
SEED: An Effective Model for Highly-Skewed
Streamflow Time Series Data Forecasting

Yanhong Li
Computer Science and Engineering

Santa Clara University
Santa Clara, CA, USA

yli20@scu.edu

Jack Xu
Santa Clara Valley Water District

Santa Clara, CA, USA
jxu@valleywater.org

David C. Anastasiu
Computer Science and Engineering

Santa Clara University
Santa Clara, CA, USA

danastasiu@scu.edu

Abstract—Accurate time series forecasting is crucial in var-
ious domains, but predicting highly-skewed and heavy-tailed
univariate series poses challenges. We introduce the Segment-
Expandable Encoder-Decoder (SEED) model, designed for such
time series. SEED incorporates segment representation learning,
Kullback-Leibler divergence regularization, and an importance-
enhanced sampling policy. We tested our model on the 3-day
ahead single-shot prediction task on four hydrologic datasets.
Experimental results demonstrate SEED’s effectiveness in op-
timizing the forecasting process (10–30% of root mean square
error reductions over state-of-the-art methods), underlining its
notable potential for practical applications in univariate, skewed,
long-term time series prediction tasks.

Index Terms—deep learning, representation learning, sampling
policy, streamflow prediction, time series

I. INTRODUCTION

Time series forecasting is vital in a myriad of sectors,
spanning traffic management [1], meteorology [2], biology [3],
financial markets [4], and water resources [5]. Yet, the task
becomes hard when faced with datasets having pronounced
skewness, complicating accurate long-term predictions. Taking
hydrology as an example, streamflow predictions are con-
voluted due to multifaceted and unpredictable variables like
weather patterns, geographical features, and human activities.
Such intricacies heighten the challenge of obtaining accurate
forecasts in this field.

Forecasting from highly-skewed [6] and heavy-tailed
datasets presents a myriad of challenges. Such datasets typ-
ically offer limited training samples for extreme values, im-
peding models from discerning their underlying patterns. The
disproportionate data distribution, with most values clustered
at the lower end and few at the higher extremities, can
compromise the efficacy of conventional prediction algorithms.
Furthermore, the anomalous events in these datasets might
adhere to distinct distributions divergent from the main data
bulk, necessitating tailored techniques to address their non-
Gaussian attributes. The intricacies are further compounded
by the presence of long-range dependencies [7], demanding
models that can track the impact of historical observations
over extensive time intervals.

Current methods [7]–[10] excel in forecasting normally dis-
tributed data; however, their accuracy decreases considerably
with highly-skewed time series. Our contributions include:

• The novel Segment-Expandable Encoder-Decoder
(SEED) model, which is the first to integrate segment
representation learning with a multi-tiered encoder-
decoder framework, specifically designed for complex
datasets with intricate characteristics.

• A unique regularization strategy that incorporates a
Kullback-Leibler divergence regularization loss term
across multiple stacked layers, thereby increasing the
model’s robustness against anomalous events with diver-
gent distributions.

• An innovative importance-enhanced sampling strategy
embedded within the SEED model, allowing it to skill-
fully identify key features and trends in datasets, leading
to improved forecasting accuracy in the presence of
heavily skewed time series data.

• Comprehensive experiments that demonstrate SEED’s
effectiveness in optimizing the forecasting process (10–
30% of root mean square error reductions over state-
of-the-art methods), underlining its notable potential for
practical applications in univariate, skewed, long-term
time series prediction tasks.

II. RELATED WORK

A. Machine Learning Methods

Time series prediction has been investigated for many
years. Traditional methods for accurately predicting future
values in time series included the univariate Autoregressive
(AR), Moving Average (MA), Simple Exponential Smoothing
(SES), and Extreme Learning Machine (ELM) algorithms,
and most famously the Autoregressive Integrated Moving
Average (ARIMA) [11] method and its several variants. Wang
et al. [12] provided a hybrid model combining Empirical
Mode Decomposition (EMD), Ensemble Empirical Mode De-
composition (EEMD) and ARIMA for long-term streamflow
forecasting, but they did not examine the effectiveness of their
models on datasets with extreme values. Gaussian Process
Regression (GPR) [13] and Quantile Regression (QR) [14]
were used in some studies to not only predict but also quantify979-8-3503-2445-7/23/$31.00 ©2023 IEEE

forecast uncertainty. Tree-based models, such as classification
and regression trees (CARTs) and random forest (RF), have
been employed due to their computational efficiency and
ability to handle predictors without assuming any specific
distribution. Prophet [15] is a popular time series forecasting
model based on an additive model that captures nonlinear
trends in the data, incorporating seasonal and holiday effects
at various time scales, including annual, weekly, and daily
patterns.

B. Deep Learning Methods

Recently, deep neural networks (DNNs) have shown their
great advantages in various areas [16], [17]. General feed-
forward deep learning models can be difficult to use with
time series data since the input can have varying lengths and
temporal dependencies. However, WaveNet [18] has demon-
strated impressive capabilities in generating high-quality audio
waveforms, which is also suitable for time series prediction
tasks [19]. N-BEATS [10] is a time series prediction model
with block-stacked pure fully-connected layers, which outper-
formed all competitors on the standard M3 [20], M4 [21],
and TOURISM [22] datasets. DeepAR [23], a probabilistic
forecasting model based on a Recurrent Neural Network
(RNN) encoder-decoder architecture, leverages the autoregres-
sive property of time series to generate probabilistic forecasts,
allowing for uncertainty estimation.

