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Problem: predicting long-term streamflow values with rain off data

Challenges:

• Long-range dependencies.

• Rare but important extreme values; very imbalanced data.

Goal:

• An end-to-end extreme-adaptive model;

• Long sequence forecasting (predicted length = 288);

Dataset:

• Four groups of hydrologic datasets from Santa Clara County, CA.

• Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations. 

𝑥𝑥1 to 𝑥𝑥𝑇𝑇 : the input sequence

𝑥𝑥𝑇𝑇+1 to 𝑥𝑥𝑇𝑇+𝐻𝐻 : the output sequence

In our research: H = 3 * 24 * 4 = 288, with majority of normal values and 

much fewer extreme values which cause the data skewness to one side.



Dataset with high skewness and kurtosis scores:

High skewness and kurtosis scores indicate that there is significant 

deviation from a normal distribution in our data!

Four streams: Ross, Saratoga, UpperPen, and SFC. 

Hydro year: from September to May.



Motivation: achieving the best overall prediction performance, without sacrificing either the quality 
of normal or of extreme predictions.

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

Proposed Methods:
Framework: Segment-Expandable Encoder-Decoder (SEED) model, which is the first to integrate segment

representation learning with a multi-tiered encoder-decoder framework.

Importance-enhanced sampling strategy: embedded within the SEED model, allowing it to skillfully identify key features and trends in 

datasets.

Representation Learning: A unique regularization strategy that incorporates a Kullback-Leibler divergence regularization loss term across 

multiple stacked layers, thereby increasing the model’s robustness against anomalous events with divergent distributions.



Background: Piecewise Linear Representation (PLR) 

 PLR splits a series into several segments such that the maximum error of each segment does not exceed a threshold;

 Prior work: PLR describes the linear relationship of the multi-segment representation, mainly works as a preprocessing 

step to reduce both the space and computational cost of storing and transmitting time series.

 Our work: inspired by PLR, SEED learns nonlinear segment representations for heavily skewed long term time series.



SEED framework :

 Comprises three core components: embedding, encoder, and decoder.

 The encoder generates a unique hidden state and a cell state which serve as the initial values for the corresponding layers in the decoder.

 Each decoder layer is assigned a distinct task, as they represent the mean value distribution of different lengths of subsegments in the 

predicted sequence.



Convolutional Embedding Layers:

CNN Layers :

• different kernel sizes to extract features at different spatial scales.

• subsequent tanh activation function;

• lower level: larger kernel sizes, capturing broader patterns and 

global context. 

• higher level: smaller kernel sizes, capturing local patterns and 

fine grained details.



Decoder Architecture:

• First level: the output length is 4, which is meant to predict the mean values of 4 segments, each of which contains 

288/4 = 72 points in the forecasted series.

• Second level: the 4 outputs are expanded to16, each represents the mean value of 288/16 = 18 points. 

• Expansion: ⟨a, b, c, d⟩ becomes ⟨a, a, a, a, b, b, b, b, , c, c, c, c, d, d, d, d⟩, in the high-dimensional hidden space.

• By predicting the mean value of different length sub-segments, extreme values are represented and spread across 

multiple levels in the hierarchy, leading to higher mean values in the segments containing them.



Multiple-Objective Loss Functions:

Motivations: 

 Kullback-Leibler divergence loss acts as a 

regularization term that encourages the model to match 

the target distribution while balancing the sequence 

generation loss.

 𝑝𝑝_𝑚𝑚𝑖𝑖 represents the predicted segment mean values 

in the ith layer, while 𝑔𝑔_𝑚𝑚𝑖𝑖 is the vector of computed 

ground truth mean values for the segments in the ith

layer. .



Importance-Enhanced Oversampling Policy:

Steps: 

 important sequences: maximum values in the 

inference section of the series exceed a threshold 

T; 

 moving the maximum value to the middle of the 

inference section;

 multiple iterations of sampling from the beginning 

with a specified step size S.



Baselines:
• FEDFormer

• InFormer

• NLinear

• Dlinear

• NEC+

• EnDecoder, the common encoder-decoder model built with LSTM layers.



• Univariate Long-Term (h = 288) Series 

Forecasting Results.

• Over 1600 test points in the test set were 

inferenced on all datasets. 

• The best results are in bold and the 

second best results are underlined.

• “All” represents the average RMSE of all 

test samples compared with the ground 

truth. “High” means larger than the mean 

value; “Low” includes test samples lower 

than the mean value. 

Main results:

In comparison to the three second-best models (NEC+, Nbeats and EnDecoder), SEED achieved, on average, relative 
RMSE reduction of 31.44%, 34.68%, and 29.67% across the datasets.



Example comparisons with the second best baselines:



• To evaluate the impact of this policy, we 

increased the threshold T while 

simultaneously decreasing the step size S.

• Increasing the threshold T and decreasing 

the step size S had a positive impact on the 

results.

• There is an optimal threshold T value beyond 

which the policy’s effectiveness plateaus.

Effect of the Importance-Enhanced Oversampling Policy:



Effect of the KL Regularization Terms & Segment Expanding:

We just use T=4, S=8 as an example:

• T4S8: 5-layer without regularization 
loss terms.

• T4S8-3L: 3-layer SEED with 
regularization loss terms.

• T4S8-Regu: 5-layer SEED with 
regularization loss terms, which gives 
the best result.



Q   &   A 
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