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Abstract With the advent of accurate deep learning-

based object detection methods, it is now possible to

employ prevalent city-wide traffic and intersection cam-

eras to derive actionable insights for improving traffic,

road infrastructure, and transit. A crucial tool in signal

timing planning is capturing accurate movement- and

class-specific vehicle counts. To be useful in online in-

telligent transportation systems, methods designed for

this task must not only be accurate in their counting,

but should also be efficient. In this paper, we study the

multi-class multi-movement vehicle counting problem,

overview the state-of-the-art methods designed to solve

this problem, and present a series of comprehensive ex-

periments, using traffic footage with O(5) vehicles cap-

tured from 20 different vantage points and covering var-

ious lighting and weather conditions. Our survey aims
to answer the question whether we are ready to leverage

traffic cameras for real-time automatic vehicle counting.

The results of our analysis show several promising ap-

proaches and identify areas where additional improve-

ment is needed.
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1 Introduction

Traffic analysis is an essential component of any intelli-

gent transportation system (ITS) employed in a modern

city. As the city grows and traffic patterns change, real-

time adaptive traffic signal light control timing becomes

a key tool to manage commute times and general travel

times [34]. To be effective, these systems rely on accu-

rate real-time counting of vehicles passing through in-

tersections or traveling through highway corridors. The

current approach for gathering these data include em-
bedding induction loop detectors and other sensors in

roadways, which cost millions of dollars and lead to

weeks-long roadway closures when they need to be ser-

viced.

With the advent of accurate deep learning-based

object detection methods, a variety of methods have

been devised for traffic analysis using already-existing

city-wide traffic and intersection cameras to derive ac-

tionable insights for improving traffic, road infrastruc-

ture, and transit. These include object detection and

classification [49,57,7,46], multi-camera vehicle track-

ing [30,36,28,29,70,15], traffic flow analysis [50,19,64],

anomaly/accident detection [51,37,17,58,4], multi-camera

vehicle detection and re-identification with real and syn-

thetic training data [52,72,27,74,18,13,35,11], and city-

wide multi-class multi-movement vehicle counting [52,

10,1,59,3,44,65,53]. Several challenges, such as the AI

City Challenge [49,50,51,52] and the SUNY Albany

UA-DETRAC benchmark [67], have been organized with

the goal to accelerate the research and development of
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these techniques. The result has been hundreds of re-

search teams from around the globe working to advance

the state-of-the-art and bring these technologies to real-

world implementation readiness.

In this paper, we focus our attention on the problem

of city-wide multi-class multi-movement vehicle count-

ing, with a goal to answer the question whether the

technology is mature enough to be used in a real-world

ITS. Solutions to this problem can help traffic engineers

understand the traffic demand and freight ratio on se-

lect corridors, design better intersection signal timing

plans, and improve traffic congestion mitigation. More-

over, real-time counting results could be used as in-

put to adaptive online AI-based ITSs. In our analysis,

we first survey the important work done in this space,

paying close attention to five of the top methods that

competed on this problem in the most recent AI City

Challenge, and then we perform an in-depth evaluation

of these methods to identify their strengths and weak-

nesses.

The paper is organized as follows. We first give a

brief overview of the AI City Challenge and its work

to advance the state-of-the-art in ITS problems (§ 2).

Then, we survey the work done to advance video-based

vehicle counting methods (§ 3). We describe the dataset

and experimental evaluation methodology we followed

in this study (§ 4) and then analyze the results of our

experiments (§ 5), drawing conclusions from these anal-

yses. A discussion on insights and future research (§ 6)

and a short conclusion (§ 7) end the article.

2 The AI City Challenge

The AI City Challenge and associated workshops [52,

51,50,49] were designed by a group of academics from

Iowa State University, San Jose State University, Santa

Clara University, SUNY Albany, University of Washing-

ton, University of Maryland, Australian National Uni-

versity, among others, and collaborators from NVIDIA

Corporation and Amazon, with the specific aim of im-

proving the state-of-the-art of ITS problems. Over the

past four years, the challenge has attracted hundreds

of researchers each year who have worked to solve in-

creasingly difficult problems.

2.1 A Short History

In 2017, the main problem in the space of deep learning-

based traffic analysis was the lack of data needed to

train accurate models. The challenge organizers thus

constructed a collaborative image annotation platform

and asked challenge participants to help build the dataset

they would ultimately use in the challenge. Overall, 28

teams and more than 150 volunteers collaboratively an-

notated more than 150,000 key frames extracted from

over 80 hours of traffic video captured at various inter-

sections in four major U.S. cities. Each bounding box

was assigned one of 14 different classes. In total, the

teams contributed over 1.4M annotations which were

then used by teams to train object detection and clas-

sification as well as vehicle tracking models. The chal-

lenge also emphasized the need for efficient edge compu-

tation capable models by encouraging teams to execute

their models on Jetson TX2 development kits. Several

teams developed methods that could ultimately run in

real-time on the Jetson TX2, albeit at reduced frame

rates (3–8 fps).

The 2nd and all subsequent editions of the AI City

Challenge have been organized as CVPR workshops.

Each continued to push the development of ITS meth-

ods and systems. In 2018, the organizers added chal-

lenge tracks for estimating traffic flow characteristics,

such as speed, detecting anomalies caused by crashes

or stalled vehicles in diverse weather conditions, and

multi-camera tracking and object re-identification in

urban environments. While collaborative annotations

were no longer employed, the organizers created and an-

notated several new datasets for the challenge using in-

novative techniques such as GPS and time-synchronized

scout vehicles embedded in traffic. New tracks and datasets

were once again added in the 2019 edition of the AI

City Challenge [51], including the CityFlow dataset [63]

which tackled the extremely difficult problems of city-

scale multi-camera vehicle re-identification and track-

ing. Despite a great effort by many teams, these prob-

lems continue, even a year later, to receive the lowest

performance scores among all AI City Challenge tracks.

