
A Data-Driven Approach for Detecting Autism Spectrum Disorders

Manika Kapoor
Computer Engineering
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San José State University
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Abstract—Autism spectrum disorders (ASDs) are a group of
conditions characterized by impairments in reciprocal social
interaction and by the presence of restricted and repetitive be-
haviors. Current ASD detection mechanisms are either subjective
(survey-based) or focus only on responses to a single stimulus. In
this work, we develop machine learning methods for predicting
ASD based on electrocardiogram (ECG) and skin conductance
(SC) data collected during a sensory challenge protocol (SCP)
in which the reactions to eight stimuli were observed from 25
children with ASD and 25 typically developing children between
5 and 12 years of age. The length of the time series makes
it difficult to utilize traditional machine learning algorithms
to analyze these types of data. Instead, we developed feature
processing techniques which allow efficient analysis of the series
without loss of effectiveness. The results of our analysis of
the protocol time series confirmed our hypothesis that autistic
children are greatly affected by certain sensory stimulation.
Moreover, our ensemble ASD prediction model achieved 93.33%
accuracy, which is 13.33% higher than the best of 8 different
baseline models we tested.

Index Terms—autism spectrum disorders, large time series,
data-driven autism prediction, feature extraction from time series

I. INTRODUCTION

Autism spectrum disorders (ASDs) are conditions which can
lead to impairments in reciprocal social interaction and com-
munication, and restricted and repetitive behaviors in subjects.
These neurodevelopmental disorders do not have a cure, but
their early detection increases the chances of patients being
able to develop coping mechanisms that improve their ability
to function in society. Current ASD detection mechanisms are
focused on the observation of a subject’s social interaction.
The instruments used for such assessments are lengthy and
require extensive training, which prevents them from being
used on the overall population. Before referring the subjects
for further evaluation, they are first identified as at-risk via a
screening process which is sometimes not accurate [1]. The
social responsiveness scale (SRS) test, the most popular of
such screening instruments, was shown to only have 0.78
sensitivity and 0.67 specificity [2]. Recent work has identified
autonomic and behavioral responses of children with autism to
be different from those of typically developing (TD) children
in response to auditory [3] or visual stimuli [4].

Our research project utilizes longitudinal physiological data
collected from multiple sensors in response to a protocol
involving eight stimuli sequentially administered to a mixed
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group of ASD and TD children. Each protocol took approx-
imately one hour to execute and resulted in large amounts
of time series data consisting of millions of correlated values
across the length of the protocol. A subject may be affected by
one stimulus and its residual effect may be present during the
administration of the next stimulus, which suggests the sensor
data should be analyzed as a time-dependent series. However,
analyzing such large time series is a challenging task, both in
terms of the time and the space requirements of the time series
analysis methods. In our research, we develop several feature
extraction techniques that transform the time series into a form
which can be used for efficient analysis and prediction.

We hypothesized that autistic children would be greatly
affected by certain sensory stimulation. While TD children
can quickly recover to a normal state after the sensory trial,
autistic children may be slower to return to normal. In this
paper, we describe our experiments and the ASD prediction
models we developed based on the ECG and SC response
signals recorded during the sensory trials.

II. LITERATURE REVIEW

Current ASD detection mechanisms are based on the obser-
vation of a subject’s social interaction by either close observers
or behavioral therapists [5]. The ASD assessment instruments
are often lengthy, require extensive training before they can
be administered, and are in general not very accurate [2].

Some researchers have argued that PsNS activity can be
used as an indicator for the presence of autism and machine
learning-based approaches can be utilized to build predictive
models for its detection. Laufer and Nemeth [6] used SC
to predict user action, based on a neural network model, by
collecting SC data while users were playing an arcade game.
Changchun et al. [7] designed a therapist-like support vector
machine (SVM)-based affective model as part of a computer-
based ASD intervention tool for children using physiological
responses that predicts autism with an accuracy of 82.9%.

