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Abstract

The AI City Challenge was created to accelerate intel-
ligent video analysis that helps make cities smarter and
safer. Transportation is one of the largest segments that
can benefit from actionable insights derived from data cap-
tured by sensors, where computer vision and deep learn-
ing have shown promise in achieving large-scale practical
deployment. The 4th annual edition of the AI City Chal-
lenge has attracted 315 participating teams across 37 coun-
tries, who leveraged city-scale real traffic data and high-
quality synthetic data to compete in four challenge tracks.
Track 1 addressed video-based automatic vehicle counting,
where the evaluation is conducted on both algorithmic ef-
fectiveness and computational efficiency. Track 2 addressed
city-scale vehicle re-identification with augmented synthetic
data to substantially increase the training set for the task.
Track 3 addressed city-scale multi-target multi-camera ve-
hicle tracking. Track 4 addressed traffic anomaly detection.
The evaluation system shows two leader boards, in which
a general leader board shows all submitted results, and a
public leader board shows results limited to our contest par-
ticipation rules, that teams are not allowed to use external
data in their work. The public leader board shows results
more close to real-world situations where annotated data
are limited. Our results show promise that AI technology
can enable smarter and safer transportation systems.

1. Introduction
Transportation is one of the largest segments that can

benefit from actionable insights derived from data captured
by sensors. However, difficulties including poor data qual-
ity, the lack of annotations, and the absence of high-quality

models are some of the biggest impediments to unlocking
the value of the data [21]. The AI City Challenge was first
launched in 2017 to accelerate the research and develop-
ment in Intelligent Transportation Systems (ITS) by pro-
viding access to massive amounts of labeled data to feed
learning-based algorithms. We shared a platform for par-
ticipating teams to innovate and address real-world traf-
fic problems, as well as evaluated their algorithms against
common datasets and metrics. The past three annual edi-
tions [23, 24, 25] of the challenge have witnessed major
impact in research areas of traffic, signaling systems, trans-
portation systems, infrastructure, and transit.

The 4th edition of the challenge is organized as a work-
shop at CVPR 2020, which has pushed the development of
ITS in two new ways. First, the challenge introduced a track
that not only measured effectiveness on tasks that were rel-
evant to transportation but also measured the efficiency of
completing these tasks and the ability of systems to operate
in real time. To the best of our knowledge, this is the first
such challenge that combines effectiveness and efficiency
evaluation of tasks needed by the Department of Transporta-
tion (DOT) for operational deployments of these systems.
The second change was the introduction of augmented syn-
thetic data for the purpose of substantially increasing the
training set for the task of re-identification (ReID). The four
tracks for the challenge are listed as follows:

• Turn-counts for signal timing planning: This task
counts four-wheel vehicles and freight trucks that follow
pre-defined movements from multiple camera scenes.
The dataset contains 31 video clips (about 9 hours in to-
tal) captured from 20 unique camera views.

• Vehicle ReID with real and synthetic training data:
This task is tested against the CityFlow-ReID bench-



mark [40], where teams perform vehicle ReID based on
vehicle crops from multiple cameras placed at multiple
intersections. A synthetic dataset [45, 39] with more than
190,000 images of over 1,300 distinct vehicles forms an
augmented training set to be used along with the real-
world data.

• City-scale multi-target multi-camera vehicle track-
ing: In this task, teams perform multi-target multi-
camera (MTMC) vehicle tracking, which is evaluated on
the CityFlow benchmark [40]. We introduced a new test
set for the challenge this year that contains over 200 an-
notated vehicle identities across nearly 12,000 frames.

• Traffic anomaly detection: This task evaluates meth-
ods on a dataset provided by the DOT of Iowa. Each
participating team submits at most 100 anomalies de-
tected, including wrong turns, wrong driving direction,
lane change errors, and all other anomalies, based on
video feeds available from multiple cameras at intersec-
tions and along highways.

We had over 1,100 total submissions to the evaluation
system (§ 4) across the four challenge tracks. When submit-
ting results, teams could choose to submit to the Public or
the General leader boards. As the name suggests, the Public
leader board has been shared with the public, where the sub-
missions compete for the challenge prizes. We enforce two
rules for Public leader board contest: (1) Teams may not
use external data in computing their prediction models for
any of the tracks. (2) Teams must submit their code, mod-
els, and any labels they created on the training datasets to
the competition organizers before the end of the challenge.
Alternatively, teams could submit to the the General leader
board, which ranks all submissions, including the Public
leader board submissions.

