SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting

# Yanhong Li, Jack Xu, David C. Anastasiu

Santa Clara University

### Problem: predicting long-term streamflow values with rain off data

$$[x_1, x_2, \ldots, x_T] \in \mathbb{R}^T \to [x_{T+1}, \ldots, x_{T+H}] \in \mathbb{R}^H,$$

 $x_1$  to  $x_T$  : the input sequence

 $x_{T+1}$  to  $x_{T+H}$  : the output sequence

In our research: H = 3 \* 24 \* 4 = 288, with majority of normal values and much fewer extreme values which cause the data skewness to one side.

#### Challenges:

- Long-range dependencies.
- Rare but important extreme values; very imbalanced data.

#### Goal:

- An end-to-end extreme-adaptive model;
- Long sequence forecasting (predicted length = 288);

#### Dataset:

- Four groups of hydrologic datasets from Santa Clara County, CA.
- Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations.



## Dataset with high skewness and kurtosis scores:

Four streams: Ross, Saratoga, UpperPen, and SFC. Hydro year: from September to May.

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!

| Statistic / Stream | Ross    | Saratoga | UpperPen | SFC      |  |
|--------------------|---------|----------|----------|----------|--|
| mean               | 2.91    | 5.77     | 6.66     | 20.25    |  |
| max                | 1440.00 | 2210.00  | 830.00   | 7200.00  |  |
| min                | 0.00    | 0.00     | 0.00     | 0.00     |  |
| median             | 0.17    | 1.00     | 3.20     | 1.20     |  |
| variance           | 597.22  | 711.09   | 452.90   | 12108.14 |  |
| skewness           | 19.84   | 19.50    | 13.42    | 18.05    |  |
| kurtosis           | 523.16  | 697.78   | 262.18   | 555.18   |  |

Motivation: achieving the best overall prediction performance, without sacrificing either the quality of normal or of extreme predictions.

Root Mean Square Error *(RMSE)* Mean Absolute Percentage Error *(MAPE)* 

# **Proposed Methods:**

Framework: Segment-Expandable Encoder-Decoder (SEED) model, which is the first to integrate segment

representation learning with a multi-tiered encoder-decoder framework.

**Importance-enhanced sampling strategy:** embedded within the SEED model, allowing it to skillfully identify key features and trends in datasets.

**Representation Learning:** A unique regularization strategy that incorporates a Kullback-Leibler divergence regularization loss term across multiple stacked layers, thereby increasing the model's robustness against anomalous events with divergent distributions.

Background: Piecewise Linear Representation (PLR)



- > PLR splits a series into several segments such that the maximum error of each segment does not exceed a threshold;
- > **Prior work**: PLR describes the **linear** relationship of the multi-segment representation, mainly works as a preprocessing

step to reduce both the space and computational cost of storing and transmitting time series.

> Our work: inspired by PLR, SEED learns nonlinear segment representations for heavily skewed long term time series.

### SEED framework :



- > Comprises three core components: embedding, encoder, and decoder.
- > The encoder generates a unique hidden state and a cell state which serve as the initial values for the corresponding layers in the decoder.
- Each decoder layer is assigned a distinct task, as they represent the mean value distribution of different lengths of subsegments in the predicted sequence.

# Convolutional Embedding Layers:

| Embeddin | g    | Encoder   |
|----------|------|-----------|
| CONV-1   | Tanh | LSTM-1536 |
|          |      |           |
| CONV-2   | Tanh | LSTM-1536 |
|          |      |           |
| CONV-3   | Tanh | LSTM-1024 |
|          |      |           |
| CONV-3   | Tanh | LSTM-1024 |
|          |      |           |
| CONV-5   | Tanh | LSTM-512  |
|          |      |           |
|          |      |           |

#### CNN Layers :

- different kernel sizes to extract features at different spatial scales.
- subsequent tanh activation function;
- lower level: larger kernel sizes, capturing broader patterns and global context.
- higher level: smaller kernel sizes, capturing local patterns and fine grained details.

### Decoder Architecture:



• First level: the output length is 4, which is meant to predict the mean values of 4 segments, each of which contains 288/4 = 72 points in the forecasted series.

- Second level: the 4 outputs are expanded to16, each represents the mean value of 288/16 = 18 points.
- Expansion: (a, b, c, d) becomes (a, a, a, a, b, b, b, b, c, c, c, c, d, d, d, d), in the **high-dimensional hidden space**.
- By predicting the mean value of different length sub-segments, **extreme values** are represented and spread across

multiple levels in the hierarchy, leading to higher mean values in the segments containing them.

#### Multiple-Objective Loss Functions:

$$\operatorname{KL}(p \parallel q) = \sum p(x) \log \left(\frac{p(x)}{q(x)}\right),$$

 $\mathcal{L}_i = \operatorname{KL}\left(\operatorname{softmax}(p_m_i), \operatorname{softmax}(g_m_i)\right),$ 

$$\mathcal{L} = RMSE(\hat{y}, y) + \lambda \times \left(\sum_{i=1}^{k} \mathcal{L}_i\right),$$

#### Motivations:

- Kullback-Leibler divergence loss acts as a regularization term that encourages the model to match the target distribution while balancing the sequence generation loss.
- ➢  $p_m_i$  represents the predicted segment mean values in the *i*th layer, while  $g_m_i$  is the vector of computed ground truth mean values for the segments in the *i*th layer. .