Much of the existing research in the field of time series
analysis is relevant for this study. Dynamic time warping
(DTW) [8] is a popular technique that can be used to compare
two time-dependent series with different time deformations
and speeds. For example, Muda et al. [9] used DTW to create
efficient voice recognition algorithms. Juang [10] used DTW
based hidden markov models and linear predictive coding
techniques to develop speech recognition models. To optimize
DTW, Salvador and Chan introduced FastDTW [11], which



is an approximation of DTW with linear time and space
complexity and is thus comparatively fast. Mueen et al. have
introduced several variants of DTW, including constrained
DTW, multidimensional DTW and asynchronous DTW [12].

Piecewise linear approximation (PLA) is one of the most
common ways to process time series. It works by approxi-
mating a time series of length l with n straight lines using
different algorithms, such as the top-down, bottom-up and
sliding window approaches. Keogh at el. [13] developed a
sliding window and bottom-up algorithm as a means to derive
PLA and perform segmentation of time series. Some methods
represent time series using motifs, which are derived by
identifying frequently occurring patterns in the time series and
replacing each pattern with a symbol. Lonardi et al. introduced
an algorithm, called enumeration of motifs (EoM) [14], that
uses matrix approximation to locate repeated patterns in the
time series. Lin et al. introduced the symbolic aggregate
approximation (SAX) [15] method, which discretizes original
time series data into strings and defines distance measures
on the symbolic string representation. Looking for a way to
characterize co-evolution patterns in time series, Anastasiu
et al. [16] devised an optimal segmentation algorithm that
segments users’ individual series into varying length segments
represented by one of k patterns shared by all the users.

III. DATASET

Our research is based on examining existing data from a
study conducted by Dr. Megan C. Chang [3]. The data were
collected from various sensors during a SCP [17] in which the
reactions to multiple stimuli were observed from 25 children
with ASD and 25 typically developing (TD) children between
5 and 12 years of age. Each protocol took 45–90 minutes
including preparation, and had three phases: baseline, sensory
challenge, and recovery. The baseline and recovery periods
lasted 3 minutes each and did not include any stimulation. The
sensory challenge consisted of six different sensory stimuli
with a pseudorandom pause of 12–17 seconds between the
stimuli. Each stimulus was administered for 3 seconds and
was presented at least 8 times. Following are the six stimuli,
listed in the order they were administered:

• auditory – continuous sound tone of 84 decibels
• visual – 20W strobe light at 10Hz
• auditory – interrupted sound siren at 78 decibels
• olfactory – wintergreen oil passed under the nose
• tactile – touch along the jaw bone with a feather
• vestibular – chair tilted back to a 30 degree angle
Physiological ECG and SC data were continuously collected

from multiple sensors in response to the eight stimuli (includ-
ing the baseline and recovery periods). To obtain an index of
PsNS function, ECG activity was collected by placing sensors
on the child’s chest. To measure the SNS activity, galvanic
skin response was measured by attaching sensors to the right
hand of the child. The sweat glands secrete more sweat as the
subject becomes excited or nervous, which in turn increases
skin conductance. The ECG and SC data were collected at a
frequency of 500Hz and 40Hz, respectively. This resulted in a

very long multivariate time series consisting of approximately
3 million correlated values across the length of the series.
Table I provides a description of the dataset that was collected
from the 50 subjects.

TABLE I
DATASET DESCRIPTION

# Autistic samples 25
# TD samples 25
Average # data points per subject 2,981,476
Average # data points per stimulus 372,682

Fig. 1 shows an example of the ECG and SC data for a
subject spanning 10 seconds. The left y-axis shows the ECG
signal, measured in milli-Volts (mV), and the right y-axis
shows SC intensities, measured in micro-Siemens (µSiemens).
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Fig. 1. Time series showing 10 seconds of ECG and SC signal for a subject.
The figure is best viewed in color.

IV. HYPOTHESIS AND SUPPORTING EVIDENCE

We hypothesize that autistic children are greatly affected by
certain sensory stimulation and thus may take longer to return
to a normal state than TD children, who can quickly recover
after the sensory trial. To test this, we compared the sensory
data recorded during an initial baseline rest stage of the
protocol, recorded prior to any stimulus being administered,
with data recorded during the final recovery rest stage, 30
seconds after the final stimulus was administered. No stimulus
was administered during either rest stage. For each subject, we
compared the baseline and recovery rest stages by computing
the Euclidean DTW distance of the ECG and SC time series
recorded during the rest periods.