The 4th edition of the challenge [52] has once again

pushed the development of ITS, first by introducing

the multi-class multi-movement vehicle counting track,

and second by evaluating, for the first time, not only

the performance but also the efficiency of the proposed

methods for this track. This was the first time that

a challenge combined effectiveness and efficiency eval-

uation of tasks needed by the Department of Trans-

portation (DOT) for operational deployments of ITS

systems. We focus on the multi-class multi-movement

vehicle counting problem for the remainder of this ar-

ticle.

2.2 Evaluation

One of the authors, David C. Anastasiu, has served,

since the onset of the challenge, on the AI City Chal-

lenge organizing committee and additionally as the Eval-
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Fig. 1 The AI City Challenge online evaluation system
leader board.

uation Chair for the event. In this capacity, as a way to

encourage continuous improvement of the participating

teams’ methods, Anastasiu designed an online eval-

uation system that allowed multiple results be sub-

mitted by each team for each challenge track and au-

tomatically measured the effectiveness of results upon

submission. In the vehicle counting track, teams were

allowed a maximum of 5 submissions per day and 10

maximum total valid submissions.

In the multi-class multi-movement vehicle counting

track, teams had to separately count two-axle vehicles

and freight trucks following a set of predefined move-

ments in videos from multiple stationary traffic cam-

eras. Movements included left-turns, right-turns, and

through traffic at one or more intersection approaches.

To maximize the utility of the developed methods, teams

were asked to develop not only effective but also effi-

cient methods that could potentially work in real-time.

These methods were thus evaluated both on their abil-

ity to assess the correct number of type- and movement-

specific vehicles in each video and also on their overall

execution time.

To further encourage participant competitiveness,

the evaluation system for the AI City Challenge has

been designed to show the top-3 best scores on the

leader board for each track (without revealing the teams’

identifying information). However, the results shown

while the challenge was in progress were computed on

a 50% subset of the test set for each track, as a way to

discourage excessive minor model adjustments to im-

prove performance. The scores computed on the full

test set were revealed, along with the team names and

the remaining results, after the challenge submission

deadline. Fig. 1 shows the final leader board for the

vehicle counting track after the challenge completion.

2.3 Participants

The AI City Challenge has grown year-over-year, from

28 teams in 2017 to 315 teams in 2020, composed of

811 individual researchers from 37 countries. Of these

teams, 233 downloaded the vehicle counting dataset,

and 31 teams executed 215 submissions to the challenge

evaluation system. An analysis of the overall submis-

sions to the challenge in 2020 showed that 71% of the

teams improved their initially submitted scores by at

least 10%, validating the utility of the online evaluation

system in pushing teams to innovate. In the remainder

of the article, we will discuss some of the results sub-

mitted to the challenge by these teams.

3 Methods

Vehicle counting is not a new problem. Its benefits to

improving city transportation has attracted a lot of re-

search in this area over the years [34]. The problem has

been solved classically through sensors added in or on

top of the road, such as inductive loop detectors, pneu-

matic road tube sensors, acoustic detectors, piezoelec-

tric, magnetic, or passive infrared sensors, to name just

a few [23]. These sensors are, however, either tempo-

rary or very expensive to install and/or maintain. The

prevailing solution in recent years has been to utilize

existing signals form traffic video cameras in order to

detect and count passing vehicles.

3.1 Counting by Regression

An earlier version of the vehicle counting problem asked

only what the volume of traffic on a road was, which

was initially solved through a series of regression-based

methods [12,38,43]. Many of this type of methods can

be successfully applied to both traffic/vehicle density

estimation as well as people/crowd density prediction.

The effectiveness of the methods is greatly affected

by the quality of the input, including image size, cleanli-

ness of the camera lens, and distance between the cam-

era and the vehicles being counted. As part of a larger

ITS, Ignatius Moses Setiadi et al. [33], built a vehi-

cle counting system that relied on classical computer

vision techniques such as background subtraction and

edge detection to estimate vehicle counts from CCTV

footage at multiple locations in the city of Semarang,

Indonesia. They found that both the captured image

quality as well as frame rate play a big role in accurate

counting estimation, especially when vehicles travel at

high speeds.
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Mirthubashini and Santhi [45] surveyed various ve-

hicle detection and tracking techniques, including both

deep-learning and classical detection and tracking meth-

ods, such as Gaussian mixture models (GMM) [60] and

Mixture of Gaussians (MoG) + Support Vector Ma-

chines (SVM) [2]. They found that deep learning tech-

niques for object detection have an advantage compared

to conventional image processing techniques.

The majority of recent video-based vehicle count-

ing methods follow a similar two-step approach. They

first employ a single-camera multiple-object tracker to

identify individual vehicles moving through the scene,

then count each one as they traverse a virtual barrier

identifying the region of interest (ROI) exit point. As

these methods have matured, the vehicle counting prob-

lem has also increased in its complexity. In addition to

counting vehicles on the road, methods are now asked

to both classify vehicles in two or more classes (gener-

ally distinguishing between large trucks or busses and

regular vehicles) and also separately count vehicles of

each class as they exit the ROI across multiple routes

or movements of interest (MOIs) [52].

3.2 Counting by Tracking

Most vehicle and object tracking in video methods fol-

low a detect-then-track approach which relies on ob-

ject detectors to identify/localize and potentially clas-

sify the objects, followed by methods that associate the

identified objects across frames. As early as 2017, lever-

aging a dataset of over 1.4 million annotations of more

than 150,000 video key frames obtained through a col-

laborative annotation process during the first AI City

Challenge [49], Bhandary et al. [7] showed that transfer

learning is an effective technique for object detection

and classification in traffic videos.

