
Key Point-Based Driver Activity Recognition

Arpita Vats
Santa Clara University
Santa Clara, CA, USA

avats@scu.edu

David C. Anastasiu
Santa Clara University
Santa Clara, CA, USA
danastasiu@scu.edu

Abstract

We present a key point-based activity recognition frame-
work, built upon pre-trained human pose estimation and fa-
cial feature detection models. Our method extracts com-
plex static and movement-based features from key frames in
videos, which are used to predict a sequence of key-frame
activities. Finally, a merge procedure is employed to iden-
tify robust activity segments while ignoring outlier frame
activity predictions. We analyze the different components
of our framework via a wide array of experiments and draw
conclusions with regards to the utility of the model and ways
it can be improved. Results show our model is competitive,
taking the 11th place out of 27 teams submitting to Track 3
of the 2022 AI City Challenge.

1. Introduction

Driver activity recognition is an important problem with
real-world applicability. According to the National High-
way Traffic Safety Administration, 9 people die in the
United States every day due to distracted driving [1]. It is
thus imperative that we use technology to reduce this statis-
tic and, in time, eliminate it altogether. Towards that end,
the AI City Challenge [9, 10] has introduced a new chal-
lenge track this year, posing the problem of driver activity
recognition from video. Teams are provided with videos of
5 different drivers performing the 18 activities denoted in
Table 1, in random order, for varying short intervals (typ-
ically 10 seconds) and with varying short breaks between
activities. Each set of activities is performed twice, the sec-
ond time with some facial occlusion, e.g., wearing a hat or
sun glasses. The experiments are recorded from three van-
tage points, dashboard, rear view mirror, and right window,
and teams are provided with synchronized videos and activ-
ity labels for the training set.

In this work we present a key point-based activity recog-
nition framework, named KNDAR1, that uses complex

1https://github.com/davidanastasiu/kndar

Table 1. Activity Classes

ID Class ID Class
0 Normal forward driving 9 Adjust control panel
1 Drinking 10 Pick up from floor (driver)
2 Phone call (right) 11 Pick up from floor (passenger)
3 Phone call (left) 12 Talk to passenger at the right
4 Eating 13 Talk to passenger at backseat
5 Text (right) 14 Yawning
6 Text (left) 15 Hand on head
7 Hair / makeup 16 Singing with music
8 Reaching behind 17 Shaking or dancing with music
9 Adjust control panel 18 N/A

static and movement-based features extracted from key
frames in the videos to classify activity segments.

2. Related Works

Driver activity recognition is a relatively new area
of study. However, several related domains, such as
video anomaly detection and human pose estimation, have
seen significant recent advances due to novel neural net-
work architectures. Recent techniques combine Convolu-
tional Neural Networks (CNNs) with more complex fea-
ture extractors, such as Long Short-Term Memory networks
(LSTMs) and Autoencoders [7]. Xu et al. [13] suggested
using a stacked denoising auto-encoder in order to ex-
tract feature representations for motion and appearance in
videos. Our framework relies on pose estimation and facial
feature detection models to construct its complex features,
which we will discuss next.

2.1. Pose Estimation

In a recent study, Papandreou et al. [11] proposed a tech-
nique for detecting multiple people in the same frame us-
ing a 2-stage top-down 2-D pose estimation of each person.
The method first predicts the bounding boxes likely to con-
tain human beings, and then, for each bounding box, the
model estimates the positions of 17 human body key points
(12 body joints and 5 face landmarks). The models were
trained using the COCO key points dataset as well as an ad-

https://github.com/davidanastasiu/kndar


Figure 1. Activity segment prediction framework.

ditional in-house labeled dataset. The method is similar to
that of Kendall et al., named PoseNet. For every person it
identifies in the frame, it predicts a vector of 17 body key
points together with a confidence score for each key point.