When facing long sequence time-series forecasting (LSTF)
tasks, in order to effectively capture exact long-range depen-
dency coupling between output and input, a model must have a
high prediction capacity. This means it can capture both short-
term and long-term dependencies, enabling it to make accurate
forecasts over extended periods of time. Recent research has
demonstrated the Transformer model’s ability to boost predic-
tion power [24], [25]. However, the Transformer model suffers
from a number of serious drawbacks that prohibit it from being
directly applicable to LSTF, including quadratic temporal com-
plexity, high memory utilization, and built-in limitations of the
encoder-decoder design. To address these issues, alternative
methods like Autoformer [26] and Reformer [27] have been
proposed to improve the transformer’s dependency discovery
and representation ability. Informer [7] proposed a ProbSparse
self-attention mechanism and a generative style decoder, while
FEDFormer [8] represents time series by randomly selecting
Fourier components in an attempt to improve efficiency com-
pared to the standard Transformer.

C. Limitations of Current Approaches

While transformer-based models have shown efficacy in
identifying long-range dependencies through self-attention
mechanisms, forecasting across longer time horizons can have
negative effects on accuracy or increased computational re-
quirements, which restricts their usefulness [9]. In addition,
earlier studies in long-term time series prediction often by-
passed the nuances of heavily skewed datasets.

In contrast, our SEED model is tailored for such datasets,
integrating a multi-tiered encoder-decoder framework that cap-

tures both global and local trends efficiently. SEED presents a
streamlined and more accurate approach to forecasting skewed
time series.

III. PRELIMINARY

A. Problem Statement

We take on a challenging univariate time series forecasting
problem, considering that the majority of data represent normal
values which significantly contribute to the overall prediction
performance, while the data set contains much fewer extreme
values that deviate from the average and cause the distribution
of the data to become skewed towards one side. The problem
can be described as,

[x1, x2, . . . , xT] ∈ RT → [xT+1, . . . , xT+H] ∈ RH ,

i.e., we are predicting the vector of length-H containing H
future values, given a length-T vector of observed series
historical values up to the present. The x1, . . . , xT values are
the input to our problem, while xT+1, . . . , xT+H form the
output.

B. Data Descriptions

In our research, we utilized a hydrologic dataset capturing
streamflow from four California streams: Ross, Saratoga,
UpperPen, and SFC. Given California’s lack of rainfall dur-
ing summer, our forecasting focus was on the months from
September to May, deliberately excluding the summer period.
Data for training and validation was drawn from January 1988
to August 2021. Our objective was to accurately project the
streamflow for the subsequent year (September 2021 to May
2022), with predictions made every four hours. Each prediction
estimated the upcoming 3 days based on the preceding 15
days of data. The performance metrics employed were Root
Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE). Since the sensors measure the streamflow and
precipitation every 15 minutes, we are attempting a lengthy
forecasting horizon (h = 288), which is unquestionably an
LSTF task based on the most recent research [7]–[9]. An
example visualization of our data is provided in Fig. 1. To
analyze our data set, we computed several statistical values of
our input time series, which provide valuable insights into the
shape and distribution of the data.

TABLE I: Statistical descriptions of our stream data.

Statistic / Stream Ross Saratoga UpperPen SFC

mean 2.91 5.77 6.66 20.25

max 1440.00 2210.00 830.00 7200.00

min 0.00 0.00 0.00 0.00

median 0.17 1.00 3.20 1.20

variance 597.22 711.09 452.90 12108.14

skewness 19.84 19.50 13.42 18.05

kurtosis 523.16 697.78 262.18 555.18

Table I shows the computed statistics of our input time
series, including min, max, mean, median, variance, skewness,

September December Febrary May
0

100

200 UpperPen

September December Febrary May
0

500
Ross

September December Febrary May
0

500

1000 Saratoga

September December Febrary May
0

500

1000 SFC

2018-2019

st
re

am
 fl

ow

Fig. 1: The four stream datasets named Ross, Saratoga, UpperPen, and SFC. In California, prediction of streamflow and
regulating timing of water to be left in stream is essential to the persistence of native species and health of the freshwater
ecosystems, i.e., to support fish, wildlife, and habitat maintenance and creation. Under natural conditions, these streamsflow
at stable low flows in the summer and begin to swell and surge during the winter months. All four of these streams have
experienced high peaks from September 2018 to May 2019, which is representative of a general hydrologic year (September
to May of the following year).

and kurtosis. The presence of high skewness and kurtosis
values suggests that our data exhibit significant asymmetry
and departure from a symmetric bell-shaped curve of a Normal
distribution. Specifically, the positive skewness values indicate
that the distribution is skewed to the right, resulting in a longer
tail on the right side. This implies that there are more extreme
values or outliers on the higher end of the distribution.

C. Piecewise Linear Representation of Time Series

Time series databases are becoming increasingly popu-
lar, and several high level representations have been pro-
posed, such as Fourier Transforms [28], Wavelets [29], Sym-
bolic Mappings [30] and Piecewise Linear Representation
(PLR) [31].

0 2 4 6 8 10
Time

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Original Time Series
Seg 1
Seg 2
Seg 3
Seg 4
Seg 5
Seg 6
Seg 7
Seg 8

Fig. 2: Segment representation example. By dividing the time
series into multiple segments and fitting a linear regression
model to each segment, PLR captures the changing patterns
and trends in the data more effectively compared to a single
linear regression model.

PLR has been used in data mining applications for fast sim-
ilarity search [32], novel distance measures [33], concurrent
analysis of text and time series, vehicle speed estimation [34],
and change point detection [35]. PLR simplifies the repre-
sentation of time series, making their analysis more efficient
while preserving key characteristics. In essence, PLR splits
a series into several segments such that the maximum error

of each segment does not exceed a threshold [36]. Fig. 2
shows an example PLR representation of a curve using 8
segments. However, the PLR algorithm mainly describes the
linear relationship of the multi-segment representation and is
often used as a preprocessing step to reduce both the space
and computational cost of storing and transmitting time series.

