
On-Device Prediction for Chronic Kidney Disease
Alex Whelan

Computer Science and Engineering
Santa Clara University

Santa Clara, USA
awhelan@scu.edu

Soham Phadke
Computer Science and Engineering

Santa Clara University
Santa Clara, USA
smphadke@scu.edu

Alessandro Bellofiore
Biomedical Engineering
San José State University

San Jose, USA
alessandro.bellofiore@sjsu.edu

David C. Anastasiu
Computer Science and Engineering

Santa Clara University
Santa Clara, USA
danastasiu@scu.edu

Abstract—The number of people diagnosed with advanced
stages of kidney disease has been rising every year. Although early
diagnosis and treatment can slow, if not stop, the progression
of the disease, many lower income individuals are unable to
afford the high cost of frequent testing necessary to keep the
disease progression at bay. To address this issue, we designed a
kidney health monitoring system that allows for affordable and
quick testing through the use of inexpensive test strips and a
mobile application. Moreover, the application serves as a research
framework for testing and improving detection models for the
disease. In this paper, we describe the application we developed
and several preliminary machine learning models we trained to
classify the severity of the kidney disease as normal, intermediate
risk, or kidney failure. We thoroughly evaluated the effectiveness
of our models and found that our histogram of colors-based
boosted tree method outperformed alternatives and exhibited good
overall prediction performance (F1-score > 90%).

Index Terms—kidney health, test strip localization, experiment
framework, machine learning, model improvement

I. INTRODUCTION

More than 15% of US adults, or 37 million people, are
estimated to have Chronic Kidney Disease (CKD) [1]. However,
as many as 9 in 10 adults with CKD and 2 in 5 adults with
severe CKD do not even know they have the disease [1] and
may only find out when it is too late to slow, or stop, the
progression of the disease. Part of the problem is that most
tests for the disease involve laboratory testing of the patient’s
blood or urine, which is both expensive and not a common
screening practice for most adults without other underlying
symptoms. To alleviate this problem, with a goal of promoting
global good health and well-being, we propose an inexpensive
testing mechanism that can be used for initial screening of the
disease.

Kidneys function as the filter of the human body, cleaning
blood impurities and normal waste byproducts from day-to-day
activities such as walking and breathing. When people develop
CKD, their kidneys are no longer able to clean impurities from
blood, which over time can lead to acute health problems such
as high blood pressure, heart disease, stroke, and even death [1].
Early detection through frequent screening can lead people to

take steps to protect their kidneys with the help of their health
care providers.

Fig. 1. CKD prediction using our application.

Two types of tests exist currently for CKD, based on either
urine or blood. Urine tests check for protein buildup which
may indicate kidney damage. Blood tests, check for the level
of creatinine, which is a waste byproduct of normal muscle
operations as they break down proteins. Our system decides the
severity of CKD based on Jaffe’s colorometric reaction between
creatinine and picric acid in an alkaline solution [2] in a test
strip. Similar to a blood glucose test, a subject would place a
drop of blood on a test strip. After a few minutes, they would
use the mobile phone application we developed, which is the
subject of this article, to scan the test strip and find out the
severity of their kidney disease. The application uses embedded
computer vision and machine learning algorithms to identify
the detection zone of the test strip, extract complex features
from it, and classify the outcome. The machine learning models
are able to associate small color variations in the test strip
with CKD severity for a particular patient. The colors green,
yellow, and red are used to indicate healthy kidneys, presence
of kidney disease, and need for immediate medical attention,
respectively. Fig. 1 shows an example test strip prediction using
our application.

The application we developed further serves as a research

framework for testing and improving detection models for the
disease. While in user mode, the application records different
screenings for a single subject. In research mode, the applica-
tion can be used to conduct multiple experiments, each using
different criteria or prediction models, the results of which are
synchronized to cloud storage for further analysis.

It is important to note from the start that this is a preliminary
study meant to validate the design of our system. As such, the
experiments we conducted did not involve human subjects and
instead relied on creatinine solution in lieu of human or human-
analog blood. Moreover, this article focuses on the application,
computer vision algorithms, and preliminary machine learning
models we developed for CKD prediction, while details of the
test strip design and its chemical composition are being reported
elsewhere. The main contributions of this paper are as follows:

• We describe a novel and inexpensive AI-based CKD
prediction system which is essential in combating kidney
disease and promoting good health and well-being in the
global population.