We have seen strong participation in the past three edi-
tions of the AI City Challenge. Statistics of the 4th AI
City Challnege show growing impact among academic and
industrial research communities. This year, we have 315
participating teams composed of 811 individual researchers
from 37 countries. We received 233, 258, 239, and 224
requests, respectively, for participating in the challenge
tracks. From these, 93 of the teams signed up for an eval-
uation system account, out of which 76 and 55 individual
teams submitted results to the General and Public leader
boards, respectively.

This paper summarizes the 2020 AI City Challenge
preparation and results. In the following sections, we de-
scribe the challenge setup (§ 2), challenge data preparation
(§ 3), evaluation methodology (§ 4), analysis of submitted
results (§ 5), and a brief discussion of insights and future
trends (§ 6).

2. Challenge setup
We have set up the 4th edition of the AI City Challenge

with similar rules as the previous ones, where teams are al-
lowed to participate in one or more of the four challenge
tracks. In terms of the time-frame, we made the training
and testing data available to participants in early January
2020. Due to the new publication rules of CVPR, the 4th
AI City Challenge was scheduled to finish on April 9, 2020
(a month earlier than the previous editions). In order to
be considered as prize contenders, teams were requested to
submit both training and testing code, additional labels, and
generated models for validation of their performance on the
leader boards.

For all the data made available to the participating teams,
we have taken extra attention in redacting private informa-
tion such as human faces and license plates. The tasks in
the four challenge tracks are elaborated as follows.

Track 1: Multi-class multi-movement vehicle count-
ing. Participating teams were asked to count four-wheel
vehicles and freight trucks that follow pre-defined move-
ments from multiple camera scenes. Teams performed ve-
hicle counting separately for left-turning, right-turning and
through traffic at a given intersection approach. This helps
traffic engineers understand the traffic demand and freight
ratio on individual corridors. The developed capabilities
can be used to design better intersection signal timing plans
and improve traffic congestion mitigation. To maximize the
practical value of the outcome from this track, both the ve-
hicle counting effectiveness and the module running effi-
ciency were considered as a weighted sum towards the final
score for each team. The team with the highest final score
will be declared the winner of this track.

Track 2: Vehicle ReID with real and synthetic train-
ing data. Participating teams were challenged for vehi-
cle ReID based on image crops from different camera per-
spectives. This task is critical for algorithms to learn fine-
grained appearance features that distinguish vehicles, even
those of the same color, model, and year. In this year’s
challenge, the training set was composed of both real-world
data and synthetic data. The use of synthetic data was en-
couraged as they can be simulated under various environ-
ments and can produce large-scale training sets by apply-
ing domain adaptation. The team with the highest accuracy
in identifying vehicles among the top K matches of each
query will be selected as the winner.

Track 3: City-scale MTMC vehicle tracking. The task
for participating teams was to track vehicles across multiple
cameras both at a single intersection and across multiple in-
tersections in a city. Results can be used by traffic engineers
to model journey times along entire corridors. The team
with the best accuracy in detecting vehicles and recovering
their trajectories across multiple cameras/intersections will
be declared as the winner.



Track 4: Traffic anomaly detection. Based on more
than 50 hours of videos collected from different camera
views at multiple freeways by the DOT of Iowa, each par-
ticipating team was asked to submit a list of at most 100 de-
tected anomalies. The anomalies include single and multi-
ple vehicle crashes and stalled vehicles. Regular congestion
was not considered as an anomaly. The team with the high-
est average precision and the most accurate anomaly start
time prediction in the submitted events will be the winner
of this track.

3. Datasets
Data for this challenge comes from multiple traffic cam-

eras from a city in the United States as well as from state
highways in Iowa. Specifically, we have time-synchronized
video feeds from several traffic cameras spanning major
travel arteries of the city. Most of these feeds are high res-
olution 1080p feeds at 10 frames per second. The vantage
point of these cameras is for traffic and transportation pur-
poses and the data have been redacted in terms of faces and
license plates to address data privacy issues. In addition to
the datasets used in the previous AI City Challenges, this
year we added a new vehicle counting dataset and a a syn-
thetic vehicle dataset.