In our research, inspired by PLR, we proposed a segment-
expandable encoder-decoder architecture which aims to predict
segment mean values layer by layer in an expanding way, with
a goal of accurate future predictions for heavily skewed long-
term time series.

D. Kullback-Leibler Divergence Regularization

Multiple-loss functions have been introduced as a heteroge-
neous multitask learning method [37]–[40]. We propose using
multiple loss functions to guide our training objective. This
encourages the model to learn rich representations capable
of capturing the diverse variations and hidden relationships
present in heavily skewed long-term time series.

In our model, Kullback-Leibler (KL) divergence is em-
ployed as a regularization loss term to ensure that the predicted
segment distributions align with the ground truth segment
distributions. The KL divergence is defined as

KL(p ∥ q) =
∑

p(x) log

(
p(x)

q(x)

)
,

where p and q are two distributions of the predicted data and
the original data. The equation measures the average loss of
information when approximating the p distribution with the
q distribution. Essentially, it gauges the dissimilarity between
the two distributions, with a lower value indicating a closer
match.

IV. METHODS

A. Overview of the SEED Framework

Our proposed Segment-Expandable Encoder Decoder
(SEED) model is constructed as a variant of the encoder-

Importance-Enhanced Oversampling

Preprocessing

LSTM-512 FC-512

Reverse
Preprocessing

Time Feature Gen

 Input
Sequence

CONV-2 LSTM-1536Tanh

CONV-1 LSTM-1536Tanh

CONV-3 LSTM-1024Tanh

CONV-3 LSTM-1024Tanh

CONV-5 LSTM-512Tanh

LSTM-1024 FC-1024

LSTM-1024 FC-1024

LSTM-1536 FC-1536

LSTM-1536 FC-1536

Expand

Expand

Expand

Expand

Loss
Computation

h, c

h, c

h, c

h, c

h, c

Embedding Encoder Decoder

Output
Sequence

4

16

32

96

288

Fig. 3: The SEED architecture comprises three core components: embedding, encoder, and decoder. Initially, the input sequence
undergoes preprocessing and sampling, with time features generated using sine and cosine transformations. Specifically, each
month-day date is encoded into a feature pair using trigonometric or cyclical encoding, capturing the 365-day periodicity within
a range of -1 to 1. Each layer’s output contributes to the loss as a regularization factor. The output sequence length escalates
from lower to upper layers, allowing varied scale information capture. The top layer’s output is then refined to produce the
final predicted sequence.

decoder architecture built with long short-term memory
(LSTM) networks. It contains three main components, includ-
ing embedding, encoder, and decoder. What sets SEED apart
are the specially designed multiple levels in the decoder. Each
layer is responsible for capturing specific aspects of the input
sequence, representing the mean value distribution of predicted
subsequences of varying lengths. This allows the model to
handle different levels of complexity and capture temporal
dependencies across various time scales. To be specific, each
convolutional embedding block, denoted as CONV in Fig. 3,
creates an input for the respective level in the encoder, then
each layer of the encoder generates a hidden representation
individually and feeds it into its corresponding decoder layer.

In this varied style of the encoder-decoder architecture, each
encoder layer operates independently to encode the input and
generates a unique hidden state and cell state. These states
serve as the initial values for the corresponding layers in the
decoder. Consequently, each layer is assigned a distinct task, as
they represent the mean value distribution of different lengths
of subsegments in the predicted sequence.

For example, as shown in Fig. 3, the first layer focuses
on learning the mean value of four segments, resulting in
an output length of 4. On the other hand, the last layer is
responsible for the entire sequence and generates an output
with a length of 288 in our scenario. It is important to note
that lower layers handle simpler tasks compared to higher
layers. As a result, they can be constructed with fewer trainable
weights. As shown in Fig. 3, for example, the hidden layers
have a size of 512 in the first encoder-decoder layer, while in
the fifth encoder-decoder layer they have a size of 512×3. This
allows for the allocation of more computational capacity to the
higher layers, which are expected to predict longer sequences

with greater fluctuations.
Our architecture offers a flexible framework specifically for

tackling long-term time series forecasting tasks. By distribut-
ing the prediction responsibilities across multiple layers, each
layer can specialize in capturing different characteristics of the
data. This hierarchical approach optimizes the use of compu-
tational resources and enhances the model’s ability to handle
complex patterns and variations in long-term sequences.

B. Convolutional Embedding Layers

We utilize convolutional embedding layers with different
kernel sizes and a subsequent tanh activation function as a
preprocessing step before feeding the data into the LSTM
encoder. By using different kernel sizes, we can extract
features at different spatial scales. Smaller kernel sizes are
effective at capturing local patterns and fine-grained details,
while larger kernel sizes capture broader patterns and global
context. This allows each level of the LSTM encoder to
focus on different aspects of the input sequence. Additionally,
we use larger kernel sizes without padding in the convo-
lutional embedding layers for the lower-level inputs. This
choice serves two purposes. First, it helps to decrease the
input size for the lower-level LSTM layers, shortening the
LSTM computation path. This approach helps to mitigate
the issues of exploding and vanishing gradients, which can
arise when propagating gradients through a long sequence.
By shortening the computation path, we minimize the impact
of these gradient-related problems and facilitate more stable
and efficient training of the LSTM model. Second, it allows
us to allocate more computational resources to the higher-level
LSTM layers, which are responsible for capturing longer-term
dependencies and global patterns in the sequence.

C. Decoder Architecture

In the decoder LSTM stack, each layer operates as a level in
a hierarchy to capture different distributions of the mean values
of segment sequences. The number of layers is chosen to
correspond to specific segment lengths, which are determined
based on the desired granularity of the predictions.