A similar multi-person 2D pose estimation model was
recently proposed by Cao et al. [2]. Their method is how-
ever a bottom-up approach, which they argue is able to esti-
mate high-quality body poses even as the number of persons
in the frame increases, unlike some top-down approaches.
McNally et al. [8], on the other hand, rely on a dense detec-
tion network to predict a set of key point objects and a set
of pose objects. This network is designed to simultaneously
detect both object types with minimal computational over-
head using a single shared network head. Furthermore, they
conclude that their model, named KAPAO, can be effec-
tively applied to the problem of single-stage multi-person
human pose estimation by detecting human pose objects di-
rectly. Moreover, fusing jointly detected key point objects
improves the accuracy of the predicted human poses with
minimal computational overhead

Yang et al. [14] introduced a Transformer-based model
for human pose estimation, which they named Transpose. It
uses an attention layer to capture the long range relationship
in a pose effectively. The model is considered to be more
lightweight and faster than any mainstream CNN architec-

tures.

2.2. Facial Features

Recently, there has been impressive progress on the
problem of detecting facial expressions, which has become
available to the general public via open source and user-
friendly libraries. Cheong et al. [4] proposed Py-Feat, a
python open source toolbox that provides support for de-
tecting, processing, analyzing, and visualizing facial ex-
pression data. Similarly, Zhou et al. [15] proposed a facial
recognition algorithm based on semantic features (including
eyes and mouth), which are further evaluated using tensors
subspace analysis. Silva et al. [5] proposed the idea of fa-
cial feature extraction and emotion recognition in real time
using edge computing and image correlation optical flow
techniques, which calculate the local motion vectors of fa-
cial features. Kim et al. [6] explores a similar approach for
face detection using edge detection and a 3D-CNN classifi-
cation model that extracts spatial and temporal features.

3. Methodology
Figure 1 depicts our framework. The main idea of our

method is that driver activity can be determined from the
movement of key points on their body. As such, we can use
a pre-trained pose estimation model to identify key points



Figure 2. Human pose estimation for a frame of a video, showing
detected key points and segments depicting major bones in the hu-
man body. Best viewed in color.

(e.g., nose, right ear, left wrist), and derive features from
these key points. The features we designed include angles
between key points (e.g., angle of the segments created by
nose, left ear, and left eye), distances between key points
(e.g., left wrist to left hip), position information (distance
from the center of the driver’s bounding box to corner of
the image), shifts between some of the current key points
and the respective ones in the last key frame, and shifts be-
tween certain angles and the respective angles in the last
key frame. Finally, a merge algorithm is needed identify,
based on the individual frame activity predictions, segments
of time when the driver is engaged in the same activity and
to predict the activity of each segment. In the following, we
will describe the methods we employed for each component
in our framework.

3.1. Driver identification

Our framework relies on a pre-trained human pose esti-
mation model to detect humans in the video and their as-
sociated poses. While any such model may be used, we
employed the KAPAO model by McNally et al. [8]. Given
an image extracted from the video, the model identifies key
points of the pose of any humans in the image, as shown
in Figure 2. Noting that persons in the front seat of the car
will appear larger in the image, and relying on the fact that
drivers will appear on the right side for U.S.-based cars, our
method then identifies the pose of the driver as the one with
a larger area and a bounding box center on the right-half of
the image. At times, the pose estimation model fails to iden-
tify the driver and only identifies the passenger. Our method
filters our such spurious detections and the framework only
extracts features from frames in which the driver has been
detected.

3.2. Feature extraction

We designed our method to extract both static features,
based on the current key frame at time t, and motion fea-

=⇒

Figure 3. Extracting facial features for a given pose.

tures, based on differences between the current and a past
key frame at time t− k. This strategy not only allows faster
processing, but also enhances our motion features as the
driver’s movements will be more pronounced between key
frames. However, as we will see in Section 4, the meta-
parameter k must be carefully chosen to ensure the captured
motion features are meaningful for the frame activity clas-
sification problem.

Our method extracts a variety of feature types that were
carefully designed as indicators of both the driver’s position
and movement. Feature values of each type are also normal-
ized during extraction to ensure feature values are roughly
in the range [−1, 1]. Table 2 lists all the features our method
currently captures, which are extracted as follows.