Specifically, the datasets provided for the challenge this
year were CityFlow [40, 25] (for Track 2 - ReID and Track 3
- MTMC tracking), VehicleX [45, 39] (for Track 2 - ReID),
Iowa DOT [24] dataset (for Track 4 - anomaly event detec-
tion and Track 1 - vehicle counting).

3.1. The CityFlow dataset

Similar to the AI City Challenge in 2019, the CityFlow
benchmark [40, 25] was adopted for the tasks of ReID and
MTMC tracking. The dataset consists of nearly 3.5 hours of
synchronized videos captured from multiple vantage points
at various urban intersections and along highways. Videos
are 960p or better, and most have been captured at 10 frames
per second. To prevent teams from overfitting the test data
provided in the previous edition, we have made the origi-
nal test set into a validation set, and launched a new test set
for the challenge this year. Included in the new test set are
six simultaneously recorded videos all captured from differ-
ent intersections along a city highway with nearly 12,000
frames and over 200 annotated vehicle identities. The geo-
locations of the six cameras and example frames are pre-
sented in Fig. 1.

In total, the dataset contains 215.03 minutes of videos
collected from 46 cameras spanning 16 intersections in a
mid-sized U.S. city. The distance between the two furthest
simultaneous cameras is 4 km. The dataset is divided into
six scenarios. Of these, three are used for training, two
are used for validation, and the remaining one is used for
testing. The entire dataset contains nearly 300K bounding

Figure 1. The CityFlow benchmark [40] captured at multiple in-
tersections along a city highway. Here six new test camera views
are shown.

simulated data real data
simulated data w/
learned attributes

Figure 2. The VehicleX dataset contains synthetic training data
through domain adaptation that can effectively reduce the content
gap with the real data for vehicle ReID.

boxes for 880 distinct annotated vehicle identities. Only
vehicles passing through at least two cameras have been an-
notated. Additionally, in each scenario, the offset from the
start time is available for each video, which can be used
for synchronization. We also provided the teams the base-
line camera calibration and single-camera tracking results,
which can be leveraged for spatio-temporal association of
vehicle trajectories.

A subset of the CityFlow dataset, a.k.a. CityFlow-ReID,
is reserved for the ReID task in Track 2. There are 666 to-
tal vehicle identities, where half of them are used for train-
ing, and the other half for testing. The training and test
sets contain 36,935 and 18,290 vehicle crops, respectively.
And we have 1,052 image queries to be identified in the
test set. The evaluation and visualization tools are available
with the dataset package for teams to measure their perfor-
mance quantitatively and qualitatively.

3.2. The VehicleX dataset

The VehicleX dataset [45, 39] as shown in Fig. 2 is
a large-scale public 3D vehicle dataset containing high-



Figure 3. The vehicle counting dataset designed for multi-class,
multi-movement vehicle counting.

quality synthetic images rendered on real-world back-
grounds for vehicle ReID use. It can be used for the joint
training with detection and tracking datasets (i.e., Cityflow-
ReID) to improve the real-world ReID performance. Vehi-
cleX contains more than 190,000 images from 1,362 vehicle
identities. Each vehicle identity corresponds to a 3D model
with editable attributes including the viewpoint, lighting
and rendering conditions.

In order to minimize the domain gap between synthetic
and real-world data, an attribute descent approach is used
to edit the synthetic dataset to make the appearance sim-
ilar to real-world datasets in terms of key attributes such
as the viewpoint [45]. The Unity engine draws random
images from the Cityflow dataset to be used as the back-
grounds in the attribute descent. Moreover, SPGAN [8]
is used to adapt the style of synthetic image to match the
real-world style. The above methods can significantly re-
duce the content discrepancy between simulated and real
data, thereby making VehicleX look visually plausible and
similar to the real-world vehicles cropped from natural im-
ages. We also provided the Unity engine which links the
Python API to participating teams, so the teams can poten-
tially create more synthetic data if needed. The detailed an-
notations including car types and color are provided in the
VehicleX dataset. With the large number of images, vehicle
types, colors, and the comprehensive attribute annotations,
this dataset can benefit large-scale ReID for the research
community.