For instance, as shown in Fig. 3, if we aim to generate
a 288-length output sequence, we can use 5 layers in the
decoder stack. Each layer is responsible for capturing the
distribution of a specific segment length, such as 4, 16, 32,
96, and 288. These segment lengths represent the number of
mean values obtained by dividing the output sequence into
corresponding equal-size segments. In the first level, the output
length is 4, which is meant to predict the mean values of
4 segments, each of which contains 288/4 = 72 points in
the forecasted series. Then, the 4 outputs are expanded to
16, which are injected into the second level, which will be
responsible for predicting 16 mean values of 16 segments,
each containing 288/16 = 18 points. Expansion is done by
repeating each value in the vector of means four times, i.e.,
a vector of size 4 containing values ⟨a, b, c, d⟩ becomes the
vector ⟨a, a, a, a, b, b, b, b, , c, c, c, c, d, d, d, d⟩. In the last level,
the length of the output is the same as the predicted sequence,
meaning that the means of the segment values are the values
themselves, since each segment contains 288/288 = 1 point.

 4 16 32 96 288

h： h0 h1 h2 h3

LSTM LSTM LSTM LSTM LSTM

FC FC FC FC FC

C:

Distr0 Distr1 Distr2 Distr3 Distr4

Decoder Input

Loss

h4

c4c3c2c1c0

 4

expand

Fig. 4: Decoder architecture of SEED: To enhance the perfor-
mance of each layer, the output of the prior layer is expanded
by duplicating the values in the high dimensional hidden
space, thereby providing more context and information for the
following layers. Fully connected layers will generate one di-
mensional outputs, followed by softmax activations to predict
the distribution of the means. This strategy of expanding the
input helps improve the model’s ability to capture complex
patterns and long dependencies in the data.

This hierarchical approach helps handle extreme values ef-
fectively. By predicting the mean value of different length sub-
segments, extreme values are represented and spread across
multiple levels in the hierarchy, leading to higher mean values
in the segments containing them. This enables the model to
capture both fine-grained and coarse-grained patterns in the
data. As shown in Fig. 4, to better regulate each layer’s func-
tion, we incorporate a fully connected layer after the LSTM.
This layer generates a one-dimensional output of the same
length and helps the model learn the distribution of segment

mean values in the predicted sequence. This addition enhances
the model’s ability to capture segment-specific characteristics
and improves overall performance.

D. Multiple-Objective Loss Functions

Our model utilizes the KL divergence loss as a way to
ensure that the predicted segment distributions align with
the ground truth segment distributions. By minimizing the
Kullback-Leibler divergence between the two distributions, the
model is encouraged to iteratively improve predictions of the
segment distributions during the training process. This enables
the model to capture the desired characteristics of the ground
truth distribution, guiding the convergence of the ultimate
output towards the ground truth.

The Kullback-Leibler divergence loss acts as a regular-
ization term that encourages the model to match the target
distribution while balancing the sequence generation loss.
For example, in the 5-level setting described in Fig. 3, the
regularization loss term for the ith layer can be described as,

Li = KL (softmax(p mi), softmax(g mi)) ,

where p mi is the output of the FC layer in Fig. 4, which
represent the predicted segment mean values in the ith layer,
while g mi is the vector of computed ground truth mean
values for the segments in the ith layer. Applying the softmax
function turns both vectors of mean values into distributions,
which then allows us to compute the KL divergence between
the two distributions. Then, the overall loss is composed as,

L = RMSE(ŷ, y) + λ×

(
k∑

i=1

Li

)
,

where λ is a multiplier applied on those regularization items.
The value of λ decreases with each epoch and is set to λ =
100×max

(
−1× eepoch/45 + 2, 0.0

)
in our experiments.

E. Importance-Enhanced Oversampling Policy

We use a creative oversampling policy to capture important
sequences in our dataset. As shown in algorithm 1, our method
randomly samples sequences and checks if their maximum
values in the inference section of the series exceed a threshold
T . Those that do are deemed important sequences. We adjust
these sequences by moving the maximum value to the middle
of the inference section and perform multiple iterations of
sampling from the beginning with a specified step size S. This
effectively captures the characteristics of important samples.
For normal, or less significant sequences, we randomly se-
lect them without special attention. This oversampling policy
improves the representation of important sequences while
maintaining diversity in the training set. The threshold T and
the step size S both can be adjusted as a parameter based on
the data set distribution.

V. EXPERIMENTS

To provide a more comprehensive evaluation of our pro-
posed method, we applied SEED to four distinct streamflow

Input : Dataset with training and inference sequences
Output: Oversampled training set

Procedure Oversampling;

while training set size is not satisfied do
Randomly sample a sequence including training and

inference sections;
if maximum value in inference section > T then

Mark sequence as important;
Move maximum value to the middle of the inference

section of the sequence;
foreach index I in the sequence with step size S do

Sample starting at I;
Add sampled sequence to oversampled training

set;
end

end
else

Add sequence to oversampled training set;
end

end
Algorithm 1: Importance-Enhanced Oversampling Policy

datasets1. We compared the performance of SEED against
7 state-of-the-art models. To gain a better understanding of
the effectiveness of the segment layers setting, the role of
the regularization terms, and the impact of the oversampling
policy, we conducted a series of additional experiments and
ablation studies. The results of these experiments led to the
following findings:

• SEED outperforms all the baseline models in the 3-
day ahead prediction task for heavily skewed long-term
hydrologic time series.

• Segment expansion in a hierarchical way is essential in
capturing more accurate hidden patterns and improving
the robustness of the model to predict abnormal data.

• The importance-enhanced sampling policy can effectively
improve the performance of SEED.

• The added level-wise regularization leads to prediction
improvements.