Object Detection. Many tracking algorithms continue

to use detectors based on classical computer vision tech-

niques, such as background extraction. Rosas-Arias et

al. [56], for example, devised a method for detecting

changes in consecutive frames of video sequences based

on incremental subspace learning which, coupled with

statistical analysis of sequential frames, can be used to

count vehicles that traverse a virtual threshold in the

video. While the experimental evaluation was based on

a fairly limited number of vehicles, the authors found

the method to be both effective and efficient, able to

process video data at up to 26 fps on a commodity ma-

chine.

Chen and Hu [14] devised a counting method that

is robust to illumination changes and shadows. When

tested on 66.16 minutes of 30 fps videos across 4 high-

way and city roadway segments with 2-4 lanes of mov-

ing traffic, the proposed motion-based detection method,

which relies on background and shadow scene subtrac-

tion, achieved an impressive 99.93% accuracy. However,

the method was not tested in diverse traffic conditions

(e.g., stop-and-go traffic), at intersections, across di-

verse movements, at different times of day or in different

weather scenarios. Moreover, the authors did not spec-

ify the resources used to process the videos and whether

real-time processing is possible using commodity hard-

ware.

When trained with enough data, convolutional neu-

ral network (CNN)-based models have shown to outper-

form classic techniques in object detection. These in-

clude methods such as YOLOv3 [54], Fast-RCNN [22],

Faster-RCNN [55], Mask-RCNN [25], CenterNet [73],

SSD [42], EfficientDet [61], and NAS-FPN [20], which

have proven resilient for both general object detection

and specifically for vehicle localization and classifica-

tion.

Multi-Object Tracking. A variety of tracking algorithms

have been devised over the years. In an effort to opti-

mize efficiency, some trackers [8,9,32,31] rely only on

positional information derived from the detectors, us-

ing predefined overlap thresholds to decide whether the

vehicle is one encountered in the previous frame. While

they are very efficient, these trackers tend to loose vehi-

cles when they become obscured by, for example, a light

pole, and create new tracks for the vehicles when they

are “re-aquired”. Recent methods, such as MDNet [48],

TCNN [47], DeepSORT [68], TC [64], MOANA [62],

and Tractor [5], use sophisticated visual feature match-

ing techniques, along with position estimators, to im-

prove tracking and minimize vehicle ID changes. In gen-

eral, the methods construct tracklets, which are short

sequences of associated vehicle bounding boxes across

several sequential frames, and then employ optimiza-

tion strategies for associating related tracklets to form

tracks.

Vehicle Counting. The final step in the vehicle counting

task is classifying the vehicle and associating its track

with one of the MOIs. Some methods rely on the detec-

tor (e.g., YOLO) to also classify the objects. Trackers

whose detector cannot be trusted to classify the vehi-

cles use statistical information gathered from multiple

frames to decide whether a track belongs to a car or a

truck.

For the movement assignment, many methods com-

pute a measure of similarity between the track and the

set of predefined MOIs, which are themselves encoded
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as trajectories. The similarity can be based on the MOI

and vehicle entry and exit points within the ROI [10,

59], or may use more complex path-based matching

techniques [65,53,11]. Instead of manually encoding the

MOI trajectories, some methods cluster the tracks to

automatically discover potential MOIs [1,71,3,44]. Fig. 2,

for example, shows discovered MOIs in several videos

by the ENGIE method [53].

The 4th AI City Challenge [52] introduced a novel

dataset for multi-class multi-movement vehicle count-

ing and challenged teams to not only develop effective

vehicle counting methods but also ensure their methods

are efficient. In the following paragraphs, we will sum-

marize the top-5 performing methods for the vehicle

counting track in the challenge.

Didi-OC. Didi-OC, one of two teams from Didi AI Labs,

used the YOLOv3 [54] network for detection and classi-

fication of the vehicles. The strength of YOLOv3 comes

from its short inference time which stems from that fact

that it is a single stage method. For tracking, Didi-OC

used SORT [6]. The SORT algorithm associates new de-

tections with ongoing tracks based on the dimensions

of the bounding box. This is done using a Kalman fil-

ter. SORT is very well suited for online tracking as it

is fast and accurate. The moment a track passes one of

the lines of the ROI, the vehicle is counted.

Didi-MV [3]. The second DiDi team implemented a

Detection-Track-Count algorithm for this challenge. For

their detection algorithm, they used NAS-FPN [21] which

is based on RetinaNet [40]. Often, deep learning detec-

tion algorithms can produce errors in edge cases such
as low light and bad weather. To remedy this, they im-

plemented a background model based on Hybrid Gaus-

sian to extract the moving vehicles. A version of Deep-

Sort [69] along with post processing was used for the

tracking portion of the pipeline. Tracklets are divided

into segments and a trajectory similarity score is cal-

culated based on the inverse of an Euclidean distance-

based metric and cosine similarity between each seg-

ment and each trajectory. Once the movement is as-

signed, a counting algorithm is applied. For incomplete

tracks, Didi-MV implemented an algorithm to piece to-

gether the disjointed tracks until all short trajectories

matched a corresponding vehicle.

ENGIE [53]. The Engie team used a Detection-Tracking-

Counting pipeline in this challenge. They used Faster-

RCNN [55] for their detection algorithm and used weights

pre-trained on the COCO dataset [41]. COCO’s dataset

does not perfectly match the labeling of the challenge

so it requires some additional filtering to correctly la-

bel the vehicles. The specific issue lies in the fact that

pickup trucks are labeled as trucks in the COCO data

set while the AI City Challenge classifies pickup trucks

as cars. The solution the ENGIE team implemented re-

lies on the assumption that freight trucks, specifically

their bounding boxes, are at least 3 times larger than

the smaller cars. The mean area of a track’s bounding

boxes is found. The average area of 90 percent of the

smallest vehicles is used as a standard and compared

to all trucks. Any vehicle that is at least 3 times this

value is classified as a freight truck. With regards to fil-

tering detections in general, they utilized 4 metrics to

ignore invalid detections: ROI percentage overlap, min-

imum score, non max suppression, minimum area, and

maximum area.