• Angles. We measure the cosine of angles formed by
certain key points in the human pose estimation. The
angle between the driver’s right wrist, right elbow, and
right shoulder, for example, will be very different dur-
ing normal driving vs. when they are talking on the
phone and holding the phone with their right hand next
to their right ear. The cosine of an angle already has a
range between [0, 1] and does not need to be normal-
ized.

• Distances. We measure the Euclidean distance be-
tween key points, such as the right wrist to the right
ear, and normalize distances by the width of the im-
age, w, i.e., di = di

w .

• Positions. We measure the driver bounding box center
position relative to the upper left corner of the image
(the origin) and its relative width and height. Positions
are also normalized by the width of the image, w.

• Position shifts. We measure the distance between
key point positions in the current and last key frames.
Given that position shifts are expected to be much
smaller than positions, they are normalized by 0.25∗w.



• Angle shifts. We measure the absolute difference be-
tween certain angles in the current and last key frames.

• Facial features. The KAPAO pose estimation model
detects both body and some basic face key points
(eyes, nose, and ears). In order to capture whether
the driver may be singing or talking, our method op-
tionally uses the face recognition Python pack-
age2 to extract additional face key points and mea-
sures the distance from the bottom of the upper lip
to the top of the lower lip. Figure 3 shows an ex-
ample of detecting additional facial key points using
the face recognition package. We tested our
model’s performance both with and without this fea-
ture.

Our input data consists of three separate views of the
driver (dashboard, rear view, and right side). Our method
can extract features from either of the views or from all
views at the same time. In the all view case, our method se-
quentially extracts features from each view of a given driv-
ing scenario and merges the constructed feature vectors by
concatenating feature frame vectors for the same frame in
each of the views. A frame may not produce a feature vec-
tor for a certain view if the pose estimation model fails to
detect the driver. In that case, the frame will not be included
in the all view dataset.

3.3. Frame activity classification

Our framework uses the features extracted from frames
in the training set videos, along with their associated la-
bels, which are provided by the organizers, to train a clas-
sification model that is able to predict the driver’s activity
in teh given frame. Our hypothesis is that the rich set of
features we extract from the frames is sufficient to accu-
rately predict driver instantaneous activity. Towards this
goal, we trained models using both an LSTM-based neu-
ral network [12] and the popular XGBoost classifier [3].
Given the relative small number of extracted features per
frame, the LSTM model performed poorly for this task and
it will not be included in our results in Section 4.

XGBoost (eXtreme Gradient Boosting) [3] is a scalable
implementation of gradient boosting, which uses gradient
descent to identify additional shallow models (in this case
shallow decision trees) that may lead to a smaller prediction
error. The target for the next shallow model to be iteratively
added to the ensemble is chosen based on the gradient of the
error with respect to the prediction, which gives the method
its name. The method stops learning when additional shal-
low models do not reduce the error or it has reached the
maximum number of iterations. Predictions are made using
a weighted vote by each of the models in the ensemble.

2https://github.com/ageitgey/face_recognition

(a) (b)

Figure 4. (a) Activity segments for some videos in the training
set. Class IDs 0–17 are depicted vertically. (b) Class labels in a
subset of the training set; red labels are predicted labels while blue
ones are the ground truth, slightly offset vertically for visibility.
Class ID 18 (N/A) is also shown, denoting times between activity
segments. Best viewed in color.

3.4. Segment activity classification

Figure 4 (a) depicts a visualization of the activities in the
training set. As can be seen, the training set contains a va-
riety of activities which are in general repeated for roughly
10 seconds, and there is generally a gap of a few seconds
between activities. Activities are fairly evenly distributed
across the dataset and most times separated by at least a
gap of 5 seconds. As shown in Figure 4 (b), our model is
able to predict the frame-wise training set activities fairly
well, yet some outliers do appear from time to time. Having
been told the test set follows a similar pattern as the train-
ing set, we devised the Merge algorithm to identify activity
segments by merging sequences of the same activity of suf-
ficient length after first removing outliers.