A. Experimental Settings

We utilized four hydrologic datasets, Ross, Saratoga, Up-
perPen, and SFC, which represent different stream locations.
Our objective was to forecast streamflow for a year, excluding
the summer months, from September 2021 to May 2022. The
training and validation datasets were randomly selected from
time series data covering the period from January 1988 to
August 2021.

During the inference phase, we predicted streamflow using
rolling predictions at intervals of 4 hours. Each prediction,
however, inferred 288 data points, i.e., the predicted stream-
flow over the next 3 days at 15 minute intervals. To make
these predictions, we utilized the previous 15 days of data,
equivalent to 1440 time steps. Prior to model training, all time
series underwent pre-processing steps including a logarithmic

1Data and code for the project can be found at https://github.com/
davidanastasiu/seed.

transformation, xi = log(1 + xi) ∀i, and standardization
(subtracting the mean and dividing by the standard deviation).
In order to obtain the final inference predictions, we performed
post-processing by reversing the standardization and logarith-
mic transformations.

In our models, we utilized a 5-layer SEED architecture,
where each layer consisted of a 1-layer bidirectional LSTM.
After experimenting with different LSTM layer widths, we
determined that using 512 nodes per layer yielded the best
performance. In the embedding stage, we employed five CNN
layers, each generating 384 channels. The kernel sizes for
these layers were set to 5, 3, 3, 2, and 1, respectively, from
the bottom to the top layer. We applied a stride equal to the
kernel size, with no padding, and a subsequent tanh activation
function.

B. Baseline Methods

We compared our proposed method, SEED, against a wide
array of state-of-the-art time series and hydrologic prediction
methods, introduced earlier in the related work section, includ-
ing,

• FEDFormer [8], which combines Transformer with the
seasonal-trend decomposition methods, has been shown
to be more efficient than the standard Transformer, yield-
ing improved results for long-term series forecasting;

• Informer [7], a transformer-style model for long-term
time series prediction with a prob-sparse self-attention
mechanism;

• NEC+ [41] a group of LSTM-based models that holds the
best performance for hydrologic time series prediction in
the presence of extreme events;

• NLinear [9], an effective linear model with one order
difference preprocessing for long-term time series;

• DLinear [9], a trend decomposed linear model for long-
term time series prediction;

• N-BEATS [10], a state-of-the-art time series prediction
method that outperformed all competitors on the standard
M3 [20], M4 [21] and TOURISM [22] datasets; and

• EnDecoder, the common encoder-decoder model built
with LSTM layers, which is a popular architecture for
sequence-to-sequence tasks such as machine translation,
text summarization, and speech recognition.

C. Main Results

Table II shows the test RMSE and MAPE performance for
the models that achieved the best performance on our out-of-
sample test set. To comprehensively evaluate the performance
of all the methods, we group the RMSE and MAPE metrics
in three different categories. By analyzing the results from
multiple perspectives, we can gain more insight into the
strengths and weaknesses of each method. To be specific,
for the RMSE value, “All” represents the average RMSE of
all test samples compared with the ground truth. The “High”
column represents the average RMSE value for those samples
containing at least one value larger than the mean value of
the whole time series, while the “Low” column computes the

TABLE II: Effectiveness comparisons with state-of-the-art methods. The best value of each metric is bolded. The second best
value of each metric is underlined.

Methods Metric Ross Saratoga Upperpen SFC

All High Low All High Low All High Low All High Low

FEDformer RMSE 6.49 30.82 2.51 6.85 11.95 4.59 2.38 17.68 1.07 24.15 94.28 6.68

MAPE 2.49 5.27 2.04 2.26 1.50 2.60 1.02 2.37 0.90 2.81 1.70 3.09

Informer RMSE 9.14 31.00 5.56 4.89 13.64 1.01 5.33 16.26 4.40 19.00 85.40 2.46

MAPE 5.45 5.80 5.39 0.73 1.40 0.43 4.21 2.70 4.34 0.54 0.71 0.49

NLinear RMSE 5.84 32.12 1.54 4.98 14.61 0.70 1.74 15.07 0.61 18.43 83.31 2.26

MAPE 1.62 4.89 1.09 0.75 1.74 0.31 0.57 1.69 0.47 0.87 1.03 0.83

DLinear RMSE 6.90 30.96 2.97 4.06 7.63 2.48 3.25 14.01 2.33 23.64 79.76 9.65

MAPE 2.79 4.03 2.58 1.31 0.85 1.51 2.04 1.68 2.07 4.02 1.04 4.76

NEC+ RMSE 9.33 38.34 4.58 1.95 5.55 0.35 1.94 13.92 0.92 16.39 76.63 1.38

MAPE 4.53 8.33 3.91 0.21 0.30 0.17 0.80 0.84 0.80 0.55 0.61 0.54

NBeats RMSE 5.16 30.09 1.08 3.60 9.44 1.01 1.23 13.20 0.21 31.47 95.33 15.55

MAPE 1.25 3.17 0.94 0.70 1.21 0.47 0.25 0.78 0.20 3.24 0.88 3.83

EnDecoder RMSE 5.58 30.81 1.45 1.93 5.69 0.26 2.95 16.33 1.80 17.46 79.04 2.11

MAPE 1.62 3.72 1.28 0.16 0.29 0.11 1.81 2.34 1.76 0.84 0.96 0.80

SEED RMSE 4.23 29.74 0.05 1.67 5.14 0.12 1.07 12.83 0.07 14.44 70.04 0.59

MAPE 0.11 0.53 0.04 0.09 0.19 0.05 0.10 0.57 0.06 0.20 0.42 0.14

RMSE for those test samples where all the ground truth values
were lower than the mean value. We note that most of the
extreme events exist in samples included in the “High” RMSE
calculation, and the samples included in the “Low” RMSE
calculation pertain to primarily normal events. The best results
are highlighted in bold.