For the counting portion of the algorithm, Engie

used a line crossing algorithm outlined in Cormen et

al. [16] which differentiates the orientation of intersec-

tion vectors. The first and last detection for each track

are used to define a vector for the track. They defined

a set of calibration vectors that should not be crossed

during the life of a track. Similarly, they defined an-

other set of vectors that should be crossed during the

life of a track. Tracks are then assigned to movements

based on which vectors they did and did not cross. With

each track assigned to a movement and classified as ei-

ther car or truck, the last detection’s timestamp of each

track is used to count the vehicle.

CMU [71]. The CMU team used Mask R-CNN [24] for

detection and tracking. In their method, the features

extracted from each frame are used in an association

algorithm to get vehicle IDs [66]. A few techniques were

used during the identification process to help improve

the efficiency of the processing pipeline. Detections of

vehicles that were parked or stopped at a light were

removed if their velocity was below a threshold. Also,

a region filter was applied to exclude detections from

outside the ROI. The method uses a few metrics to

assign each track to a route. First, a distance metric is

computed between each track and each route based on

a proximity field for each route. The distance is further

scale-normalized to account for differences in vehicle

sizes as the vehicle moves closer to or away from the

camera. A completeness metric is also used to track

progress along the possible routes. Lastly, a stability

metric is used to measure the distance throughout the

process of route identification. The distance between a

track and its correct route should be relatively constant.

The overall proximity metric is thus designed to tell

when tracks are entering or leaving MOIs.
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Baidu [44]. The Baidu team also implemented a Detection-

Track-Count algorithm for the challenge. They used

Faster-RCNN [55] as their detector and Resnet50 [26]

with FPN [39] as their backbone feature extractor. A

pretrained COCO model was used and fine-tuned with

manually annotated data from the Track-1 videos. For

the tracking section of their pipeline, Baidu used Deep-

Sort [69] as their baseline tracker. They implemented

a similarity matrix based on a color histogram feature,

a motion feature, and a shape feature. They used the

Hungarian algorithm to match detections and track-

lets based on this matrix. A shape based approach was

used to assign tracklets to movements. They find the

Hausdorff distance between each tracklet and move-

ment as well as the direction similarity between each

tracklet and movement which is defined as the vector

that points from the initial bounding box to the final

one. Lastly, the method manually defines spacial con-

straints for each movement that a tracklet must follow

in order to be assigned. The counting is done when a

tracklet leaves the ROI.

Fig. 2 Clustering of movements examples for the ENGIE
method.

In the remainder of the article, we will thoroughly

evaluate, under multiple scenarios, the effectiveness and

efficiency of the top-5 submissions to the vehicle count-

ing track of the 4th AI City Challenge.

4 Evaluation Methodology

The purpose of our experimental evaluation is to deter-

mine the state of readiness for real-world implemen-

tation of state-of-the-art multi-class multi-movement

vehicle counting methods. The ideal implementation

would leverage edge compute devices to obtain real-

time per-movement vehicle counts for each class of ve-

hicles, resulting in very small data payloads needing to

be transmitted to a central server and/or to neighboring

edge devices. In this section, we will describe our eval-

uation methodology, including the data, environments,

metrics, and the particulars of the implementation used

to validate the efficiency and effectiveness of each of the

methods under comparison.

4.1 Dataset

Fig. 3 An example scenario from the AI City Challenge
vehicle counting dataset designed for multi-class, multi-
movement vehicle counting.

We evaluate each method using Dataset A from

Track 1 of the 4th AI City Challenge, which consists

of roughly 5 hours of video captured in 20 unique sce-

narios and a variety of illumination and weather con-

ditions. The footage is split into a total of 31 videos,

of which 6 videos (29.35 minutes) have rain, 4 videos

(20 minutes) were filmed at dawn, 1 video (5 minutes)

has snow, and 20 videos (243.64 minutes) have day light

conditions. Videos were captured at 960p or better res-

olution and most have 10 fps (except 2 at 8 fps and 2

at 15 fps).

For each video, teams were provided with visual and

textual representations of ROIs and MOIs that are rel-

evant to the vehicle counting task. The variety of sce-

narios, weather conditions, and video encoding provides

a challenging realistic task for teams what wish to do

well in solving this problem. Fig. 3 provides an exam-

ple scene from one of the vehicle counting videos, with

the ROI marked with a green polygon and the MOIs

marked using orange arrows. Finally, vehicles were split

into two classes, where medium and large tucks (e.g.,

moving trucks, garbage trucks, tractor trailers) were

labeled “truck” and all other two-axle vehicles were la-

beled “car”.

The methods that performed well in the online eval-

uation system on Dataset A were invited to submit

codes and running instructions for further evaluation

on a held-out Dataset B, which consisted of 31 similar
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videos as those in Dataset A but totaling only roughly

4.5 hours. These evaluations were performed on a com-

modity system with an Intel i7 CPU and a single Nvidia

Titan Xp GPU. The final challenge winners for the vehi-

cle counting track were chosen as the top-2 performing

methods on Dataset B.

4.2 Environments

To thoroughly understand the execution characteris-

tics of the methods under comparison, we evaluated

each method on four different servers and three edge

devices, each with different CPUs and GPUs. In this

section, we describe these systems and their character-

istics, which were chosen to showcase the current lim-

its of the state-of-the-art vehicle counting methods. To

simplify the presentation and to easily differentiate be-

tween the systems, we name each system by the type of

GPU installed in the systems. Table 1 provides a sum-

mary of the systems characteristics. Servers are listed

at the top of the table, followed by edge devices. The

GPUs column shows the number of GPUs in each server

and the GPU architecture for each Jetson device. The

CUDA cores column shows the number of CUDA cores

per GPU in the given system. The GPU RAM column

shows the amount and type of random access memory

available to the GPU. The Threads column shows the

number of physical CPU cores in the system. The RAM

column shows the amount of random access memory

available to the CPU. The Jetson systems share the

same RAM space with the on-board GPU. Finally, the

Drive column shows the type of storage device the op-

erating system and experiment data reside on in the

system.