To analyze the differences between the baseline/recovery
distances of autistic and TD children, we fit a Gaussian
probability distribution function (PDF) over the distances
between the baseline and recovery sensor time series data
for autistic and TD children. Fig. 2 shows these functions
for the ECG time series. Results show that autistic (solid
green line) children exhibit substantially greater differences
between their respective baseline and recovery phases than
TD children (dashed red line). The PDF means for autistic
and TD children were 1.25e+9 and 9.07e+8 and their standard
deviations were 6.9e+8 and 4.03e+8, respectively. Results
suggest that TD children recover faster, which would explain
the shorter distances between the respective baseline and
recovery phase time series.
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Fig. 2. ECG Gaussian probability density functions of DTW distances
between the baseline and recovery stages for autistic and TD subjects.

V. METHODS

In the remainder of the paper we describe predictive models
we developed for autism detection from the ECG and SC
response signals recorded during the sensory trials.

A. Feature Extraction

As a means to improve analysis efficiency, we propose
to transform the data in a form that is representative of the
input signal but has much smaller uniform dimensionality. We
devised three different methods to extract features that can be
used to conduct specific experiments.

1) Equal Width Partitioning (EWP): During the SCP, a
particular stimulus is administered in a specific number of
contiguous trials at equal intervals. Thus, we can divide the
data into sub-series and still capture the patterns or trends
in the series. In this approach, for each subject, the ECG
and SC data were first split into 8 equal parts representing
the 8 stimuli. The data were then standardized using the
mean and standard deviation of the baseline stage, i.e., the
first of the 8 splits, which captures the normal ECG and
SC signal for a subject prior to any stimulus. The data for
each stimulus were then split into n equal parts, and two
different approaches were used to encode the information in
each split and create different machine learning models for
ASD prediction in children using either ECG data, SC data,
or both data types.

a) Mean and standard deviation (MSD) representation:
In this approach, we represented the n splits for each stimulus
using the mean and standard deviation of the data in that
split. The final data vector consists of n ECG mean and
standard deviation values followed by n SC mean and standard
deviation values for each stimulus. Fig. 3 shows the ECG
mean and standard deviation values for a TD subject (dashed
green line) and for an autistic subject (solid red line) chosen
at random. One can observe that the ECG mean and standard
deviation values of the autistic subject are generally higher
than those of the TD subject. The maximum mean value for
the autistic subject is 9.52 and that for the TD subject is 5.08.

b) Slope and intercept (SI) representation: We assume
that an autistic child gets more excited when a stimulus is
administered as compared to a TD child. When a subject gets
excited or nervous, his/her ECG values spike, showing higher
maximum and minimum values, and his/her sweat glands
secrete more sweat, which in turn increases skin conductance.
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Fig. 3. Plot showing ECG mean (a) and standard deviation (b) values for a
TD subject (dashed) and an autistic subject (solid).

Thus, we hypothesize that the trend and intensity of the signal
contains sensitive information that can be used to predict ASD.

For each of the n splits and for each stimulus, we retrieved
all peak (maximum) values and all valleys (minimum) val-
ues of ECG data in a cycle. A data point is considered a
peak/valley value if its value is greater/smaller than the value
of its neighboring data points. After retrieving all peak and
valley values in a time series, we represented each split as the
slope and intercept of the best fit line (BFL) for both peak
and valley values. SC values fluctuate less than ECG values
do, in general. Therefore, we represented the n splits for each
stimulus with the slope and intercept of the BFL over the
entire SC time series data in that split. The slope of the BFL
captures the variation in trend and the intercept captures the
intensity of the signal.