Our proposed model, SEED, demonstrated superior perfor-
mance over all baselines across all four benchmark datasets. In
comparison to the three second-best models (NEC+, NBeats,
and EnDecoder), SEED achieved an average, relative RMSE
reduction of 31.44%, 34.68%, and 29.67% across the datasets.
Specifically, compared to NEC+, SEED’s reductions ranged
from modest (11.90% and 14.36%) to significant (54.66%
and 44.85%) for the SFC, Saratoga, Ross, and UpperPen
sensors, respectively. Similarly, SEED outperformed NBeats
with reductions ranging from modest (18.02% and 13.01%)
to substantial (53.61% and 54.11%). Compared to EnDecoder,
SEED consistently delivered better RMSE performance across
all datasets, with reductions of 24.19%, 13.47%, 63.72%, and
17.30% for Ross, UpperPen, Saratoga, and SFC, respectively.

When we compare results from the “High” and “Low”
categories, we can see that NLinear performs better on the
low group of time series, while DLinear performs better
on the high group. FEDFormer and Informer do not show
a clear advantage in either group. NBeats performs poorly,
particularly in the high group, due to its performance on the
Saratoga and SFC datasets. NEC+ and EnDecoder demonstrate

benefits across both groups. SEED exhibits the best perfor-
mance of both groups on all four datasets with varying levels
of complexity.

Fig. 5 shows the results of SEED compared against the
second best baselines. Top-right, middle-left, and bottom-right
show three intricate stream data patterns. In these instances,
SEED outperforms the runner-up approach by a significant
margin. We did not include the other models’ poor perfor-
mance in each figure as it would impede visualizing the perfor-
mance of the top models. For the Ross and UpperPen sensors,
the NBeats model performs well, while for the Saratoga sensor,
the EnDecoder model is the second best. In the case of the SFC
sensor, the NEC+ model shows promising results. To illustrate
the differences, we provide inference examples in comparison
with these models. The examples illustrate that SEED is better
able to capture complex patterns and provides more reliable
predictions for streamflow forecasting tasks.

VI. ABLATION STUDIES

To answer the question of the effects of our sampling
policy, regularization, and segment expanding strategies, we
conducted a group of experiments on the UpperPen and
Saratoga datasets. For each of these models, we used 10,000
samples in the training set.

A. Effect of the Importance-Enhanced Oversampling Policy

In algorithm 1, the threshold T is used to classify the impor-
tance of a sampled sequence, while the step size S should be

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

0

20

40

60

80
st

re
am

 fl
ow

Ground Truth
SEED : 8.36
EnDecoder : 11.84

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

0.55
0.60
0.65
0.70
0.75
0.80
0.85

st
re

am
 fl

ow

Ground Truth
SEED : 0.05
EnDecoder : 0.07

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

3.5
4.0
4.5
5.0
5.5
6.0
6.5

st
re

am
 fl

ow

Ground Truth
SEED : 0.55
NEC+ : 0.75

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

0

10

20

30

40

st
re

am
 fl

ow

Ground Truth
SEED : 2.50
NEC+ : 6.06

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

5

10

15

20

25

st
re

am
 fl

ow

Ground Truth
SEED : 1.12
NBeats : 4.32

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

25
50
75

100
125
150

st
re

am
 fl

ow

Ground Truth
SEED : 30.38
NBeats : 40.22

Fig. 5: Example comparisons with the second best baselines; the EnDecoder model can capture the general trend of the ground
truth, but the segment expanding mechanism of SEED enables it to more accurately predict the streamflow values, both during
normal conditions and in the presence of rare events. On the other hand, the NEC+ and NBeats models sometimes succeed in
following the trend in predictions, but other times they deviate from the ground truth. Best viewed in color.

adjusted according to the frequency of peak periods in the data.
Considering the heavy skewness and high kurtosis in the data,
which indicate a departure from a regular distribution, it is not
suitable to determine the threshold and step size solely based
on data observation. Therefore, we recommend employing a
grid search approach to determine the optimal values for these
parameters.

To evaluate the impact of this policy, we increased the
threshold T while simultaneously decreasing the step size S,
aiming to capture more information from the more important
sampled sequences. We initially trained the models without
any regularization loss components, i.e., L = RMSE(ŷ, y).
Fig. 6 shows the RMSE of the inference on the UpperPen
and Saratoga test sets. For both datasets, we observed that
increasing the threshold T and decreasing the step size S had
a positive impact on the results. However, there was a point of
diminishing returns, where further increasing the threshold T
did not lead to a significant decrease in RMSE. This suggests
that there is an optimal threshold T value beyond which the
policy’s effectiveness plateaus.

It is worth noting that the effect of this policy was more
pronounced on the UpperPen dataset compared to the Saratoga
sensor dataset. This is likely due to the difference in variance
between the two datasets. The UpperPen dataset has a smaller
variance, indicating that it contains a narrower range of
values. As a result, the policy’s ability to capture important
samples and extract meaningful patterns is more evident in
the UpperPen dataset.

T=4
S=8

T=8
S=6

T=12
S=4

T=16
S=2

T=20
S=2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
2.7

1.26
1.09 1.01

1.17

(a) RMSE of UpperPen

T=4
S=8

T=8
S=6

T=12
S=4

T=16
S=2

T=20
S=2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
2.53

1.79 1.78 1.76 1.82

(b) RMSE of Saratoga

Fig. 6: Sampling policy effects of different thresholds T and
step size S settings on the UpperPen and Saratoga datasets;
five groups of experiments were conducted, with the threshold
T ∈ [4, 8, 12, 16, 20] and the step size S ∈ [8, 6, 4, 2, 2]
respectively.