In order to minimize I/O delay in the experiments,

each system was outfitted with efficient drives capable

of at least 500 MB per second reads, with the exception

of the Jetson Nano edge device which did not have this

capability and used an SD Card as its primary OS and

data drive capable of up to 130 MB per second reads.

Other than the Tesla V100 system, which used Cen-

tOS 7.4 as its operating system (OS), all systems relied

on Ubuntu 18.04.4 LTS. All systems had CUDA 10.2

installed, although some methods relied on earlier ver-

sions of CUDA, which were provided via virtual envi-

ronments. All Jetson development kits used the JetPack

4.4 software development kit, which included the latest

Linux Driver Package (L4T) for the ARM processor,

and CUDA-X accelerated libraries for CUDA 10.2 with

built-in APIs for deep learning and computer vision. In

addition to the CUDA cores listed in the 3rd column

of Table 1, the Tesla V100, Titan RTX, and Jetson NX

have 640, 576, and 48 tensor cores, respectively, which

can further accelerate deep-learning computations.

4.3 Metrics

In this study, we are interested in both the effectiveness

and efficiency of vehicle counting methods. We follow

the technique in [52] for measuring the effectiveness of

each method. The effectiveness score S1effectiveness is

computed as a weighted average of the movement- and

class-specific effectiveness for each video. Each video is

split into k segments and a weighted root mean square

error (wRMSE) between the predicted and true cumu-

lative vehicle counts in each segment is computed as the

local effectiveness. We used k = 10 in our experiments.

To further reduce the impact of labeling errors that

may have occurred in early segments, the wRMSE score

weighs each record incrementally in order to increase

the importance to later recorded cumulative counts.

wRMSE =

√√√√ k∑
i=1

wi(x̂i − xi)2,

where wi =
i∑k
j=1 j

=
2i

k(k + 1)
.

(1)

The value xi is the true cumulative vehicle count in all

segments up to the ith segment, inclusive, and x̂i is the

prediction of that value. The wRMSE score is finally

normalized based on the true vehicle count n of the

given class in the given movement and video, as

nwRMSE = max

(
0,

wRMSE

n

)
. (2)

The final effectiveness score is the weighted average

across all nwRMSE scores, with each weight being the

fraction of all the true vehicles across the entire test set,

i.e.,

S1effectiveness =
∑
v,m,c

nvmc × nwRMSEvmc∑
v,m,c nvmc

, (3)

for all videos v, movements m, and vehicles classes c in

the set. Note that the score can be computed for the

entire test set or for a subset of it, such as a single video

or videos with certain characteristics (e.g., with rainy

weather).

We measure efficiency as the wall clock running

time of the method’s execution (including reading videos

and writing results) on 7 different evaluation systems.

Execution time and resource utilization was measured

using the GNU time routine. Since all methods are exe-

cuted on the same systems, the execution times on each
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Table 1 Characteristics of Evaluation Systems

System/GPU GPUs CUDA cores GPU RAM CPU Threads RAM Drive

Tesla V100 2 5,120 32 GB HBM2 2x Xeon Gold 6148 80 768 GB SSD RAID
Titan RTX 4 4,608 24 GB GDDR6 i9-7920X 24 128 GB NVMe
Titan Xp 2 3,840 12 GB GDDR5X i9-9900KF 16 64 GB NVMe
Titan X 2 3,072 12 GB GDDR5 i9-9900KF 16 64 GB NVMe

Jetson NX Volta 384 8 GB LPDDR4x Carmel ARM v8.2 4 – NVMe
Jetson TX2 Pascal 256 8 GB LPDDR4 ARM A57 4 – SSD
Jetson Nano Maxwell 128 4 GB LPDDR4 ARM A57 6 – SD Card

system can be compared to gain insight with regard to

their relative efficiency. The S1efficiency score is based

on the total execution time of each method normalized

within the range [0, 5x video play-back time].

S1efficiency = 1− time

5× video total time
. (4)

We depart from the AI City Challenge evaluation

of these methods in that we evaluate each video in the

dataset independently. Some codes were engineered to

use multiprocessing and potentially multiple GPUs to

process several videos at the same time, which provides

them an advantage against codes that did not rely on

this engineering technique. Moreover, since we are in-

terested in the ability of these methods to be executed

on the edge, on systems with limited available process-

ing and accelerator resources, we believe our evaluation

of each method for one video at a time provides a fair

comparison of the model’s effectiveness and efficiency.

This strategy also provides the added benefit of being

able to analyze each methods’ performance across dif-

ferent types of lighting and weather conditions, which

was not possible using the challenge evaluation.

Finally, the overall evaluation score (S1) is a weighted

combination between the efficiency score (S1efficiency)

and the effectiveness score (S1effectiveness).

S1 = αS1efficiency + βS1effectiveness,

whereα = 0.7, β = 0.3.
(5)

4.4 Implementation

In this work, we have chosen to evaluate the top-5 meth-

ods with the best overall performance on the held-out

Dataset B in Track 1 of the 4th AI City Challenge.

In this section, we describe the implementations of the

five methods under comparison. As noted previously,

each method was modified to allow execution over a

single video instead of processing all 31 videos at the

same time. Several other modifications were needed,

especially when executing the methods on the Jetson

development kits. For all Torch-based methods, unless

otherwise noted, we used Python 3.6 and PyTorch 1.6.0

with TorchVision 0.7.0.

We label each team’s method by the team name

they used in the challenge (or a shortened version).

DiDi Chuxing (DiDi AI Labs) had two separate teams

in the challenge, under the names DiDiMapVision and

Orange-Control, which we will name DiDi-MV and DiDi-

OC, respectively.