Fig. 4 shows the valley-based slope and intercept repre-
sentation of the ECG time series and slope and intercept
representation for the SC time series, for a TD subject (dashed
green line) and for a subject with ASD (solid red line), chosen
at random. Time series data represented in these figures were
processed using n = 10. One can observe that the variation in
slopes, especially for ECG valley points and SC data, is higher
for the autistic subject as compared to the TD subject. SC
data shows more discriminatory characteristics, with autistic
subjects showing higher maximum and minimum slope values.
One can also observe that the intensity of the signals (ECG
and SC), as shown by the intercept graphs, is much higher for
autistic subjects as compared to TD subjects.

2) Dynamic Time Warping (DTW): The approach we de-
vised in Section V-A1 transforms the real time series data into
a derived format, which may lead to some loss of information.
DTW allows us to compare two time series in their raw format.
As DTW automatically accounts for time deformations, it
will identify similar patterns in two time series even if one
of them is longer than the other. In this approach, we used
FastDTW, which is an approximation of DTW that has linear
time and space complexity [11] to compare the ECG or SC
time series between two subjects. Due to the very large size
of our time series, both the original DTW and the FastDTW
methods failed to compute the distance between our time
series for different stimuli on on our very large server with
24 GB of random access memory (RAM), both running out
of available memory. We thus split the series into 8 sub-
sequences with r% overlap, since each stimulus was repeated
8 times, computed distances between the ith sub-sequence of
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Fig. 4. Plot showing valley-based slope (a) and intercept (b) representation
of the ECG time series and slope (c) and intercept (d) representation of the
SC time series for a TD subject (dashed) and an autistic subject (solid).

the candidate sequences, and used the maximum of these sub-
sequence distances as the distance between the two candidate
sequences. We also tried the efficient DTW method introduced
by Mueen et al. [12] and compared it with FastDTW. While it
was marginally faster than FastDTW, it required more memory
and most of our series could not be computed on our server
due to lack of available memory.

3) Symbolic Representation of Time Series: In this ap-
proach, we used SAX [15] to represent each of the time
series using a SAX vector with a given number of symbols
and segments. To get the best representation, we tested with
numbers of symbols in the range 2 to 10 and numbers of
segments from 2 to 14, in increments of 1. After representing
the time series using SAX, we computed pairwise Euclidean
DTW distances. These distances were then used to create a
KNN-based ASD prediction model.

B. Developing Prediction Models for Autism Detection

1) Base Models: In our experiments, we aim to classify
the subject as either Autistic or TD. To perform this binary
classification, we trained and tested models using the following
methods:

• decision tree (DT)
• k-nearest neighbor (KNN)
• support vector machine (SVM)
• naı̈ve Bayes (NB)
• random forest (RF)
• XGBoost (XGB)
• DTW-based KNN (DTWNN)
• SAX-based KNN (SAXNN)
The first six models consume the features generated using

methods specified in Section V-A1. Separate models were
created using the MSD and SI feature generation approaches.
The DTWNN model is based on the method described in Sec-
tion V-A2, which utilizes the raw time series for comparison
and prediction. The SAXNN model is based on the method
described in Section V-A3, which first transforms the raw

time series data into its SAX representation before computing
pairwise Euclidean DTW distances between the subjects. As
we have both ECG and SC data, we wanted to understand how
different physiological data help in predicting autism. Thus,
we created different models using either only ECG data, SC
data, or both ECG and SC data.

2) Ensemble Models: In Section V-B1, we executed exper-
iments for each separate stimulus. After building the separate
models for all stimuli, we combined them to build ensemble
models and make additional predictions. We used three differ-
ent approaches to create ensemble models.

a) Majority vote: In this approach, we combined the
predictions from all the models for different stimuli and chose
the majority predicted class as the final prediction. All the
model outputs were given the same weight.

b) Weighted prediction: In this approach, instead of giv-
ing the same weight to all the model outputs, we weighed the
classification output of each stimulus model with the predic-
tion confidence of its associated model, which ranges between
0 and 1. Considering a vector wc of weights associated with
each stimulus and the vector y representing classification pre-
dictions of models associated with each stimulus, we compute
the final prediction as the linear combination of vectors wc
and y, yc = wc