## Importance-Enhanced Oversampling Policy:

**Input** : Dataset with training and inference sequences **Output:** Oversampled training set

Procedure Oversampling;

```
while training set size is not satisfied do
    Randomly sample a sequence including training and
     inference sections:
    if maximum value in inference section > T then
        Mark sequence as important;
        Move maximum value to the middle of the inference
         section of the sequence;
       foreach index I in the sequence with step size S do
            Sample starting at I;
            Add sampled sequence to oversampled training
             set;
       end
    end
    else
       Add sequence to oversampled training set;
    end
end
```



with a specified step size S.

## **Baselines:**

- FEDFormer
- InFormer
- NLinear
- Dlinear
- NEC+
- EnDecoder, the common encoder-decoder model built with LSTM layers.

#### Main results:

| Methods   | Metric |             | Ross         |             | 5           | Saratog | a           | τ           | Jpperpe     | en          |             | SFC         |             |
|-----------|--------|-------------|--------------|-------------|-------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           |        | All         | High         | Low         | All         | High    | Low         | All         | High        | Low         | All         | High        | Low         |
| FEDformer | RMSE   | 6.49        | 30.82        | 2.51        | 6.85        | 11.95   | 4.59        | 2.38        | 17.68       | 1.07        | 24.15       | 94.28       | 6.68        |
|           | MAPE   | 2.49        | 5.27         | 2.04        | 2.26        | 1.50    | 2.60        | 1.02        | 2.37        | 0.90        | 2.81        | 1.70        | 3.09        |
| Informer  | RMSE   | 9.14        | 31.00        | 5.56        | 4.89        | 13.64   | 1.01        | 5.33        | 16.26       | 4.40        | 19.00       | 85.40       | 2.46        |
|           | MAPE   | 5.45        | 5.80         | 5.39        | 0.73        | 1.40    | 0.43        | 4.21        | 2.70        | 4.34        | <u>0.54</u> | 0.71        | <u>0.49</u> |
| Nlinear   | RMSE   | 5.84        | 32.12        | 1.54        | 4.98        | 14.61   | 0.70        | 1.74        | 15.07       | 0.61        | 18.43       | 83.31       | 2.26        |
|           | MAPE   | 1.62        | 4.89         | 1.09        | 0.75        | 1.74    | 0.31        | 0.57        | 1.69        | 0.47        | 0.87        | 1.03        | 0.83        |
| Dlinear   | RMSE   | 6.90        | 30.96        | 2.97        | 4.06        | 7.63    | 2.48        | 3.25        | 14.01       | 2.33        | 23.64       | 79.76       | 9.65        |
|           | MAPE   | 2.79        | 4.03         | 2.58        | 1.31        | 0.85    | 1.51        | 2.04        | 1.68        | 2.07        | 4.02        | 1.04        | 4.76        |
| NEC+      | RMSE   | 9.33        | 38.34        | 4.58        | 1.95        | 5.55    | 0.35        | 1.94        | 13.92       | 0.92        | 16.39       | 76.63       | 1.38        |
|           | MAPE   | 4.53        | 8.33         | 3.91        | 0.21        | 0.30    | 0.17        | 0.80        | 0.84        | 0.80        | 0.55        | <u>0.61</u> | 0.54        |
| NBeats    | RMSE   | <u>5.16</u> | <u>30.09</u> | 1.08        | 3.60        | 9.44    | 1.01        | <u>1.23</u> | 13.20       | 0.21        | 31.47       | 95.33       | 15.55       |
|           | MAPE   | 1.25        | <u>3.17</u>  | <u>0.94</u> | 0.70        | 1.21    | 0.47        | <u>0.25</u> | <u>0.78</u> | <u>0.20</u> | 3.24        | 0.88        | 3.83        |
| EnDecoder | RMSE   | 5.58        | 30.81        | 1.45        | <u>1.93</u> | 5.69    | <u>0.26</u> | 2.95        | 16.33       | 1.80        | 17.46       | 79.04       | 2.11        |
|           | MAPE   | 1.62        | 3.72         | 1.28        | <u>0.16</u> | 0.29    | <u>0.11</u> | 1.81        | 2.34        | 1.76        | 0.84        | 0.96        | 0.80        |
| SEED      | RMSE   | 4.23        | 29.74        | 0.05        | 1.67        | 5.14    | 0.12        | 1.07        | 12.83       | 0.07        | 14.44       | 70.04       | 0.59        |
|           | MAPE   | 0.11        | 0.53         | 0.04        | 0.09        | 0.19    | 0.05        | 0.10        | 0.57        | 0.06        | 0.20        | 0.42        | 0.14        |

- Univariate Long-Term (h = 288) Series
   Forecasting Results.
- Over 1600 test points in the test set were inferenced on all datasets.
- The **best results** are in bold and the <u>second best results</u> are underlined.
- "All" represents the average RMSE of all test samples compared with the ground truth. "High" means larger than the mean value; "Low" includes test samples lower than the mean value.

In comparison to the three second-best models (NEC+, Nbeats and EnDecoder), SEED achieved, on average, relative RMSE reduction of 31.44%, 34.68%, and 29.67% across the datasets.

#### Example comparisons with the second best baselines:





#### Effect of the Importance-Enhanced Oversampling Policy:



- To evaluate the impact of this policy, we increased the threshold T while simultaneously decreasing the step size S.
- Increasing the threshold T and decreasing the step size S had a positive impact on the results.
- There is an optimal threshold T value beyond which the policy's effectiveness plateaus.

#### Effect of the KL Regularization Terms & Segment Expanding:



We just use T=4, S=8 as an example:

- T4S8: 5-layer without regularization loss terms.
- T4S8-3L: 3-layer SEED with regularization loss terms.
- T4S8-Regu: 5-layer SEED with regularization loss terms, which gives the best result.