3.3. Vehicle counting dataset

The vehicle counting data set contains 31 video clips
(about 9 hours in total) captured from 20 unique camera
views. Some cameras provide multiple video clips to cover
different lighting and weather conditions. Videos are 960p
or better, and most have been captured at 10 frames per sec-
ond. Detailed documents describing the Region of Interest
(ROI) and the Movements of Interest (MOI) that are rele-
vant to the vehicle counting task setup in each camera view
are also provided. Fig. 3 provides an example view for ve-

Figure 4. The traffic anomaly dataset containing traffic anoma-
lies caused by vehicle crashes and stalled vehicles. The left col-
umn shows detected anomalies in the original frames. The right
column presents background modeling results [26].

hicle counting, where the ROI is marked in a green polygon
and the MOIs are marked in the set of orange arrows. The
ROIs and MOIs are defined to remove the ambiguity that
whether a certain vehicle should be counted or not espe-
cially near the start and end of a video segment. Any vehicle
presented in the ROI becomes a candidate to be counted and
a certain candidate should be counted at the moment of fully
exiting the ROI if its movement is one of the pre-defined
MOIs. By following these predefined ROI and MOI rules,
two people manually counting the same video should yield
the same result. The ground truth counts for all videos were
manually created following these rules. In this contest, cars
and trucks were counted separately for each MOI as shown
in Fig. 3. Sedan car, SUV, van, bus, and small trucks such as
pickup trucks, and UPS mail trucks were counted as “cars”.
Medium trucks such as moving trucks, garbage trucks, and
large trucks such as tractor trailers and 18-wheelers were
counted as “trucks”. The ground truth counts were cross-
validated manually by multiple annotators.

3.4. Iowa DOT anomaly dataset

The Iowa DOT anomaly dataset consists of 100 video
clips each in the training and test datasets. The clips
were recorded at 30 frames per second at a resolution of
800 × 410. Each video clip is approximately 15 minutes
in duration and may include a single or multiple anoma-
lies. However, if a second anomaly is reported while the
first anomaly is still in progress, it is counted as a single
anomaly. The traffic anomalies consist of single and/or mul-
tiple vehicle crashes and stalled vehicles (see Fig. 4 [26]).
A total of 21 such anomalies were presented in the training
dataset across 100 clips. Unlike previous editions of the AI



City Challenge, the participating teams were not allowed to
use any external dataset for training and validation except
for ImageNet- or COCO-based pre-trained object detection
models.

4. Evaluation methodology
Similar to previous AI City Challenges [24, 25], we al-

lowed teams to submit multiple runs for each track to an
online evaluation system that automatically measured the
effectiveness of results upon submission, which encouraged
teams to continue to improve their results until the end of
the challenge. Teams were allowed a maximum of 5 sub-
missions per day and a maximum number of submissions
for each track (20 for Tracks 2 and 3, and 10 for Tracks
1 and 4). Submissions that lead to a format or evaluation
error did not count against a team’s daily or maximum sub-
mission totals.

To further encourage competition among the teams, the
evaluation system showed not only a team’s own perfor-
mance, but also the top-3 best scores on the leader boards
(without revealing identifying information for those teams).
To discourage excessive fine-tuning to improve perfor-
mance, the results shown to the teams prior to the end of
the challenge were computed on a 50% subset of the test
set for each track. After the challenge submission deadline,
the evaluation system revealed the full leader boards with
scores computed on the entire test set for each track.

Teams competing for the challenge prizes were not al-
lowed to use external data or manual labeling to fine-tune
their models’ performance, and their results were published
on the Public leader board. For the first time this year, we
allowed teams using additional external data or manual la-
beling to also submit results, which were published on a
separate General leader board.

4.1. Track 1 evaluation

The Track 1 evaluation score (S1) is a weighted combi-
nation between the Track 1 efficiency score (S1efficiency) and
the Track 1 effectiveness score (S1effectiveness).

S1 = αS1efficiency + βS1effectiveness,

whereα = 0.7, β = 0.3.
(1)

The S1efficiency score is based on the total Execution Time
provided by the contestant, adjusted by an Efficiency Base
factor, and normalized within the range [0, 5x video play-
back time]. S1efficiency = 1− time×base factor

5×video total time . The Efficiency
Base factor is computed as the ratio between the execution
time of a subset of the pyperformance 1 benchmark on the
user’s system and on a baseline system.