Algorithm 1 depicts our Merge algorithm. It takes as
input the sorted list of class predictions for all frames of a
video and provides as output a list of time segments and the
associated activity class label for each. It works by com-
bining the individual per-frame predictions of the activity
classification model into segments in which the driver is as-
sumed to be doing the same activity. It first looks for classes
with a much higher percentage of predictions than expected.
S∩x on Line 2 represents the elements of the list S with
value x, which are replaced with ∅ (representing the N/A
class, or class ID 18) if their relative count is higher than
maxp. Then, short empty gaps connecting segments of the
same class are filled in (Line 5). Finally, maximal consecu-
tive class segments of length of at least minlen are added to
the result set R (Line 10), which is returned on Line 15.

4. Experimental Evaluation

In this section, we will present a series of experiments
we conducted to train and evaluate our framework. As seen
from Table 3, our model achieved an F1 score of 0.2528 on
the competition test set A2, which earned us the 11th place

https://github.com/ageitgey/face_recognition


Algorithm 1 The Merge algorithm for segment activity
classification.
Input: S,maxgap,minlen,maxp
Output: R
Require: |S| ≥ maxgap

1: R← ∅
2: for all x ∈ S, s.t. |S∩x|/|S| ≥ maxp do
3: x← ∅ ∀x ∈ S∩x

4: end for
5: for all i, j s.t. Si−1 = Sj+1 ∧ Sk = ∅ ∀k = i . . . j do
6: if j − i < maxgap then
7: Sk = Si−1 ∀k = i . . . j
8: end if
9: end for

10: for all s, e s.t. Si−1 = Si ∀i = s + 1 . . . e ∧ Ss−1 ̸=
Ss ∧ Se ̸= Se+1 do

11: if e− s > minlen then
12: R← R ∪ (s, e, Ss)
13: end if
14: end for
15: return R

out of 27 teams that submitted results to the Track 3 public
leader board. As we present our experimental evaluation,
we will also discuss potential pitfalls of our method and
ways that it may be improved. We executed all our experi-
ments on a system running Ubuntu Linux version 20.04 and
equipped with a 12-core Intel(R) Core(TM) i9-7920X CPU
@ 2.90GHz, 128 GB RAM, and 4 NVIDIA RTX 3090 24G
GPUs. However, while portions of our method take advan-
tage of multi-threaded CPU-based processing, our method
only uses one GPU.

4.1. Feature Extraction

Our feature extraction method has a number of meta-
parameters, including which camera view should be used
to extract features, how many frames should be skipped be-
tween each key frame being captured, and whether or not fa-
cial features should be extracted. We made the later choice
optional as it adds considerable time to the preprocessing
stage of the framework, due to the face detection
package is CPU-bound and, in general, single-threaded.
While features could be extracted from most videos at a rate
of 120 fps on average on our system, the same processing
would slow to 15-20 fps when enabling facial feature ex-
traction.

We executed a series of experiments over all combina-
tions of the following parameters: we extracted features
from from the dashboard (dash), rear view mirror (rear),
side window (side), or all camera views (all), taking key
frames every k ∈ {3, 5, 10} frames of each video, and ex-
tracted features both with and without facial features. In all,

we executed experiments using 24 different feature sets.

4.2. Frame activity classification

For each experiment detailed in Section 4.1, we split the
training dataset into a training set and a validation set us-
ing a 80/20% split and trained a large number of XGBoost
models, optimizing for the best validation F1 score. The
XGBoost classifier has several meta-parameters, including
number of epochs, the learning rate α of the gradient de-
scent algorithm, the maximum number of estimators (deci-
sion tree weak learners), and the maximum depth of each
decision tree. Due to lack of time, we used the default
learning rate and set the number of epochs at a high value
(500) while enabling early stopping, and focused primarily
on tuning the maximum number of estimators and maxi-
mum depth parameters. We tested values between 100 and
1000 in increments of 100 for the first and between 4 and
14 in increments of 2 for the later. We skipped some exper-
iments when it was clear results would not improve upon
already existing models, e.g., models with number of esti-
mators above 300 for k = 10.