Ty. The vector y contains the predicted classes,
+1 or -1, representing TD and autistic subjects, respectively. A
negative yc prediction value indicates that the models predicted
the subject as autistic with higher confidence.

c) Stochastic gradient descent (SGD): In this approach,
instead of using the prediction confidence scores from separate
stimuli models as weights, as described in Section V-B2b, we
learned the contribution of each stimulus towards predicting
autism. Some stimuli may contribute positively towards correct
prediction, while others may contribute negatively. This can be
done by deriving a set of weights such that the linear com-
bination of the weight vector and predictions from different
stimulus models results in an accurate binary classification of
autistic and TD children. The weight vector ws, is learned via
the SGD algorithm applied to training set predictions. Then,
the stimuli predictions in the test set are combined linearly
with the weights to generate the final SGD predictions for test
samples, computed as ys = ws

Tys.

VI. EXPERIMENT DESIGN

We used accuracy as the performance measure when com-
paring the prediction models. Accuracy is an appropriate
evaluation metric in our setting, as the dataset contains an
equal number of samples for both autistic and TD subjects. It
is defined as

A =
Tp

Ts
×100,

where Tp represents the total number of correct predictions
and Ts represents the total number of subjects.

We measure efficiency as the training and prediction run-
time, in seconds, for each of the different models. Prediction
time is given priority over training time, as training can be



done offline but prediction must be executed online, in real
time, and thus needs to be fast.

For each prediction or time series analysis method we tested,
we tuned available hyper-parameters to obtain the highest
possible effectiveness using that method. Due to lack of space,
the details of the hyper-parameter tuning can be found in [18].

VII. RESULTS AND DISCUSSION

A. Effectiveness Results
1) Base Models: We created eight different models, as

described in Section V-B, one for each of the eight stimuli.
The first six models, namely, DT, KNN, SVM, NB, RF and
XGB, were built using the features extracted based on the
two approaches mentioned in the EWP method described in
Section V-A1, which splits the time series into a specified
number of sections. We created different dataset representa-
tions with number of splits, n, ranging from 2 to 13, inclusive.
For each value of n, after further splitting the training set into
training and validation subsets, we trained different instances
of all the six models using different combinations of hyper-
parameters. Then, we chose the best model instance based on
its validation accuracy. Finally, we re-trained the best model
for each algorithm using the chosen best hyper-parameters and
the entire original training set.

The DTWNN model utilizes the features extracted using
the DTW approach mentioned in Section V-A2, which com-
putes the Euclidean DTW distance between different subjects.
Higher distance values imply lower similarity, and vice versa.
For creating the overlapping splits, we chose r = 10%.
The SAXNN model was then built using the SAX feature
construction method described in Section V-A3.

Fig. 5 (a) shows the comparison of the best base perform-
ing model instances for different algorithms, created using
different feature extraction methods and using baseline stage
data. We observed that, in almost all cases, the models created
using SI features perform better than those created using MSD
features. Also, among the two standard time series approaches,
the models created using SAX features perform much better
as compared to those based on DTW distances.

DT KNN SVM NB RF XGB DTWNN  SAXNN
Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MSD SI

DT KNN SVM NB RF XGB DTWNN  SAXNN
Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MSD SI

(a) (b)

Fig. 5. (a) Comparison of the best base models for the auditory (tones) stage.
(b) Comparison of the best SGD ensemble models.

Table II shows the accuracy scores of the best models
for each stimulus. Auditory (tones) and visual stimuli data
result in the best performing models, with an accuracy of
80.00% (highlighted in bold). We also observed that two of
the best performing models utilize both ECG and SC data for
making predictions, showing that both types of sensor data are
important in predicting autism.

TABLE II
BEST BASE MODEL ACCURACY VALUES USING EACH STIMULUS

Accuracy(%) Model Data Used

Baseline 75.83 SAXNN SC
Auditory (Tones) 80.00 SVM Both
Visual 80.00 XGB SC
Auditory (Siren) 77.50 RF ECG
Olfactory 77.50 SAXNN SC
Tactile 74.17 SAXNN SC
Vestibular 78.33 RF Both
Recovery 73.33 SAXNN Both

2) Ensemble Models: We combined the results from the
models generated using different stimuli, presented in Sec-
tion VII-A1, to create ensemble models. We compared the
accuracy of the ensemble models with the best base models.
Ensemble models were created using the three approaches
described in Section V-B2.