The S1effectiveness score is computed as a weighted aver-
age of normalized weighted root mean square error score

1https://pyperformance.readthedocs.io/

(nwRMSE) across all videos, movements, and vehicle
classes in the test set, with proportional weights based on
the number of vehicles of the given class in the movement.
To reduce jitters due to labeling discrepancies, each video
is split into k segments and we consider the cumulative ve-
hicle counts from the start of the video to the end of each
segment. The small count errors that may be seen in early
buckets due to counting before or after the segment break-
point will diminish as we approach the final segment. The
nwRMSE score is the weighted RMSE (wRMSE) between
the predicted and true cumulative vehicle counts, normal-
ized by the true count of vehicles of that type in that move-
ment. If the wRMSE score is greater than the true vehi-
cle count, the nwRMSE score is assigned 0, else it is (1-
wRMSE/vehicle count). To further reduce that impact of
errors on early segments, the wRMSE score weighs each
record incrementally in order to give more weight to recent
records.

wRMSE =

√√√√ n∑
i=1

wi(x̂i − xi)2,

where wi =
i∑n
j=1 j

=
2i

n(n+ 1)
.

(2)

Since the contestants could have reported inaccurate ef-
ficiency scores, competition prizes will only be awarded
based on the scoring obtained when executing the teams’
codes on the held out Track 1 Dataset B. To ensure compar-
ison fairness, Dataset B experiments will be executed on the
same server. Additionally, teams with anomalous efficiency
scores on Dataset A will be disqualified.

4.2. Track 2 evaluation

In Track 2, given the large size of CityFlow-ReID, we
used the rank-K mAP metric to measure performance,
which computes the mean of the average precision (the
area under the Precision-Recall curve) over all the queries
when considering only the top-K results for each query
(K = 100). In addition to the rank-K mAP results,
our evaluation server also computes the rank-K Cumu-
lative Matching Characteristics (CMC) scores for K ∈
{1, 5, 10, 15, 20, 30, 100}, which are popular metrics for
person ReID evaluation. While these scores were shared
with the teams for their own submissions, they were not
used in the overall team ranking and were not displayed in
the leader boards.

4.3. Track 3 evaluation

The primary task of Track 3 was identifying and track-
ing vehicles that traveled through the viewpoints of at
least two of the cameras in the CityFlow dataset. As in
2019, we adopted the IDF1 score [34] from the MOTChal-
lenge [4, 17] to rank the performance of each team. The

https://pyperformance.readthedocs.io/


score measures the ratio of correctly identified detections
over the average number of ground-truth and computed de-
tections. In the multi-camera setting, the score is computed
in a video made up of the concatenated videos from all
cameras. The ground truth consists of the bounding boxes
of multi-camera vehicles labeled with a consistent global
ID. A high IDF1 score is obtained when the correct multi-
camera vehicles were discovered, accurately tracked within
each video, and labeled with a consistent ID across all
videos in the dataset. For each submission, the evaluation
server also computes several other performance measures,
including ID match precision (IDP), ID match recall (IDR),
and detection precision and recall. While these scores were
shared with the teams for their own submissions, they were
not used in the overall team ranking and were not displayed
in the leader boards.

4.4. Track 4 evaluation

Track 4 performance is measured by combining the de-
tection performance and detection time error. Specifically,
the Track 4 score (S4), for each participating team, is com-
puted as

S4 = F1 × (1−NRMSEt), (3)

where the F1 score is the harmonic mean of the precision
and recall of anomaly prediction. For video clips containing
multiple ground-truth anomalies, credit is given for detect-
ing each anomaly. Conversely, multiple false predictions in
a single video clip are counted as multiple false alarms. If
multiple anomalies are provided within the time span of a
single ground-truth anomaly, we only consider the one with
minimum detection time error and ignore the rest. We ex-
pect all anomalies to be successfully detected and penalize
missed detection and spurious ones through the F1 com-
ponent in the S4 evaluation score. We compute the de-
tection time error as the RMSE between the ground-truth
anomaly start time and predicted start time for all true pos-
itives. To obtain a normalized evaluation score, we calcu-
lateNRMSEt as the normalized detection time RMSE us-
ing min-max normalization between 0 and 300 frames (for
videos of 30 frames per second, this corresponds to 10 sec-
onds), which represents a reasonable range of RMSE values
for the anomaly detection task. Specifically, NRMSEt of
team i is computed as

NRMSEt
i =

min(RMSEi, 300)

300
. (4)

5. Challenge results
Tables 1, 2, 3, and 4 summarize the leader boards for

Track 1 (turn-counts for signal timing planning), Track 2
(vehicle ReID), Track 3 (city-scale MTMC vehicle track-
ing), and Track 4 (traffic anomaly detection) challenges, re-
spectively. General indicates general submissions.