Figure 5 (a) shows the effectiveness results of our frame
activity classification model. Overall, we found the all
view was superior to single-camera views at capturing the
driver’s action. Moreover, capturing key frames every
3 frames of the video outperformed the other key frame
choices. Also, while the top-4 validation F1 scores among
our tested models belong to models built using the added fa-
cial features, this type of model only comprised 41% of the
top-100 performing models, achieving an average F1 score
of 0.9548, while models without the feature had an average
F1 score of 0.9662.

One explanation of the mixed results with facial features
may be the quality the face detection model we chose to
use. We observed that, in many cases when the driver was
not looking toward the camera (e.g., while driving normally
but being viewed from the side window camera), or while
they were reaching down for something, the face detection
algorithm failed to detect any faces. This scenario would
lead to assuming a distance between the upper and lower
lips of 0, which is equivalent to the driver’s mouth being
closed (whether in reality it was or not). Employing a bet-
ter model for mouth movement prediction may significantly
improve this result, as several of the target classes have to
do with the driver talking or singing.

4.3. Segment activity classification

Our Merge algorithm for segment activity classification
has three additional parameters, namely maximum gap size
to be filled (maxgap), minimum segment length (minlen),
and maximum class percentage (maxp). We set the maxp
parameter to an overly-cautious 0.15 value, which is more
than twice higher than the average class percentage within



250 500 750 1000
0.7

0.8

0.9

1.0

F1
 S

co
re

all

k=3
k=5
k=10

100 200 300
0.7

0.8

0.9

1.0
dash

250 500 750 1000
# Estimators

0.7

0.8

0.9

1.0

F1
 S

co
re

rear

100 200 300
# Estimators

0.7

0.8

0.9

1.0
right

250 500 750 1000

0.4

0.6

0.8

1.0

F1
 S

co
re

all

k=3
k=5
k=10

100 200 300

0.4

0.6

0.8

1.0
dash

250 500 750 1000
# Estimators

0.4

0.6

0.8

1.0

F1
 S

co
re

rear

100 200 300
# Estimators

0.4

0.6

0.8

1.0
right

(a) (b)

Figure 5. Effectiveness of our driver activity classification model given key frames extracted every k frames and using video from the dash-
board (dash), rear view mirror (rear), side window (side), or all camera views (all). Best viewed in color. (a) Validation set effectiveness
of our XGBoost key frame-based activity classification model. (b) Validation set effectiveness of our overall segment activity classification
model.

the training set, and tuned the maxgap and minlen parame-
ters using the validation set. We tested maxgap in the range
[0−90] in increments of 10, i.e., 0–3 seconds, and minlen in
the range [250, 650] in increments of 50. Finally, we chose
among several of the top-performing models to predict ac-
tivity segments on the test set and submit results to Track 3
of the AI City Challenge.

Surprisingly, while models built using k = 3 seem to
always outperform those built using k = 5 in the frame
activity classification task, the effectiveness of the models
is quite similar for the segment activity classification task,
both on the validation and the test sets. Figure 5 (b) shows
a narrow gap between the performance of the k = 3 and
k = 5 models for the segment activity classification task.
Moreover, the top-2 most effective test set models were “all-
5-f-600-8” and “all-5-f-500-8”, i.e., built using all camera
views, key frames every 5 frames, with added facial fea-
tures, maximum XGBoost tree depth of 8, and the number
of estimators set to 600 and 500, respectively.