• We present computer vision algorithms and machine learn-
ing models we developed to facilitate CKD prediction. Our
models run directly on the device, in real time, eliminating
the need for data transfer availability and making the
application usable in remote areas.

• We describe a research framework that allows continuous
development and improvement of prediction models using
our application.

• We evaluate both the effectiveness and efficiency of our
models and find that our preliminary models are quite
effective, with F1-score results above 90%.

The remainder of the paper is organized as follows. Sec-
tion II discusses research related to our application. Section III
describes how data were collected for training and evaluating
the models described herein, the design of our application, and
algorithms behind identifying the test strip detection zone and
predicting the severity of kidney disease. Section IV describes
our evaluation methodology and presents experiment results,
and Section V proposes avenues for future work and concludes
the paper.

II. RELATED WORKS

While first introduced by Max Jaffe in 1886, the directly
proportional relationship between the concentration of creati-
nine and the color of its mixture with picric acid in an alkaline
solution was first formalized in a clinical setting by Otto Folin
in his 1916 “Lab Manual of Biological Chemistry [2]”. The
reaction is the basis for most clinical and point-of-care (PoC)
testing systems for CKD, but the cost of most such systems is
prohibitive for most people. For example, three such systems
that rely on enzymatic reactions for the detection, namely
StatSensor [3], ABL 800 Flex [4], and iSTAT [5], cost between
$4,000 and $44,000, while test strips for the devices cost,
on average, less than $1 per test strip. Our proposed system
replaces the expensive sensing device with a free mobile phone

application which, coupled with inexpensive test strips, can
enable humanitarian CKD testing in all parts of the globe.

Machine learning plays an increasingly greater role in health-
care. It has been used to solve important medical problems,
including Autism Spectrum prediction [6], cancer detection [7],
and antibiofilm peptide identification [8], to name just a few.
Additionally, the ubiquity of smart phones has attracted much
interest in biomedical device research. SmartBioPhone [9],
a European Union industrial collaborative project, aims to
bring smart phone-based point-of-care testing using Lab-on-a-
Chip (LOCs) devices to environment, food, cancer and drug
monitoring applications. For example, Oncescu et al. [10]
developed a smartphone-based cholesterol testing system that
uses an attachment to ensure uniform and repeatable image
acquisition. The attachment ensures the test strip detection zone
is positioned right in front of the camera and the picture is
taken in consistent lighting conditions. In contrast, our system
automatically identifies the position of the detection zone
without the aid of an attachment and the choice of extracted
features ensures our model performs well in diverse lighting
conditions.

The use of machine learning techniques in image processing
is quite wide-spread. However, there are few works that attempt
to associate small color variations with a prediction outcome, as
we do in our models. A histogram of colors extracted from the
RGB color space image representation has been successfully
used to index images for image retrieval applications [11].
Color constancy has been shown to depend on statistics of
outputs of linear [12] and non-linear filters [13], [14]. However,
convolutional neural network-based methods have been proven
to be much more effective than statistical methods in achieving
color constancy [15]–[17], though the representation of colors
in deep neural networks is still poorly understood [18].

One closely related system to the one we designed is the
homemade-spectrometer by Debus et al. [19], which predicts
continuous values for color change observed in reaction be-
tween urine and picric acid solution. Despite being a low
cost system, the setup requires technical acumen and is time-
consuming. An early experiment to classify temperature of
thermal paints based on their color from a camera feed was
conducted by Lalanne and Lempereur [20]. More recently,
Paulraj et al. showed that a 5 hidden layer artificial neural
network could predict the ripeness of bananas as ripe or not
ripe with an accuracy of 96% [21].

III. METHODS

A. Data Collection

The presence of kidney disease and its progression is
usually determined using the estimated glomerular filtration
rate (eGFR) scale, which determines kidney health based on
creatinine concentration using the Modification of Diet in Renal
Disease (MDRD) equation [22], defined as

eGFR = 175× S−1.154
Cr × age−0.203 × 0.742 if female

× 1.212 if African born, (1)

Batch Offload Samples

Cloud

Augmentation

Center Crop

Random Crop

Noise

Feature Extraction

Features

RGB

HSV

Update Database
Experiment Name
Sample ID
Status

eGFR

Classification

normal

intermediate

critical

Pre-Trained
Models

Prediction

Model Selection
Boosted Trees Random Forest Logistic

Model Parameters

Localization

Test Strip
Detection

Decode
QR

Bounding-Box Threshold
Parameters

Metadata
Concentration

Age

Sex

Ethnicity

Fig. 2. Application workflow.