Table 1. Summary of the Track 1 leader board.
Rank Team ID Team name (and paper) Score

1 99 Baidu [20] 0.9389
2 110 ENGIE [27] 0.9346
3 92 CMU [46] 0.9292
6 74 BUT [37] 0.8829
7 6 KISTI [5] 0.8540
9 80 HCMUS [43] 0.8064

13 75 UAlbany [6] 0.3116
N/A (General) 60 DiDi [2] 0.9260
N/A (General) 108 VT [1] 0.8138

5.1. Summary for the Track 1 challenge

All submitted teams follow a similar three-step strategy
in tackling the vehicle counting task: (1) vehicle detection,
(2) vehicle tracking, and (3) movement assignment from
trajectory modeling and classification.

For vehicle detection, most teams [5, 1, 37] selected
YOLOv3 [31] pre-trained on COCO as the primary detec-
tor, while some others [46, 6] selected Mask R-CNN. Cen-
terNet was used in [43], and a comprehensive comparison
study was performed in [2], in which NAS-FRP combined
with the GMM background model was ultimately used.
Faster R-CNN [32] was used by the top two teams [20, 27].

For vehicle tracking, DeepSORT [44] was most widely
used by teams [5, 1, 37, 2, 20]. The UAlbany team [6]
adopted Hungarian matching algorithm to associate detec-
tions into tracklets, considering both spatial and appearance
features. The team from HCMUS [43] showed that the IoU-
based tracking was simple yet very effective. The CMU
team [46] used a newly proposed tracking algorithm that
can be processed in real time. The team from ENGIE [27]
defined a final loss function based on vehicle counting re-
sults from motion-based tracking that were optimized for
each camera.

For movement assignment, several strategies are devel-
oped, which can be organized into two categories: (1) Man-
ually defined movement ROIs, where some teams defined
the ROI using a single zone or a tripwire [43, 27, 6], and
other teams [5, 37] represented the movements with a pair
of enter/exit zones. (2) Data-driven movement ROI, based
on the similarity between query and modeled trajectories.
The CMU team [46] manually created the modeled trajec-
tories, while the others [1, 46, 2, 20] created the modeled
trajectories by clustering a set of selected trajectories. In all
cases, teams developed effective techniques that can merge
broken trajectories and reduce identity switches using vari-
ous filtering and smoothing methods.

5.2. Summary for the Track 2 challenge

Most leading approaches utilized the provided synthetic
data to enhance ReID performance through domain adap-
tation. Some of the methods trained real data with syn-
thetic data by applying style transformation and content ma-
nipulation [47, 12]. Other methods [48, 10, 7, 15, 6], in-



Table 2. Summary of the Track 2 leader board.
Rank Team ID Team name (and paper) Score

1 73 Baidu-UTS [47] 0.8413
2 42 RuiyanAI [48] 0.7810
3 39 ZJU [12] 0.7322
4 36 Fraunhofer [10] 0.6899
7 72 UMD [29] 0.6668

15 38 NTU [7] 0.5781
19 9 BUPT [19] 0.5354
20 35 TUE [35] 0.5166
26 80 HCMUS [43] 0.3882
27 85 Modulabs [15] 0.3835
30 66 UAM [22] 0.3623

N/A (General) 87 CUMT [11] 0.6656
N/A (General) 68 BUAA [28] 0.6522
N/A (General) 75 UAlbany [6] 0.0368

Table 3. Summary of the Track 3 leader board.
Rank Team ID Team name (and paper) Score