4.4. Feature importance

After we identified the best performing model, once the
challenge was closed, we were interested in identifying
which of its 171 features was most important to achieve
good overall predictions. Figure 6 plots the importance of
all the model features, but it only shows the feature labels
on the x axis for the top-10 most important features. These
are, in order, features 19, 22, and 30 (see Table 2 for refer-
ence) from the dashboard view, capturing relative driver po-
sition, face rotation, and position of the left elbow, features
2, 5, 19, and 21 from the rearview mirror view, capturing
two joint angles and two relative positions of the driver, and

features 6, 18, and 21 from the right side camera view, cap-
turing the right shoulder and two relative positions of the
driver.

Interestingly, features from the right side camera view
tend to have higher importance in the prediction. Moreover,
angles and distances have higher importance than other fea-
ture types, while position shifts, angle differences, and fa-
cial features all have bellow average importance towards the
accurate prediction of the in-frame driver activity. More
research and experiments are needed to improve the util-
ity of the movement-specific features, which may improve
the overall segment activity classification performance. One
possible line of research which we did not have time to in-
vestigate would be extracting features based on a longer his-
tory of movements, rather than just movements between the
current and the last key frames.

5. Conclusion
In this work, we presented a framework for driver ac-

tivity prediction that uses off-the-shelf pre-trained human
pose estimation and facial feature detection models to pre-
dict time sequences in which the driver is performing one
of a set of pre-defined actions. Our model first extracts a
series of both static and movement-based features from key
frames in the videos, and then uses a classification model
to identify the potential action being performed in each key
frame. Finally, it merges sequences of action predictions
into robust action segments while at the same time remov-
ing outliers. We have tested our model under a wide array
of meta-parameter choices and found it to be competitive
in Track 3 of the 2022 AI City Challenge, achieving 11th
place on the public leader board out of 27 teams submitting



13
2
13

5787659 62302219 12
0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 6. Feature importance for our best achieving model, “all-5-f-600-8”.

results.

References
[1] National Highway Traffic Safety Administration. Traffic

safety facts research note: Distracted driving 2019 (dot hs
813 111), Apr 2021. Accessed on 04/14/2022. 1

[2] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and
Yaser Sheikh. Openpose: Realtime multi-person 2d pose es-
timation using part affinity fields. IEEE Trans. Pattern Anal.
Mach. Intell., 43(1):172–186, jan 2021. 2

[3] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA,
2016. ACM. 4

[4] Jin Hyun Cheong, Tiankang Xie, Sophie Byrne, and Luke J.
Chang. Py-feat: Python facial expression analysis toolbox,
2021. 2

[5] L.C. De Silva and Suen Chun Hui. Real-time facial fea-
ture extraction and emotion recognition. In Fourth Inter-
national Conference on Information, Communications and
Signal Processing, 2003 and the Fourth Pacific Rim Con-
ference on Multimedia. Proceedings of the 2003 Joint, vol-
ume 3, pages 1310–1314 vol.3, 2003. 2

[6] Dong-Keon Kim and Kwang-Su Kim. Generalized facial
manipulation detection with edge region feature extraction.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 2828–2838,
January 2022. 2

[7] B. Ravi Kiran, Dilip Mathew Thomas, and Ranjith Parakkal.
An overview of deep learning based methods for unsu-
pervised and semi-supervised anomaly detection in videos.
Journal of Imaging, 4(2), 2018. 1

[8] William McNally, Kanav Vats, Alexander Wong, and John
McPhee. Rethinking keypoint representations: Modeling
keypoints and poses as objects for multi-person human pose
estimation, 2021. 2, 3

[9] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng
Tang, Ming-Ching Chang, Xiaodong Yang, Yue Yao, Liang
Zheng, Pranamesh Chakraborty, Christian E. Lopez, Anuj
Sharma, Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. The
5th ai city challenge. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
June 2021. 1

[10] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng
Tang, Ming-Ching Chang, Xiaodong Yang, Liang Zheng,
Anuj Sharma, Rama Chellappa, and Pranamesh Chakraborty.
The 4th ai city challenge. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
page 2665–2674, June 2020. 1