TABLE I
DISTRIBUTION OF TESTED CREATININE CONCENTRATIONS

Concentration No. of No. of
range Steps concentrations samples

0–3.9 mg/dL 0.1 mg/dL 40 160
4–7.5 mg/dL 0.5 mg/dL 8 32
8–19 mg/dL 1 mg/dL 12 48

20–60 mg/dL 10 mg/dL 5 20

where SCr is the creatinine concentration in the blood sample,
measured in mg/dL. EGFR values between 0 and 15 are consid-
ered critical, between 15 and 60 are considered intermediate,
while those above 60 indicate healthy kidneys. For a given
patient, the only critical factor in the prediction is the amount
of creatinine in their blood. In our experiments, we simulated
creatinine extracted from blood by using a creatinine solution
at different concentrations, which we applied to identical test
strips. Given the inverse relationship of eGFR and creatinine
concentration, we chose more samples from low creatinine
concentration ranges, as shown in Table I.

We applied creatinine solution at each chosen concentration
to 4 test strips and took pictures of the test strips, in a
laboratory, at 4 different time intervals, namely 2, 12, 22, and
32 minutes after applying the solution. This is because, as time
progresses, the saturation and intensity of the color on the test
strip may also change. In this study, we only used pictures
taken at 12 minutes after application, which we found most
effective in our analysis. Finally, each experiment sample was
associated with one or more patients drawn at random from
a distribution with similar racial, gender, and age proportions
as the U.S. population according to the 2010 census, which
allowed identifying the ground-truth CKD category for samples
based on the eGFR level computed using Equation 1.

The detection zone of the test strip is the area that has been
imbibed with the appropriate chemistry to react to the creatinine
solution. In order to train CKD classification models, which we
describe in detail in Section III-D, we extracted image patches

TABLE II
DATASET STATISTICS

Dataset Train Test Healthy Int. Critical
No Crop 780 260 47 104 109
Center Crop 780 260 52 100 108
Random Crop 3900 1300 242 523 535

from the detection zone part of the experiment test strips under
three augmentation conditions. For each experiment sample,
we extracted a no crop sample that contained all pixels of
the detection zone, a center crop sample containing a single
64×64-pixel patch centered at the center of the detection zone,
and 5 random crop samples that were 64 × 64-pixel patches
randomly positioned within the detection zone. Table II shows
the statistics of our three augmentation datasets which we used
in training our models. The first three columns show the dataset
and numbers of training and test samples, respectively, and
the last three columns show the number of test samples in
each CKD category, namely healthy, intermediate, and critical.
Training samples have similar distributions of labels in each
category.

B. Application Design

Fig. 2 shows our application’s workflow. In order to predict
the severity of kidney disease, our application captures a frame
using the phone’s camera and must first localize the test strip
within the image and the detection zone within the test strip.
Then, features are extracted from the localized detection zone
and fed into a pretrained classification model along with several
additional features encoding the patient’s age, gender, and race.
Finally, the detection zone, along with the predicted CKD
outcome and patient demographic data, are stored in a cloud
database.

We designed our application to be used in two different
modes of operation. In user mode, the application uses the
latest/best model to generate predictions and stores the user’s
readings over time. In research mode, a scientist can run

one or more experiments using different meta-parameters (e.g.,
prediction model, augmentation technique, patch size, etc.),
taking one or more sample readings for each experiment.

To simplify recording data for each sample and associating
each sample with a patient, we encode patient and creatinine
concentration information, along with other experiment param-
eters, in a QR code that is printed on the test strip. The scientist
can then scan the QR code using the application, apply the
solution with the prescribed creatinine concentration, wait the
prescribed number of minutes, and then scan the test strip to
complete the prediction. The application automatically uploads
the detection zone image and prediction results to the cloud
database. After all readings in an experiment are completed,
results can be extracted from the cloud database and further
analyzed or used to train additional prediction models.