1 92 CMU [30] 0.4585
2 11 XJTU [13] 0.4400
5 72 UMD [29] 0.1245
6 75 UAlbany [6] 0.0620

stead, trained classifiers for vehicle type, color, and view-
point/orientation using the labels on synthetic data and
made predictions on real-world data. Some teams [48, 11]
also made use of identity clustering to generate pseudo-
labels on the test data to expand the training set. Inspired
by the state-of-the-art in person ReID, the methods with top
performance in Track 2 [47, 48, 12] all used ResNet with
IBN structure as the backbone and applied pooling schemes
including GMP, GAP, AAP, and AMP. Most teams com-
bined identity classification (cross-entropy loss) and met-
ric learning (triplet loss, circle loss, center loss, etc.) in
their training setup, e.g., [47, 12, 7, 19, 35, 43, 15, 11, 28].
We have also seen various spatial, temporal and channel-
wise attention mechanisms being utilized in methods such
as [10, 29, 7, 19, 6]. Finally, it was shown in many algo-
rithms [47, 48, 12, 10, 11, 28] that re-ranking and other
post-processing strategies were effective in improving the
robustness of ReID.

5.3. Summary for the Track 3 challenge

All the teams followed the processing pipeline of ob-
ject detection, multi-target single-camera (MTSC) tracking,
ReID for appearance feature extraction, and spatio-temporal
association to assign identities to tracklets across multiple
cameras. The two best performing teams, i.e., CMU [30]
and XJTU [13], both exploited metric learning and iden-
tity classification to train their feature extractors. Instead
of explicitly associating targets in spatio-temporal domain,
the team from XJTU [13] embedded the information in
an attention module and performed graph clustering based
on pre-defined traffic topology. Similarly, the team from
UMD [29] built distance matrix using appearance and tem-
poral cues to cluster tracks in multiple cameras. The UAl-

Table 4. Summary of the Track 4 leader board.
Rank Team ID Team name (and paper) Score

1 113 Baidu-SYSU [18] 0.9695
2 51 USF [9] 0.5763
3 106 CET [36] 0.5438
4 72 UMD [29] 0.2952

N/A (General) 75 UAlbany [6] 0.9494
N/A (General) 80 HCMUS [43] 0.9059

bany team [6] proposed a multi-camera tracking network
that jointly learned appearance and physical features.

5.4. Summary for the Track 4 challenge

The best performing Track 4 teams (i.e., Baidu-
SYSU [18] and USF [9]) used a similar procedure: first
pre-process and detect vehicles, then identify the anomalies,
and finally perform a backtracking optimization to refine the
anomaly prediction. The Baidu-SYSU team achieved an
impressive prediction score of 0.9695. In their approach,
they proposed a multi-granularity strategy, consisting of
a box-level and a pixel-level tracking branch. The latter
is inspired by the winning solution in AI City Challenge
2019 [3]. A fusion of the two strategies offers comple-
mentary views in anomaly refinement. The runner up pro-
posed a fast, unsupervised system, where the anomaly pre-
diction module used K-means clustering to identify poten-
tial anomalous regions. The solution of the third-place team
(CET [36]) was also based on two complementary predic-
tors: one works on the normal scale of videos, while the
other works on a magnified scale on videos missed by the
first predictor.

6. Discussion
The 4th edition of the AI City Challenge has shown

growing impact to the research communities, as the number
of participants stayed strong and the quality of submissions
was also highly improved. We summarize here several ob-
servations from the challenge results this year.

The accuracy of vehicle counting depends highly on the
quality of vehicle trajectory data. Challenges in this regard
include the variety in camera views, image quality, lighting,
and weather conditions. Participating teams have adopted
state-of-art objection detection and tracking models to ob-
tain vehicle trajectories. Among them, YOLOv3 [31] and
DeepSORT [44] were most widely used, and Faster R-CNN
and Mask R-CNN [32] were also popular. Since most ve-
hicles are traveling along the fixed traffic lanes, their mo-
tion pattern is predictable, and thus simple trackers based
on IoU or linear motion-based trackers are effective. In
the crowded and occluded scenarios, broken trajectories and
identity switches can directly impact the counting accuracy.
To this end, various post-processing methods were adopted.
To determine movement-specific vehicle counting, teams
used both ROI-based and data-driven based MOI classifica-



tion. Both approaches require some level of camera-specific
manual effort, and fully automatic methods are potential
research topics in the future. The winning team [20] has
achieved over 0.95 counting accuracy. Lastly, for improv-
ing computational speed, the team [46] utilized frame-level
parallelism and out-of-order-execution mechanisms for the
bottle-neck detection stage with support for up to 8 GPUs.
Many teams [46, 2, 47, 1] have reported better than real-
time processing speed.