[11] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros
Gidaris, Jonathan Tompson, and Kevin Murphy. Person-
lab: Person pose estimation and instance segmentation with a
bottom-up, part-based, geometric embedding model. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 269–286, 2018. 1

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence
to sequence learning with neural networks. In Proceedings
of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, page 3104–3112,
Cambridge, MA, USA, 2014. MIT Press. 4

[13] Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu
Sebe. Learning deep representations of appearance and
motion for anomalous event detection. In Xianghua Xie,
Mark W. Jones, and Gary K. L. Tam, editors, Proceedings of
the British Machine Vision Conference (BMVC), pages 8.1–
8.12. BMVA Press, September 2015. 1

[14] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Trans-
pose: Keypoint localization via transformer. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 11802–11812, 2021. 2

[15] Huiyu Zhou, Yuan Yuan, and Abdul H. Sadka. Application
of semantic features in face recognition. Pattern Recogni-
tion, 41(10):3251–3256, 2008. 2



Table 2. Extracted Features

FID Feature
Angles

0 nose, left lower corner, image left upper corner
1 left wrist, left lower corner, image left upper corner
2 right wrist, left lower corner, image left upper corner
3 left elbow (left shoulder, left elbow, left wrist)
4 left shoulder (left elbow, left shoulder, left hip)
5 right elbow (right shoulder, right elbow, right wrist)
6 right shoulder (right elbow, right shoulder, right hip)
7 left eye, nose, right eye
8 nose, left shoulder, right shoulder
9 nose, right shoulder, left shoulder
10 nose, left ear, left eye
11 nose, right ear, right eye
12 left ear, right hip, right shoulder
13 right ear, left hip, left shoulder
14 left shoulder, right hip, right shoulder
15 right shoulder, left hip, left shoulder

Distances
16 nose to lower left corner
17 left wrist to lower left corner
18 right wrist to lower left corner
19 nose to upper left corner
20 left wrist to upper left corner
21 right wrist to upper left corner
22 nose to left shoulder
23 nose to right shoulder
24 nose to left ear
25 nose to right ear
26 left eye to right eye
27 left ear to right ear
28 left ear to left wrist
29 right ear to right wrist
30 left elbow to left hip
31 right elbow to right hip
32 left wrist to left hip
33 right wrist to right hip

Positions
34 relative bounding box width
35 relative bounding box height
36 relative position of bounding box center x
37 relative position of bounding box center x

Position shifts
38 nose
39 left eye
40 right eye
41 left ear
42 right ear
43 left shoulder
44 right shoulder
45 left elbow
46 right elbow
47 left wrist
48 right wrist

Angle shifts
49 nose, left lower corner, left upper corner (of the image)
50 left wrist, left lower corner, left upper corner (of the image)
51 right wrist, left lower corner, left upper corner (of the image)
52 left elbow (left shoulder, left elbow, left wrist)
53 left shoulder (left elbow, left shoulder, left hip)
54 right elbow (right shoulder, right elbow, right wrist)
55 right shoulder (right elbow, right shoulder, right hip)

Facial features
56 distance between upper and lower lip

Table 3. Top-15 of the AIC 2022 Track 3 Leader Board

Rank Team Name F1 score
1 VTCC-UTVM 0.3492
2 Stargazer 0.3295
3 CybercoreAI 0.3248
4 OPPilot 0.3154
5 SIS Lab 0.2921
6 BUPT-MCPRL2 0.2905
7 Winter is Coming 0.2902
8 HSNB 0.2849
9 VCA 0.271
10 Tahakom 0.2706
11 SCU Anastasiu 0.2558
12 union 0.2301
13 Starwar 0.216
14 Aespa wInter 0.144
15 SEEE-HUST 0.1348


	. Introduction
	. Related Works
	. Pose Estimation
	. Facial Features

	. Methodology
	. Driver identification
	. Feature extraction
	. Frame activity classification
	. Segment activity classification

	. Experimental Evaluation
	. Feature Extraction
	. Frame activity classification
	. Segment activity classification
	. Feature importance

	. Conclusion