1) Application Interface: We purposely designed our ap-
plication to be easy to use, while at the same time secure.
Fig. 3 shows the start and sign-up screens for our application.
A user can sign-up for an account to use the application and
the application will ensure the password they choose is a strong
password. Moreover, if they choose to use the application in
user mode, they are asked to provide the personal information
necessary to perform CKD predictions for the user. These data
are not necessary in research mode as they are encoded in the
test strip QR codes.

Fig. 3. Application login and sign-up screens.

In user mode, the application will simply show a summary
panel of the user’s readings, i.e., scans of test strips (Fig. 4
right). They can click on the + button to initiate a new reading.
On the other hand, in research mode, the application will show
the list of existing experiments (Fig. 4 left), and the user
can click the + button to initiate a new experiment (Fig. 4
center). When starting a new experiment, the user must choose
experiment parameters, such as which model will be used for
predictions in the experiment. Selecting an existing experiment
will show the list of current readings for that experiment and
the user can then initiate a new reading using the + button in
that screen, just as in the user mode.

The application was designed to simplify the prediction
process. When initiating a new reading, the application uses
the phone’s camera to localize the test strip. Our localization
algorithm, detailed in Section III-C, continually scans the

Fig. 4. Application experiment and readings screens.

frames provided by the camera until the test strip is identified
and deemed to be in focus. Then, the image freezes and the
user is shown the identified detection zone and asked to confirm
whether prediction should proceed. Fig. 5 (left) shows this
confirmation in action. While not strictly necessary, the image
on the phone also overlays on the test strip artifacts that were
used to identify the position of the detection zone. When the
user clicks “Predict,” the application engages the selected (or
default/best) prediction algorithm to identify the severity of
kidney disease. As soon as that prediction is complete, the
detection zone image and results are saved locally and the result
is shown to the user (Fig. 5 right). An asynchronous process
then uploads new results to our cloud database once every 5
minutes, as long as a data connection is available.

Fig. 5. Application CKD prediction screens.

C. Test Strip Localization

Fig. 6. Test strip

In order to allow the device camera
to reliably and consistently identify the
detection zone of the test strip, we added
three black dots to the test strip that form
an isosceles triangle, as seen in Fig. 6.
This represents a unique identifier which
serves as the starting point for the com-
puter vision strip detection algorithm. The triangle is located
right below the detection zone of the test strip. The length of
the segments between the three dots and the angles formed by

the segments can be used to not only identify the presence of a
test strip in the image, but also to localize the detection zone.

Algorithm 1 Test strip detection zone localization.
Input: I, θ ▷ Input image
Output: B ▷ Bounding box

1: B ← ∅
2: C ← FindCircles(I)
3: D ← ||ci − cj ||2 ∀ ci, cj ∈ C ▷ Distance matrix
4: for all i, j, k ∈ {1, 2, . . . , |C|} do
5: if D[i, j] ∼ D[j, k] ∧ cos(j, i, k) ∼ θ then
6: if V erify(i, j, k) then ▷ Box focus and color
7: B ← B ∪Box(i, j, k)
8: end if
9: end if

10: end for
11: return maxb B ▷ Non-maximum suppression

Algorithm 1 describes the procedure our application uses
to identify where the test strip detection zone is located. The
method first uses the Hough Circle Transform method [23],
[24] from the OpenCV library to identify all circles in the
image. Circles with large radius are removed and the centers
of the remaining circles are added to C. After computing all
pairwise distances between identified circle center points (line 3
in Algorithm 1), the method looks for roughly equidistant
segments with a point in common, e.g., ij and jk, such that
the cosine of the angle between them is roughly θ. If such
an isosceles triangle is found, the method then computes the
likely location of the bounding box, the center of which can
be found along the height of the triangle at a distance of
3h, where h is the triangle height from angle ijk. Given a
potential detection zone location, the method verifies whether
the retrieved pixels in the detection zone are in the correct
color range by sampling several random pixels in the potential
detection zone and checking that their red, green and blue
components are within predefined thresholds. The method also
ensures that the detection zone is in focus. If it is not, it instructs
the device to focus at the perceived center of the detection
zone and returns nothing, awaiting for another frame where
the detection zone is in focus. Otherwise, the bounding box of
the detection zone is added to set B (line 6 of Algorithm 1).
Finally, given a non-empty set B, the algorithm returns the
box b that maximizes a localization quality score via a non-
maximum suppression algorithm.