DiDi-OC. The team’s code1 is based on PyTorch, which

we installed on servers within an Anaconda virtual en-

vironment. On Jetson devices, we used Python virtual

environments instead, relying on the pre-installed Jet-

Pack libraries to simplify installation.

DiDi-MV [3]. The second DiDi team also had code2

that depended on Torch, but requires PyTorch 1.1 and

TorchVision 0.3, which we were able to install and run

on Ubuntu servers via Anaconda but not on the CentOS

server, due to an unknown run-time error we could not

easily trace. Our solution for running the code on the

Tesla V100 system required building an Ubuntu-based

docker container which we executed in the CentOS 7

environment of that system. The code also requires the

MMdetection package, which we could not get properly

working on the Jetson units, along with PyTorch 1.1,

preventing us from evaluating this code on edge devices.

ENGIE [53]. The ENGIE code3 relies on PyTorch and

the nvidia-dali package, which we were able to install

on all servers via Anaconda. The nvidia-dali package,

which was used for its video input and pipelining abil-

ities, is not currently available for the ARM architec-

ture. Therefore, when running the code on the Jetson

devices, we replaced nvidia-dali code with sequential

executions that used the sk-video package for reading

in frames.

1 DiDi-OC: https://github.com/liwenwei123/AIC_2020_

Challenge_Track-1
2 DiDi-MV: https://github.com/Jilliansea/

DTTM-Vehicle-Counting
3 ENGIE: https://github.com/AndresOsp/Track1

https://github.com/liwenwei123/AIC_2020_Challenge_Track-1
https://github.com/liwenwei123/AIC_2020_Challenge_Track-1
https://github.com/Jilliansea/DTTM-Vehicle-Counting
https://github.com/Jilliansea/DTTM-Vehicle-Counting
https://github.com/AndresOsp/Track1
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CMU [71]. The CMU code4 was easily installed via

Anaconda on servers. While installing the requisite pack-

ages on the Jetson development kit ARM architecture

was tedious, it eventually succeeded. However, we en-

countered many execution stops on the Jetson devices,

where the program continued to execute without re-

porting any error but no frames being processed either

on the GPU or the CPU. These constant delays, cou-

pled with the slow execution pace of the method on the

Jetson devices, prevented us from finishing processing

all videos on any of these devices. After over a week

of constant method restarts, we were able to process

22 videos on the Jetson TX2, 15 videos on the Jetson

NX, and 6 videos on the Jetson Nano. As a result, this

method will not be included in some of the edge device

evaluations that require results from all videos.

Baidu [44]. The Baidu code5 was provided as a docker

container running a CentOS 7 environment with Pad-

dlePaddle 1.7.0 and CUDA 9.0. The environment ran

successfully on all our servers but could not be exe-

cuted on the Jetson units and PaddlePaddle is not yet

compatible with the ARM CPU architecture.

5 Evaluation Results

We start our evaluation by comparing the results of the

five methods in our evaluation versus the official results

for Track 1 of the 4th AI City Challenge. Our results are

quite different, which can be explained by the change

in evaluation methodology. We then dig deeper into the

factors that contribute to each method’s success. Fi-

nally, after analyzing the correlation between different

performance factors when the methods are executed on

a server, we turn our attention to the ability of the

methods to execute in real-time on edge devices.

5.1 Comparison to Challenge Results

The 4th AI City Challenge crowned the Baidu team

as the winner of Track 1 and the DiDi-MV team as

runner-up, based on the results shown in the top por-

tion of Table 2. The bottom rows in the table show

the results of our current analysis on the Titan RTX

server, our most performant system among those we

have tested. Team names and S1 scores of the win-

ner are bold and of the runner-up are in italics. At

first glance, it seems there is a major upset in the team

rankings with the Baidu team dropping to the lowest

4 CMU: https://github.com/Lijun-Yu/zero_virus
5 Baidu: https://github.com/PaddlePaddle/Research/

tree/master/CV/VehicleCounting

spot and the two DiDi teams swapping places. We re-

mind the reader, however, that our current evaluation

methodology differs than the official challenge result in

several major ways, which ultimately makes the com-

parison of the two rankings irrelevant. First, the chal-

lenge results were obtained on Dataset B, a very similar

though slightly shorter version of Dataset A, which was

used in our experiments. Second, the challenge allowed

teams to process multiple videos at a time, while we

enforced separate executions of the methods on each

of the 31 videos in the dataset. This likely had a ma-

jor impact on the Baidu method which relies heavily

on GPU multiprocessing and uses a large custom-built

model which had to be loaded repeatedly for each video

processing, while it helped methods that relied on more

compact models.

Table 2 Overall Evaluation Results

Dataset Team S1effect S1effic S1

B Baidu 0.94588 0.85423 0.91839
B DiDi-MV 0.90511 0.87973 0.89750
B DiDi-OC 0.87457 0.94009 0.89422
B ENGIE 0.94568 0.68890 0.86865
B CMU 0.90425 0.67530 0.83557

A DiDi-OC 0.87187 0.95104 0.89562
A DiDi-MV 0.91051 0.82729 0.88554
A ENGIE 0.92922 0.71189 0.86403
A CMU 0.91195 0.66357 0.83743
A Baidu 0.93829 0.34877 0.76144

Fig. 4 compares the methods with respect to their

effectiveness scores and real-time execution potential.

The blue bars showcase the method effectiveness, which
takes values in the range [0, 1] (higher is better). The

red bars show speedup (or slowdown) of the methods

with respect to the video run-time (higher is better),

which is depicted by the horizontal red dashed line.

While having the lowest effectiveness score among the

methods under comparison, DiDi-OC is able to greatly

outperform all other methods with respect to efficiency,

achieving 3.34× and 4.02× speedup over real-time exe-

cution in the challenge and the current experiment, re-

spectively. Two other methods were able to achieve real-

time efficiency in the challenge, DiDi-MV and Baidu,

but only DiDi-MV was also able to run in real-time in

our evaluation.