Track 2 (vehicle ReID) is challenging due to two factors.
First, vehicles present high intra-class variability caused by
the dependency of shape and appearance on viewpoint. Sec-
ond, vehicles also show small inter-class variability caused
by the similar shape and appearance among vehicles pro-
duced by different manufacturers. The top performing
teams in this task [47, 48, 12] built their algorithms based
on state-of-the-art person ReID frameworks. Many models
were trained on both identity classification loss and metric-
learning-based loss that encouraged the network to maxi-
mally distinguish on fine-grained appearance features. Var-
ious attention mechanisms were also integrated to their pro-
posed architectures to help the networks focus on repre-
sentative information. Additionally, as we introduced aug-
mented synthetic data in the challenge this year, many teams
proposed to expand the training set with style-transformed
simulated data, and learned models for classifying vehicle
attributes and viewpoints using the automatically generated
labels on these data. Another way teams used to gain addi-
tional data was to assign pseudo-labels to the test set based
on clustering approaches. We anticipate that these types of
methods will be used widely for real deployed systems, as
manual annotation is costly and time-consuming.

Vehicle ReID can be considered as a sub-task for Track 3
on city-scale MTMC vehicle tracking, where the algorithms
not only need to learn discriminative appearance features
for different identities, but also make use of spatio-temporal
cues to associate targets across cameras at multiple inter-
sections. The team from XJTU [13] proposed a spatio-
temporal attention module that learned the traveling time
across adjacent cameras. They also introduced graph clus-
tering in a distance matrix for grouping vehicle instances
into continuous trajectories. The UMD team [29] also uti-
lized a similar approach for clustering tracks. In addition,
teams applied state-of-the-art object detectors and MTSC
tracking methods [38, 42, 41, 16] to generate reliable track-
lets from each single camera. For instance, the top per-
forming team from CMU [30] used Mask R-CNN [32] and
DeepSORT [44] for object detection and tracking, respec-
tively. Compared to the ReID problem, MTMC tracking
has more room for improvement before deployment in real
world, especially as methods may not easily scale as the
camera network grows.

Traffic anomaly detection in Track 4 is challenging due

to environmental factors, the complexity of the anomaly
pattern, and insufficient anomaly training data. Since the
use of external datasets were not allowed, teams thus mostly
resorted to the provided training data for detector fine-
tuning. The winning team (Baidu-SYSU) achieved very im-
pressive prediction scores [18]. Their success is due to sev-
eral notable reasons: (1) Instead of relying on a single-stage
detector, they used two-stage Faster R-CNN [33] model
with SENet [14] as the backbone. (2) They leveraged the
experience from last year’s winning model based on a pixel-
level tracking branch in concert with a proposed box-level
branch. This strategy can effectively improve the prediction
accuracy. The runner up’s solution was also interesting, of-
fering competitive effectiveness with increased efficiency.
The 4th AI City Challenge has successfully drawn the com-
munity’s attention to this intriguing but challenging prob-
lem, and more effective solutions are yet to be explored in
future research.

7. Conclusion

Through the AI City Challenge platform, we solicited
original contributions in ITS and related areas where com-
puter vision, and specifically deep learning, show promise
in achieving large-scale practical deployment that will help
make cities smarter. To accelerate the research and devel-
opment of techniques, the 4th edition of this challenge pre-
sented three contributions: (1) The challenge introduced a
track that not only measured effectiveness but also the com-
putation efficiency. (2) Augmented synthetic data were in-
troduced to substantially increase the number of training set
samples for the ReID task, which could also be utilized in
other tracks (3) Two leader boards are introduced in the
evaluation system, where the Public leader board was ob-
tained from submissions without the use of external data,
which encouraged contests close to the real-world use sce-
narios. The 4th AI City Challenge has seen strong partici-
pation in all the four challenge tracks, where 76 out of 315
participating teams submitted their results and significantly
improved the baselines on these challenging tasks.

In the future, we will continue to push the state-of-the-
art methods on real-world problems, by providing access to
high-quality data and improving the evaluation platform.
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