B. Effect of the KL Regularization Terms

In this part of our study, we aimed to test the importance of
our layer-based regularization strategy on the performance of
our model by reintroducing regularization components back to
the experiments in Section VI-A. The aim was to demonstrate
the benefits of regularization techniques in our context and
assess their impact on the model’s results. Specifically, we con-
tinued conducting experiments on the UpperPen and Saratoga
sensor datasets with T = 4 and S = 8. After reintroducing
the regularization components, we observed improvements in
the RMSE values for both datasets. In the case of UpperPen,
the RMSE decreased from 2.70 to 1.18, indicating a notable
enhancement. Similarly, for the Saratoga dataset, the perfor-
mance improved from RMSE = 2.53 to 2.21.

Fig. 7 visually depicts the impact of the Kullback-Leibler
divergence regularization loss terms on the inference results
for the two sensors. The green line is the prediction without
regularization items and the red one is the result after including
regularization in the model training. Results indicate that the
regularization term plays a significant role in guiding the
model to adhere to the segment trends layer by layer.

C. Effect of Segment Expanding

In order to examine the impact of our segment expanding
strategy, we conducted experiments by reducing the number
of expanding layers from 5 to 3, while using a threshold T =
4, step size S = 8, and training the models with our added
regularization loss for each layer. The segment lengths for the
3 layers were set to 36, 144, and 288, respectively.

The inference examples of the 3 layer models are rep-
resented by the purple line in Fig. 7. For the UpperPen
dataset the RMSE increased from 1.18 to 1.38 and for the
Saratoga dataset the RMSE increased from 2.21 to 2.38 after
reducing the number of expansion layers. According to these
findings, the SEED model’s prediction accuracy may suffer if
the number of layers is reduced, as seen by the rise in RMSE.
This shows that the segment expanding process is essential for
identifying significant dependencies and patterns in the data,
and that reducing the number of expansion layers may lead to
the loss of vital information on some datasets.

VII. CONCLUSION

In our study, we introduced SEED, a unique segment-
expandable encoder-decoder model, crafted to address single-
shot prediction challenges in skewed and heavy-tailed univari-
ate long-term time series datasets. Utilizing segment represen-
tation learning and a hierarchical Kullback-Leibler divergence
regularization loss, SEED markedly elevates the accuracy of
streamflow prediction. Its tiered structure ensures efficient
learning of expandable representations, and the incorporated
loss bolsters the model’s resilience.

In the future, we aim to test SEED’s versatility across
various domains beyond just hydrologic predictions and ex-
plore replacements for the LSTM base layer, seeking further
performance optimization. These endeavors aim to expand and
amplify SEED’s applicability in varied scenarios.

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

0.5

1.0

1.5

2.0

st
re

am
 fl

ow

Ground Truth
T4S8 : 0.99
T4S8-3L : 0.56
T4S8-Regu : 0.10

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

4
6
8

10
12
14
16
18

st
re

am
 fl

ow

Ground Truth
T4S8 : 6.13
T4S8-3L : 4.24
T4S8-Regu : 2.35

(a) Segment expanding effects on the Saratoga dataset

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

25
50
75

100
125
150

st
re

am
 fl

ow
Ground Truth
T4S8 : 47.64
T4S8-3L : 31.14
T4S8-Regu : 26.24

0 50 100 150 200 250 300 350 400
time points (every 15 minutes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

st
re

am
 fl

ow

Ground Truth
T4S8 : 1.63
T4S8-3L : 2.44
T4S8-Regu : 0.41

(b) Segment expanding effects on the UpperPen dataset

Fig. 7: Effect of regularization and segment expanding strate-
gies. The green line with the label ‘T4S8’ is the result of
inference using the model trained with T = 4 and S = 8
in Fig. 6. The red line labeled ‘T4S8-Regu’ represents the
model with our layer-based regularization strategy added to
the original ‘T4S8’ model. The purple line labeled ‘T4S8-3L’
represents the model with the number of layers reduced from
5 to 3, based on the ‘T4S8-Regu’ model.

REFERENCES

[1] S. Hua, M. Kapoor, and D. C. Anastasiu, “Vehicle tracking and speed
estimation from traffic videos,” in 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, ser. CVPRW’18, vol. 1. :
IEEE, July 2018, pp. 153–1537.

[2] P. Hewage, M. Trovati, E. Pereira, and A. Behera, “Deep learning-based
effective fine-grained weather forecasting model,” Pattern Analysis and
Applications, vol. 24, no. 1, pp. 343–366, 2021.

[3] B. Bose, T. Downey, A. K. Ramasubramanian, and D. C. Anastasiu,
“Identification of distinct characteristics of antibiofilm peptides and
prospection of diverse sources for efficacious sequences,” Frontiers in
Microbiology, vol. 12, 2022.

[4] S. Mohan, S. Mullapudi, S. Sammeta, P. Vijayvergia, and D. C.
Anastasiu, “Stock price prediction using news sentiment analysis,” in
2019 IEEE Fourth International Conference on Big Data Computing
Service and Applications (BigDataService), ser. BDS 2019. : IEEE,
April 2019, pp. 205–208.

[5] Z. Zhang, H. Qin, L. Yao, Y. Liu, Z. Jiang, Z. Feng, S. Ouyang,
S. Pei, and J. Zhou, “Downstream water level prediction of reservoir
based on convolutional neural network and long short-term memory
network,” Journal of Water Resources Planning and Management,
vol. 147, no. 9, p. 04021060, sep 2021. [Online]. Available:
https://doi.org/10.1061\%2F\%28asce\%29wr.1943-5452.0001432

[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in Knowledge
Discovery in Databases: PKDD 2003: 7th European Conference on
Principles and Practice of Knowledge Discovery in Databases, Cavtat-
Dubrovnik, Croatia, September 22-26, 2003. Proceedings 7. Springer,
2003, pp. 107–119.

[7] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 35, 2021, pp. 11 106–11 115.