5.2 Execution Factors

In order to better understand the factors that played a

role in the method execution, we analyzed each method’s

CPU, GPU, and resident memory utilization on each of

https://github.com/Lijun-Yu/zero_virus
https://github.com/PaddlePaddle/Research/tree/master/CV/VehicleCounting
https://github.com/PaddlePaddle/Research/tree/master/CV/VehicleCounting
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Fig. 4 Real-time execution speedup and effectiveness com-
parisons of the five methods in the challenge (a) and the cur-
rent (b) evaluation. Best viewed in color.

the four servers. The values reported in each row of Ta-

ble 3 are averaged over executions for all videos in the

dataset. The %CPU and Memory (Mem) values were

obtained from the “Percent of CPU this job got” and

“Maximum resident set size” values provided by the

GPU time utility. The tool reports aggregate CPU uti-

lization across all threads associated with a program,

thus resulting in values higher than 100% for multi-

threaded program executions. The %GPU values were

obtained from repeated observations of GPU utilization

using the nvidia− smi tool.

The results indicate that DiDi-MV was the only pro-

gram to effectively use CPU multi-threading as a tool

to improve execution efficiency. However, even given

81.4% saturation of all threads available in the Tesla

V100 system, the method was unable to keep the GPU

busy with work. This indicates the method could be im-

proved by allocating more of the workload to the GPU

or somehow reducing the work assigned to the CPU

threads.

While the CPU thread saturation is well below 20%

for the CMU method, indicating a potential load imbal-

ance problem, it is the only method that could nearly

saturate the GPU on systems with powerful CPUs (Tesla

Table 3 Method Execution Factors

Server Method %CPU %GPU Mem (GB)

Tesla V100 DiDi-OC 193 34 3.03
Tesla V100 DiDi-MV 6514 25 7.24
Tesla V100 ENGIE 51 48 2.12
Tesla V100 CMU 1263 95 2.35
Tesla V100 Baidu 188 20 3.83

Titan RTX DiDi-OC 168 49 2.89
Titan RTX DiDi-MV 2144 24 7.68
Titan RTX ENGIE 71 55 2.28
Titan RTX CMU 461 85 2.47
Titan RTX Baidu 122 25 2.75

Titan X DiDi-OC 124 55 2.58
Titan X DiDi-MV 1502 26 6.69
Titan X ENGIE 67 65 1.86
Titan X CMU 296 40 2.12
Titan X Baidu 74 35 2.21

Titan Xp DiDi-OC 125 60 2.58
Titan Xp DiDi-MV 1495 25 6.71
Titan Xp ENGIE 64 65 1.84
Titan Xp CMU 318 45 2.12
Titan Xp Baidu 88 32 2.21

V100 and Titan RTX). Overall, all models use less than

8GB RAM for their execution on one video, though

they may require much more RAM if allowed to exe-

cute over multiple videos at the same time.

5.3 Effectiveness Factors

Effectiveness plays a big factor in the success of the
counting methods. Ideally, the methods would have close

to 100% effectiveness. While the majority of the meth-

ods obtain higher than 91% effectiveness, the improve-

ment in effectiveness seems to come at the cost of effi-

ciency. To better understand each methods’ execution

factors, we computed each method’s effectiveness in dif-

ferent illumination and weather scenarios. Fig. 5 shows

these results for all videos as well as the day, dawn,

rain, and snow subsets of videos.

The model with the highest effectiveness, Baidu, is

well adapted to tracking vehicles in diverse weather

scenarios. While other models struggle with rain or

snow scenes, Baidu shows a strong performance in all

video types. Of the three typically problematic scenar-

ios, dawn, rain, and snow, ENGIE struggles with one,

CMU and DiDi-MV struggle with two, and DiDi-OC

struggles with all three scenarios. This indicates that

additional work is needed to make these models robust

to weather and illumination changes without incurring

additional execution penalties.
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5.4 Efficiency Factors

One important factor in execution efficiency is the hard-

ware (CPU and GPU) available to run the program.

In our experiments, in order to showcase how different

hardware can influence the model inference efficiency,

we tested each model on four powerful servers with dif-

ferent GPUs: Tesla V100, Titan X, Titan Xp, and Titan

RTX.
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Fig. 6 Efficiency of each method across all servers. Best
viewed in color.

Fig. 6 showcases the inference efficiency of each method

on each of the four servers in terms of the number of

frames each system is able to process every second (In-

ference FPS). Interestingly, all servers exhibit similar

efficiency performance, with only small variations in

each method’s performance across servers. Somewhat

surprisingly, however, the stat-of-the-art Tesla V100 sys-

tem was outperformed by more commodity servers with

Titan Xp and Titan RTX cards. While the NVIDIA

V100 excels at training models and would outperform

the other servers in those tasks, it is comparable with

the Titan cards for inference tasks.
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Fig. 7 Inference efficiency for each method on the Titan
RTX server in different illumination and weather scenarios.
Best viewed in color.

An important question is whether certain videos

with “harder” to solve scenarios would negatively affect

execution efficiency. Fig. 7 shows the inference efficiency

for each method on the Titan RTX server in different

illumination and weather scenarios. The data indicate

an opposite effect. As methods miss vehicle tracking de-

tails, which result in lower counting effectiveness scores,

execution efficiency tends to increase. This may be due

to a failure of the underlying detector to identify all

cars in the scene in each frame.