An alternative to the proposed Computer Vision-based test
strip localization approach would be to use deep learning object
detection methods, such as YOLO [25], [26]. We tested such
methods but found both their effectiveness and their efficiency
sub-par compared to the proposed method. Our implementation
took more than 0.5 seconds for the test strip localization alone
on the phone we were testing with, making the approach pro-
hibitive to real-time test strip localization and CKD prediction.

D. Kidney Health Prediction

Once the detection zone of the test strip has been localized,
the pixels from that section of the image are processed to extract
features suitable for solving the classification problem. In the
remainder of this section, we discuss the types of features that
we extracted and the machine learning models we used for
classifying the test strips.

1) Feature Extraction: In order to obtain accurate predic-
tions we must engineer meaningful features that have to account
for possible variability in our data. Images are usually repre-
sented by a matrix or vector of the colors of each of the pixels
in the image. However, the size of the detection zone bounding
boxes returned by the localization model are non-uniform,
meaning we must perform an additional post-processing step,
possibly applying data-augmentation techniques, in order to
extract the same number of features for each sample. Moreover,
the color representation of each pixel plays a vital role in the
ability of the features to capture the information needed to
classify the severity of kidney disease. In our work, we tested
two different feature extraction techniques, one based on the
standard red-green-blue (RGB) color space, and the other based
on the hue-saturation-value (HSV) color space.

a) RGB: In the RGB representation, we simply concate-
nate all red, green, and blue color values of each pixel of
a 64 × 64-pixel region of the detection zone into a vector,
which, after normalization, forms the input to our methods.
Color values range between 0 and 255 and the input vector is
normalized by dividing all of its components by 255. Along the
pixel color features, we add 3 features for age, race, and gender,
which are standardized individually across the samples. RGB
feature vectors thus have (64×64×3)+3 = 12291 dimensions.

b) HSV: Unlike the RGB color space, which captures the
amount of red, green, and blue in a given color, the HSV color
space models how colors appear under light. In other words,
the specific color is captured by the H and S components of
the space, and the V component simply indicates the amount
of light, or vibrancy present in the color. This is beneficial in
our case, as we wish to have the same representation of a color
in different lighting conditions. Moreover, we observed that the
color in the detection zone is not completely uniform, and non-
detection zone pixels may be present around the edges of the
extracted image patch. To rectify these problems, we represent
the image as two concatenated histograms for the H and S
color channels, respectively. For each color channel, we count
the number of pixels that fall within equal-sized sections of a
predefined color range for the channel. For example, assuming
η bins and range [Hs, He] for the H channel and σ bins and
range [Ss, Se] for the S channel, we break the H range into η
equal-sized bins and the S range into σ equal-sized bins, and

construct a count matrix,

C[i, j] =
∑
x

1x s.t. (2)

xH ∈
[
i× He −Hs

η
, (i+ 1)× He −Hs

η

)
,

xS ∈
[
j × Se − Ss

σ
, (j + 1)× Se − Ss

σ

)
,

where x is a pixel and xH and xS are its hue and saturation
values, respectively. The HSV feature vector is constructed by
concatenating the C matrix rows, after normalizing its values
by the L1 norm, and appending the standardized age, race, and
gender values for the patient assigned to the sample. Therefore,
the HSV vector has (η × σ) + 3 dimensions. The histogram
approach provides several benefits over plain RGB features,
including,

• Masked pixels — pixels that do not fall in the hue or
saturation ranges are not considered (i.e., background),

• Orientation independent — the same sample produced
from different camera orientations should return the same
or very similar features which may facilitate in reducing
error when using the application to run a batch of exper-
iments,

• Detection zones do not have to be uniform therefore do
not need to be cropped.

2) Machine Learning Models: The current version of our
application was designed to work on Apple iOS devices. As
a result, in order to ensure efficient real-time inference on
the device, we chose to train classification models whose
inference could be executed by the Apple ML library, which
has been optimized for such devices. The models we included
in our study include logistic regression, decision tree, random
forest, and boosted trees. While decision tree and logistic
regression learn a single classification function, random forest
and boosted trees are ensemble methods that train multiple
decision trees and use their collective wisdom to decide the
predicted outcome.