[8] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer:
Frequency enhanced decomposed transformer for long-term series fore-
casting,” in International Conference on Machine Learning. PMLR,
2022, pp. 27 268–27 286.

[9] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?” arXiv preprint arXiv:2205.13504, 2022.

[10] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats:
Neural basis expansion analysis for interpretable time series forecasting,”
arXiv preprint arXiv:1905.10437, 2019.

[11] G. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control. : Holden-Day, 1976.

[12] Z.-Y. Wang, J. Qiu, and F.-F. Li, “Hybrid models combining emd/eemd
and arima for long-term streamflow forecasting,” Water, vol. 10, no. 7,
2018. [Online]. Available: https://www.mdpi.com/2073-4441/10/7/853

[13] J. Han, X.-P. Zhang, and F. Wang, “Gaussian process regression stochas-
tic volatility model for financial time series,” IEEE Journal of Selected
Topics in Signal Processing, vol. 10, no. 6, pp. 1015–1028, 2016.

[14] Q. Huang, H. Zhang, J. Chen, and M. He, “Quantile regression models
and their applications: A review,” Journal of Biometrics & Biostatistics,
vol. 8, no. 3, pp. 1–6, 2017.

[15] S. J. Taylor and B. Letham, “Forecasting at scale,” The American
Statistician, vol. 72, no. 1, pp. 37–45, 2018. [Online]. Available:
https://doi.org/10.1080/00031305.2017.1380080

[16] D. C. Anastasiu, J. Gaul, M. Vazhaeparambil, M. Gaba, and P. Sharma,
“Efficient city-wide multi-class multi-movement vehicle counting: A
survey,” Journal of Big Data Analytics in Transportation, vol. 2, no. 3,
pp. 235–250, Dec 2020.

[17] Y. Pei, Y. Liu, N. Ling, L. Liu, and Y. Ren, “Class-specific neural
network for video compressed sensing,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), 2021, pp. 1–5.

[18] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[19] F. Dorado Rueda, J. Durán Suárez, and A. del Real Torres, “Short-
term load forecasting using encoder-decoder wavenet: Application to
the french grid,” Energies, vol. 14, no. 9, p. 2524, 2021.

[20] S. Makridakis and M. Hibon, “The m3-competition: results, conclusions
and implications,” International Journal of Forecasting, vol. 16, no. 4,
pp. 451–476, 2000, the M3- Competition. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169207000000571

[21] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 com-
petition: Results, findings, conclusion and way forward,” International
Journal of Forecasting, vol. 34, no. 4, pp. 802–808, 2018.

[22] G. Athanasopoulos, R. J. Hyndman, H. Song, and D. C. Wu, “The
tourism forecasting competition,” International Journal of Forecasting,
vol. 27, no. 3, pp. 822–844, 2011.

[23] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar:
Probabilistic forecasting with autoregressive recurrent networks,” Inter-
national Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.

[24] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” Advances in neural information processing
systems, vol. 32, 2019.

[25] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series
is worth 64 words: Long-term forecasting with transformers,” arXiv
preprint arXiv:2211.14730, 2022.

[26] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting,” Advances
in Neural Information Processing Systems, vol. 34, pp. 22 419–22 430,
2021.

[27] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” arXiv preprint arXiv:2001.04451, 2020.

[28] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,”
Knowledge and information Systems, vol. 3, pp. 263–286, 2001.

[29] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by
wavelets,” in Proceedings 15th International Conference on Data Engi-
neering (Cat. No. 99CB36337). IEEE, 1999, pp. 126–133.

[30] R. A. K.-l. Lin and H. S. S. K. Shim, “Fast similarity search in the
presence of noise, scaling, and translation in time-series databases,” in
Proceeding of the 21th International Conference on Very Large Data
Bases. Citeseer, 1995, pp. 490–501.

[31] L. Chua and R. Ying, “Canonical piecewise-linear analysis,” IEEE
Transactions on Circuits and Systems, vol. 30, no. 3, pp. 125–140, 1983.

[32] H. Wu, B. Salzberg, and D. Zhang, “Online event-driven subsequence
matching over financial data streams,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, 2004, pp.
23–34.

[33] F. Yajing and G. Yujian, “A novel approach based on neural networks
and support vector machine for stock price pattern discovery,” in 2017
IEEE International Conference on Big Knowledge (ICBK). IEEE, 2017,
pp. 259–263.

[34] S. Hua, M. Kapoor, and D. C. Anastasiu, “Vehicle tracking and speed
estimation from traffic videos,” in 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, ser. CVPRW’18, vol. 1, July
2018, pp. 153–1537.

[35] Q. Tao, L. Li, X. Huang, X. Xi, S. Wang, and J. A. Suykens, “Piecewise
linear neural networks and deep learning,” Nature Reviews Methods
Primers, vol. 2, no. 1, p. 42, 2022.

[36] Y. Hu, P. Guan, P. Zhan, Y. Ding, and X. Li, “A novel segmentation and
representation approach for streaming time series,” IEEE Access, vol. 7,
pp. 184 423–184 437, 2018.

[37] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-view face detection
using deep convolutional neural networks,” in Proceedings of the 5th
ACM on International Conference on Multimedia Retrieval, 2015, pp.
643–650.

[38] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[39] H. Ma, Z. Zhang, W. Li, and S. Lu, “Unsupervised human activity
representation learning with multi-task deep clustering,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 5, no. 1, pp. 1–25, 2021.

[40] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, “Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts,”
in Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 2018, pp. 1930–1939.

[41] Y. Li, J. Xu, and D. C. Anastasiu, “An extreme-adaptive time series
prediction model based on probability-enhanced lstm neural networks,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 7, pp. 8684–8691, Jun. 2023. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/26045