Fig. 5 (b) shows the comparison of the best SGD ensemble
models. We observed that models constructed from SI features
outperformed those using MSD ones in almost all cases. The
best performing model using SI features is an SGD ensemble
XGB model that achieved an accuracy of 93.33%, which is
7.50% higher than the best performing model using MSD
features.

As SI features performed better than the MSD ones, further
comparisons with DTW and SAX-based approaches were
done using only SI features. As mentioned in Sections V-A2
and V-A3, both DTW and SAX-based models are KNN
models. Table III shows the best model accuracies for the
different tested data processing and modeling methods. One
can observe that all the models give the best accuracy using
the SGD ensemble method. In this ensemble approach, as
described in Section V-B2c, the SGD algorithm is applied on
the training set to learn the weights of each stimulus towards
making correct predictions.

TABLE III
BEST ENSEMBLE MODEL ACCURACY VALUES

Accuracy(%) Ensemble Type Data Used

DT 92.50 SGD Both
KNN 81.67 SGD SC
SVM 87.50 SGD Both
NB 88.33 SGD SC
RF 89.17 SGD Both
XGB 93.33 SGD Both
DTWNN 77.50 SGD Both
SAXNN 92.50 SGD ECG

The best overall performing model was the SGD ensemble
XGB model, built using both ECG and SC data, which resulted
in an accuracy of 93.33%. The value is approximately 4.16%
greater than that achieved using either the majority vote or
weighted prediction vote ensemble methods.

As the best accuracy is achieved using both ECG and SC
data, we can infer that both types of sensors are important
in accurately predicting autism. Additionally, we observed
that the next best performing models were DT and SAXNN,



which were built using either only ECG data or both ECG
and SC data. This further highlights the importance of ECG
data in predicting autism in children. In comparison to the
best performing base model, the ensemble models performed
much better in general. The best performing ensemble model
(93.33%) had an accuracy that was 13.33% higher than the
best performing base model (80.00%). Even ensemble models
built using majority vote (89.17%) and weighted prediction
(89.17%) decisions performed better than the base models.

Even though DTW is an important metric for comparing
time series, we observed that classification models based on
DTW failed to outperform other classification models in our
problem. The best accuracy achieved by the DTWNN models
was 77.50%, which is approximately 18% lower than that of
the best performing model.

B. Efficiency Results

We measured the efficiency of the models based on the
time taken to train and perform predictions. Fig. 6 shows the
comparison of natural log transformed training and prediction
times, in seconds. The log scaling in the figure is necessary
due to the very wide range of values, which would otherwise
hide most results in the graph.

The best performing model in terms of accuracy was the
XGB model, which was the third slowest method, taking
approximately 49,300 seconds to train and 1.23e−4 seconds
to predict. On the other hand, the DTW-based model took
approximately 4.40 times longer to train and 108 times longer
to predict in comparison to the SAXNN model. The high
execution time for training and prediction makes it difficult
to utilize DTW-based models in real-world applications for
our problem. On the other hand, the DT model achieved the
second highest accuracy (92.50%) and predicts 7 times faster
than the best performing XGB model.
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Fig. 6. Comparison of training time (left) and prediction time (right) for all
methods.

VIII. CONCLUSIONS

In this paper, we described novel techniques we developed
for analyzing very large time series of ECG and SC sensor
data derived from a sensory trial administered to 50 autistic
and TD children. Our analysis showed that autistic children
are affected to a higher degree by some stimuli as compared
to TD children and take longer to recover. Moreover, the
feature extraction methods we developed were both effective
and efficient in analyzing multivariate time series with over
2 million values. An XGB-based model trained on vectors
constructed using a feature engineering method we developed
(SI) achieved the best performance (93.33% accuracy) taking
only a millisecond to predict samples.
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