93.33% accuracy→ 13.33% more than base model
- Best accuracy achieved by the DTWNN models was 77.50%.

	Accuracy(%)	Ensemble Type	Data Used
DT	92.50	SGD	Both
KNN	81.67	SGD	SC
SVM	87.50	SGD	Both
NB	88.33	SGD	SC
RF	89.17	SGD	Both
XGB	93.33	SGD	Both
DTWNN	77.50	SGD	Both
SAXNN	92.50	SGD	ECG

BEST ENSEMBLE MODEL ACCURACY VALUES

Efficiency Results

- XGB: 49,300 sec to train, 1.23e-4 sec to predict (third slowest).
- DTWNN: 4.4 times longer to train, 10⁸ times longer to predict in comparison to the SAXNN..
- DT → second highest accuracy (92.50%)→ predicts 7 times faster than XGB.

Future Work

- Plan to work on developing additional time series-based analysis techniques to characterize the SNS and PsNSchangesover the time of the SCP.
- An unsupervised optimization procedure will be used to automatically identify prototypical SNS and PsNS states (protos).
- Then, nearest neighbor classification models can be built using this proto sequence representation.

Conclusions

- Autistic children are affected to a higher degree by some stimuli as compared to TD children and take longer to recover.
- The feature extraction methods we developed were both effective and efficient in analyzing multivariate time series with over 2 million values.
- XGB-based model using SI features achieved the best performance (93.33% accuracy) taking only a millisecond to predict samples.
- While DTW is one of the best approaches to compare time series data in general, it does not perform well when working with very large time series data.

Questions?

Thank You!