IV. EVALUATION

A. Experimental Design

For each combination of our two feature types (RGB and
HSV) and three augmentation datasets (no crop, center crop,
and random crop), we trained four standard machine learning
classification models (logistic regression, decision tree, random
forest, and boosted trees). We first split each dataset into a
70% training, 5% validation, and 25% test set using a stratified
sampling approach, i.e., each set had a similar percent of
samples from each category (normal, intermediate, or severe
CKD) as in the overall dataset. Then, we tuned meta-parameters
for each model by maximizing the F1-score on the validation
set and used the final best model of each type to predict samples
in the test set. In all, we executed a grid-search to find the
best model parameters, testing values for η, σ ∈ [5, 10, . . . , 50],
and maximum tree depth of [10, 15, . . . , 100]. For the HSV
color space, we ignored H values above 40, which restricted

acceptable colors to be counted in our histograms between light
cream and deep reds. Ultimately, the best performing bin sizes
where η, σ = (40, 50) and η, σ = (25, 45) for the not cropped
and cropped datasets, respectively.

We measure the performance of each model by its F1-score,
which is the harmonic mean between precision and recall, i.e.,

F1 = 2× precision× recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

,

where TP , FP , and FN are the number of true-positive
(correctly identified, i.e., predicted class is the same as the
ground truth class), false-positive (identified incorrectly), and
false-negative (not identified) samples, respectively.

However, in our experiment results, we also show the preci-
sion and recall scores, which are computed as,

Precision =
TP

TP + FP
, and

Recall =
TP

TP + FN
.

All model training was executed on a MacBook Pro 11
system running a 4-core Intel Core i7 2.2 GHz CPU and
equipped with 16 GB RAM. Models were trained using the
Apple CoreML framework.

Our mobile phone application was implemented using Swift
and Objective-C and makes use of the OpenCV library. Device
testing was executed on an iPhone 11 Pro running iOS 15.4.1.

B. Experimental Results

In this section we detail the results of our extensive exper-
iments measuring both the effectiveness and efficiency of our
test strip localization and CKD prediction models. First, we
study which feature extraction methods lead to better CKD pre-
dictions and how feature extraction parameters affect the overall
classification performance of the model. Then, we investigate
localization effectiveness and overall inference efficiency.

1) Model effectiveness: Table III shows the best model
results for each augmentation dataset when extracting both
RGB and HSV features from the samples. First of all, it was
clear from our results that HSV features outperform RGB ones
in all categories. The best RGB result is worse than the worst
HSV result. This may be due to the fact that RGB features are
inflexible to slight color variations in the detection zone, while
the histogram constructed from the HSV color space is position
invariant and can absorb small shifts in color.

Among the four classification algorithms we tested, the
two ensemble methods constantly outperformed the simpler
decision tree and linear regression models, irrespective of
the augmentation dataset used. Of all models, boosted trees
performed the best, achieving an impressive 90.38 F1-score
using samples from the No Crop dataset.

Using HSV features, the No Crop samples performed best
across the three types of samples extracted from the test strip
detection zones. This may be due to the fact that they capture
more information by considering all the pixels in the detection
zone, rather than just those in a 64× 64-pixel region.

TABLE III
MODEL EFFECTIVENESS

RGB Features
Augmentation/Dataset No Crop Center Crop Random Crop
Model Precision Recall F1 Precision Recall F1 Precision Recall F1
Logistic Regression 83.32 83.08 83.17 75.52 75.77 75.31 80.99 81.08 81.00
Decision Tree 81.00 80.77 80.87 76.19 76.54 76.27 79.03 78.85 78.92
Random Forest 80.34 80.38 80.36 79.30 79.62 79.35 82.59 82.46 82.51
Boosted Trees 84.48 84.23 84.32 81.41 81.54 81.18 85.11 85.00 85.04

HSV Features
Augmentation/Dataset No Crop Center Crop Random Crop
Model Precision Recall F1 Precision Recall F1 Precision Recall F1
Logistic Regression 83.74 83.85 83.85 78.50 78.55 78.46 82.23 82.15 82.18
Decision Tree 81.40 81.34 81.54 83.10 83.16 83.08 81.47 81.46 81.46
Random Forest 87.61 87.70 87.69 86.16 86.28 86.15 83.84 83.77 83.79
Boosted Trees 90.34 90.37 90.38 88.10 88.13 88.08 85.99 85.85 85.87

Saturation Bins 10
20

30
40

50

Hue Bins
10

20
30

40
50

F1
 S

co
re

0.0

0.2

0.4

0.6

0.8

Logistic Regression

Saturation Bins 10
20

30
40

50

Hue Bins
10

20
30

40
50

F1
 S

co
re

0.0

0.2

0.4

0.6

0.8

Decision Tree

Saturation Bins 10
20

30
40

50

Hue Bins
10

20
30

40
50

F1
 S

co
re

0.0

0.2

0.4

0.6

0.8

Random Forest

Saturation Bins 10
20

30
40

50

Hue Bins
10

20
30

40
50

F1
 S

co
re

0.0

0.2

0.4

0.6

0.8

Boosted Trees

Fig. 7. Parameter tuning for the HSV feature representation.