5.5 Factor correlation

In addition to the relationship between efficiency and

effectiveness, we are interested in discovering whether

a relationship exists between the number of vehicles

or the number of movements in a video and either effi-

ciency or effectiveness. Towards that goal, we computed

the correlation matrix between these variables, which is

shown visually in Fig. 8. The figure shows the distribu-

tion of each variable on the matrix diagonal and uses

dots and bars of different colors corresponding to the il-

lumination and weather type of video. Additionally, Ta-

ble 4 shows the Pearson correlation coefficients between

efficiency, effectiveness, and the number of movements

of interest (# MOI) and the number of vehicles (#

Vehicles). Significant correlations with p-values below

0.05 are marked in bold. We note that, for all meth-

ods, the correlation between # MOI and # Vehicles

was roughly 0.37, with a p-value of 0.01801, showing
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Table 4 Pearson Correlation of Factors

Efficiency Correlation
Method Effectiveness # MOI # Vehicles

DiDi-OC -0.2328 0.1544 0.2458
DiDi-MV -0.0765 -0.0889 -0.3091
ENGIE -0.3061 0.3552 0.4043
CMU -0.1948 0.1721 0.1826
Baidu 0.2842 -0.0935 -0.2366

Effectiveness Correlation
Method Efficiency # MOI # Vehicles

DiDi-OC -0.2328 -0.3178 0.1489
DiDi-MV -0.0765 -0.1713 0.1362
ENGIE -0.3061 -0.2851 -0.0004
CMU -0.1948 -0.1431 0.0063
Baidu 0.2842 -0.3479 -0.1210

that, as expected, an increase in the number of traffic

lanes or movements of interest is in general associated

with an increase in the number of encountered vehicles

on the road.

The data provide some interesting results. First of

all, an increase in the number of vehicles does not seem

to affect the effectiveness of the methods considerably.

In particular, the # Vehicles and Effectiveness variables

are entirely not correlated for ENGIE and CMU. Inter-

estingly, the number of vehicles and of MOIs are also

not strongly correlated with efficiency for most meth-

ods, with the exception of ENGIE. It is possible that,

as the number of vehicles grows, so does the number of

active tracks whose next position should be estimated

based on their motion model, which could slow down

the tracking step in this method.

5.6 Edge Computing

An additional goal in our study was to ascertain the

readiness of the state-of-the-art methods to be deployed

in the field, potentially running on edge devices con-

nected directly to the traffic cameras. Towards that end,

we evaluated the methods on 3 different NVIDIA Jetson

devices, including the TX2, NX, and Nano models, the

details of which can be found in Table 1. Given sev-

eral setbacks encountered during our experiment, the

details of which can be found in Section 4.4, we could

only successfully run DiDi-OC and ENGIE on all Jet-

son devices and all videos and CMU on some of the

videos.

Fig. 9 shows the inference efficiency of the executed

methods on the three Jetson edge devices, while Fig. 10

shows the per video inference frame rate on the Jetson

NX device for the two methods we could execute for

all videos. It is clear that devices with more powerful

GPUs have an advantage when executing these meth-

ods. Unlike the server-based % GPU utilization results

in Table 3, all methods utilized the Jetson GPU al-

most constantly at a rate of 100%. One problem area

for CMU and ENGIE was the limited RAM available

on the Jetson devices. Both methods ran out of RAM

and heavily utilized the swap memory space, which we

had increased in size to 24 GB. While the availability

of the swap memory allowed the methods to complete

their execution, the added burden of swapping pages

between the disk and RAM participated in the meth-

ods’ poor performance on the Jetson devices.

6 Technology Readiness

The 4th AI City Challenge has shown that several meth-

ods already exist that can achieve good performance,

from both the efficiency and effectiveness points of view,

for the problem of multi-class multi-movement vehicle

counting. High effectiveness, however, comes at the cost

of bulky models that impede efficiency. The winning

methods in the challenge mitigated this problem by re-

lying heavily on multiprocessing to keep available GPUs

constantly busy. In our study, we have shown that the

top methods, including DiDi-MV, ENGIE, and Baidu,

are effective not only in normal daylight, but also in less

desirable scenarios such as dawn, rain, or snow. Given

appropriate hardware capabilities (e.g., NVIDIA Titan

RTX or better), the methods are also capable of real-

time processing of video streams.

An additional question we wanted to answer was

whether the state-of-the-art methods were capable of

being deployed on the edge, potentially on the same

pole as the traffic camera. It is clear when looking at

Fig. 9 that, given that the average frame rate of the pro-

cessed videos was 10 fps, the Jetson devices were not

able to process the streams in real-time. Only DiDi-

OC was somewhat close on the Jetson NX, processing

the stream at roughly 0.5x real-time. We must point

out that the models employed by these methods have

not been optimized for edge device execution, via tech-

niques like quantization, which is an area of future work

needed in this field. An important question that will

need to be answered is whether efficiency improvements

that may allow real-time inference on edge devices will

be possible without any or with only little loss of count-

ing effectiveness.

The work done thus far to advance the state-of-

the-art for multi-class multi-movement vehicle count-

ing shows that the methods are on the verge of exceed-

ing the capabilities needed for real-world deployment.

Continuing technological advancements, such as the re-

cently released Jetson AGX Xavier edge device, will
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allow existing methods to execute more efficiently. At

the same time, researchers are encouraged to contin-

uously improve their algorithms, both with respect to

their robustness to unusual scenarios, but also to their

ability to execute efficiently on edge devices. Success
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in these areas will enable ITSs that leverage existing

traffic camera infrastructure without the need of costly

in-road sensors.

7 Conclusion

In this article, we discussed the problem of video-based

multi-class multi-movement vehicle counting, its impor-
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tance in future intelligent transportation systems, and

the current state-of-the-art for solving this problem. In

order to ascertain the readiness of the current technol-

ogy for real-world deployment, we executed a series of

comprehensive experiments, using traffic footage with

O(5) vehicles captured from 20 different vantage points

and covering various lighting and weather conditions.

Several promising approaches were identified that can

effectively count vehicles in diverse weather scenarios.

While the methods cannot easily be executed in real-

time on Jetson edge devices, they show much promise

to achieve this capability in the near future.
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