In order to understand how the histogram parameters η and
σ affect the performance of our models, we tested our models
with HSV features and a variety of values for η, σ ∈ [10, 50],
drawn at random, and present the results in Fig. 7. Our results
indicate that, in most cases, there is little variance in the F1
score for different η and σ values, indicating that our HSV
histogram features are robust.

2) Localization effectiveness: We evaluated localization ef-
fectiveness by performing 100 consecutive predictions with a
variety of test strips. We used the detection zone display at

the bottom of the screen (see Fig. 5 right) to verify that the
detection zone was correctly localized. We marked a failed
localization if it had at least 20% non-detection zone pixels.
During our 100 tests, we encountered 4 failures, indicating a
localization error rate of 0.04.

3) Inference efficiency: Our localization algorithm is ex-
tremely efficient, taking up only several milliseconds, and is
only delayed by 1-2 seconds if the camera needs to focus. As
a result, we focused our inference efficiency analysis on the
prediction task, and present results in Table IV. As expected, the

TABLE IV
INFERENCE EFFICIENCY

Model Frames/second
Random Forest 171
Logistic Regression 120
Decision Tree 95
Boosted Trees 48

simple algorithms, such as decision tree and logistic regression,
are faster than boosted trees, which is an ensemble method.
Interestingly, random forest has the fastest inference, despite
the fact that it is also an ensemble method. Overall, all methods
we tested, including our best performing model, boosted trees,
executed in only a fraction of a second and could thus be used
for real-time CKD prediction.

V. FUTURE WORK AND CONCLUSION

In this work, we proposed an inexpensive yet efficient and
effective method for chronic kidney disease testing that involves
scanning a test strip with a mobile phone. The test strip changes
colors when creatinine is applied to it, and the application
uses the color change to predict the severity of the disease.
We proposed computer vision algorithms for localizing the test
strip detection zone once the phone camera is activated and
trained machine learning models that can effectively classify
the severity of the disease, achieving an F1-score greater than
90%.

In the future, we would like to construct even more so-
phisticated and robust CKD prediction models using deep
learning and other hybrid approaches. With the advent of
Apple’s CoreML Unified Conversion API [27], which now sup-
ports popular Deep Learning frameworks such as TensorFlow,
PyTorch, and Keras, transitioning to a deep learning model
only seems natural. Additionally, while this preliminary work
showed that machine learning and AI models can successfully
be used to translate from the color of a test trip to CKD severity
in a controlled environment, in our future work we will develop
test strips and models that are effective for creatinine in human
analogue and human blood.

In terms of application development, we would like to be
able to dynamically push new and improved models from the
cloud to device, without an application update, which would
further improve the experimentation workflow.

ACKNOWLEDGEMENTS

The authors would like to thank Ragwa M. El Sayed and Rathna
Ramesh for their work executing creatinine solution experiments, the
results of which were used in this work.

REFERENCES

[1] Centers for Disease Control and Prevention, “Chronic kidney disease in
the united states, 2021,” tech. rep., US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta, GA, 2021.

[2] F. Otto and H. Wu, “A system of blood analysis,” Journal of Biological
Chemistry, vol. 38-1, pp. 81–110, 1919.

[3] Nova Biomedical, “Statsensor and statsensor xpress creatinine and egfr
meters.” https://www.novabiomedical.com/statstrip-creatinine/. accessed
2022-04-27.

[4] Fisher Scientific, “Radiometer america radiometer abl800 flex blood
gas analyzer series - abl835.” https://www.fishersci.com/shop/products/
abl835/NC2015964. accessed 2022-04-27.

[5] AAA Wholesale Company, “Istat handheld blood analyzer abbott
04j4850.” https://www.aaawholesalecompany.com/abb-04j48-50-ea.html.
accessed 2022-04-27.

[6] M. Kapoor and D. C. Anastasiu, “A data-driven approach for detecting
autism spectrum disorders,” in Data Science – Analytics and Applications,
iDSC 2019, (Wiesbaden), Springer Fachmedien Wiesbaden, 2019.

[7] T. Saba, “Recent advancement in cancer detection using machine learning:
Systematic survey of decades, comparisons and challenges,” Journal of
Infection and Public Health, vol. 13, no. 9, pp. 1274–1289, 2020.

[8] B. Bose, T. Downey, A. K. Ramasubramanian, and D. C. Anastasiu,
“Identification of distinct characteristics of antibiofilm peptides and
prospection of diverse sources for efficacious sequences,” Frontiers in
Microbiology, vol. 12, 2022.

[9] J. M. Ruano-Lopez, M. Agirregabiria, G. Olabarria, D. Verdoy, D. D.
Bang, M. Bu, A. Wolff, A. Voigt, J. A. Dziuban, R. Walczak, and
J. Berganzo, “The smartbiophone[trade mark sign], a point of care
vision under development through two european projects: Optolabcard
and labonfoil,” Lab Chip, vol. 9, pp. 1495–1499, 2009.

[10] V. Oncescu, M. Mancuso, and D. Erickson, “Cholesterol testing on a
smartphone,” Lab Chip., vol. 14, pp. 759–763, 2 2014.

[11] M. Swain and D. Ballard, “Indexing via color histograms,” in Proc 3 Int
Conf Comput Vision, pp. 390–393, Publ by IEEE, 12 1990.

[12] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 38I, p. 607 EP, 1996.

[13] P. O Hoyer and A. Hyvärinen, “A multi-layer sparse coding network
learns contour coding from natural images,” Vision research, vol. 42,
pp. 1593–605, 07 2002.

[14] J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based color con-
stancy,” IEEE Transactions on Image Processing, vol. 16, pp. 2207–2214,
Sept 2007.

[15] J. T. Barron, “Convolutional color constancy,” CoRR,
vol. abs/1507.00410, 2015.

[16] S. Bianco, C. Cusano, and R. Schettini, “Single and multiple il-
luminant estimation using convolutional neural networks,” CoRR,
vol. abs/1508.00998, 2015.

[17] Z. Lou, T. Gevers, N. Hu, and M. Lucassen, “Color constancy by deep
learning,” British Machine Vision Conference 2015, pp. 76.1–76.12, 2015.

[18] M. Engilberge, E. Collins, and S. Süsstrunk, “Color representation in
deep neural networks,” in 2017 IEEE International Conference on Image
Processing (ICIP), pp. 2786–2790, Sept 2017.

[19] B. Debus, D. Kirsanov, I. Yaroshenko, A. Sidorova, A. Piven, and
A. Legin, “Two low-cost digital camera-based platforms for quantitative
creatinine analysis in urine,” Analytica Chimica Acta, vol. 895, pp. 71–79,
2015.

[20] T. Lalanne and C. Lempereur, “Color recognition with a camera: a super-
vised algorithm for classification,” in 1998 IEEE Southwest Symposium
on Image Analysis and Interpretation (Cat. No.98EX165), pp. 198–204,
April 1998.

[21] M. P. Paulraj, R. H. C., R. P. Krishnan, and S. S. M. Radzi, “Color
recognition algorithm using a neural network model in determining the
ripeness of a banana,” in Proceedings of the International Conference on
Man-Machine Systems (ICoMMS), 2009.

[22] A. S. Levey, J. Coresh, T. Greene, J. Marsh, L. A. Stevens, J. W. Kusek,
and F. Van Lente, “Expressing the modification of diet in renal disease
study equation for estimating glomerular filtration rate with standardized
serum creatinine values,” Clinical Chemistry, vol. 53, no. 4, pp. 766–772,
2007.

[23] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of
hough transform methods for circle finding,” Image and Vision Comput-
ing, vol. 8, no. 1, pp. 71–77, 1990.

[24] OpenCV, “Hough circle transform.” https://docs.opencv.org/3.4/d4/d70/
tutorial hough circle.html. accessed 2022-04-27.

[25] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640,
2015.

[26] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[27] Apple, “Unified conversion api.” https://coremltools.readme.io/docs/
unified-conversion-api. accessed 2022-04-30.

