
Enhancing Retail Checkout through Video Inpainting, YOLOv8 Detection, and
DeepSort Tracking

Arpita Vats
Santa Clara University
Santa Clara, CA, USA

avats@scu.edu

David C. Anastasiu
Santa Clara University
Santa Clara, CA, USA
danastasiu@scu.edu

Abstract

The retail industry has witnessed a remarkable upswing
in the utilization of cutting-edge artificial intelligence and
computer vision techniques. Among the prominent chal-
lenges in this domain is the development of an automated
checkout system that can address the multifaceted issues
that arise in real-world checkout scenarios, including ob-
ject occlusion, motion blur, and similarity in scanned items.
In this paper, we propose a sophisticated deep learning-
based framework that can effectively recognize, localize,
track, and count products as they traverse in front of a cam-
era. Our approach, which we call RetailCounter, is founded
on a detect-then-track paradigm, wherein we apply track-
ing on the bounding box of the detected objects. Further-
more, we have incorporated an automatic identification of
the detection region of interest (ROI) and efficient removal
of unwanted objects from the ROI. The performance of our
proposed framework is competitive, as evidenced by our
F1 score of 0.8177 and the fourth-place ranking that we
achieved in track 4 of the 2023 AI City Challenge.

1. Introduction

In recent times, there has been a notable upswing in the
interest surrounding the integration of artificial intelligence
(AI) and computer vision (CV) methodologies in the re-
tail industry, specifically in the realm of automatic check-
out. The self-service trend has gained significant momen-
tum in various facets of daily life. Track 4 of the 7th AI City
Challenge [19], Multi-Class Product Counting and Recog-
nition for Automated Retail Checkout, centers on devising
an automated and accurate checkout system for retail stores,
which poses substantial hurdles due to real-world factors
like object occlusion, motion, item similarity during scan-
ning, and the introduction of new seasonal product stock-
keeping units (SKUs). Teams were furnished with a train-
ing data set comprising both genuine and synthetic images,

totaling 116,500 item scans along with associated segmen-
tation masks. The testing data set includes numerous video
clips, with each clip featuring one or more complete scan-
ning actions, performed by customers in a natural manner.
Multiple customers participated, each with slightly varied
scanning patterns, thereby adding to the complexity of the
experiment. A shopping tray was provided for the place-
ment of scanned items in the test scenario, while the cam-
era was positioned overhead and aimed straight down at the
checkout counter. In this work, we introduce an innovative
framework, named RetailCounter1, that incorporates video
inpainting alongside detection, tracking, and selection mod-
ules, for accurately reporting the count of unique items ob-
served in the video.

2. Related Works
The triumph of Amazon Go [28] has sparked a notable

interest in self-checkouts at grocery stores, owing to its
capacity to eliminate conventional checkout counters and
substantially reduce checkout time. This accomplishment
is realized through the application of computer vision and
sensor fusion to ascertain purchased products and automat-
ically charge customers via a mobile application upon exit,
thus minimizing long queues. Panasonic has designed a
walk-through self-checkout system that utilizes radio fre-
quency identification (RFID) tags for object detection, a
technology that has been previously used for security ap-
plications. The system’s unique attribute lies in its cost-
effectiveness, making it suitable for deployment in gro-
cery stores. The research community has extensively ex-
plored the visual object recognition and classification realm,
specifically in grocery stores, with a focus on product detec-
tion on shelves. Nonetheless, some studies, such as Multi-
ple View Stereo (MVS) [14], have employed Circular His-
togram of Gradients (CHoG), a feature descriptor, to ex-
tract low-level features from a query image and transmit
them to a data server for recognition. Beyond tag reading,

1https://github.com/davidanastasiu/RetailCounter

the checkout automation capabilities can expand to detect
items by analyzing their visual characteristics and overall
appearance. Aquilina et al. [2] has pioneered a method for
streamlining retail store checkout processes through the uti-
lization of SCARA robots that feature a four-axis robotic
system with machine vision. The system identifies items,
packs them, and automatically generates a total bill after
customers place items on the conveyor belt. Conversely,
James et al. [12] suggests adopting conventional multi-class
detectors that rely on convolutional neural networks to de-
tect and recognize items from a single RGB image.

2.1. Object Detection

Detecting moving objects is a fundamental task in com-
puter vision, and traditional methods such as background
subtraction and feature extraction using SIFT or HOG de-
scriptors were commonly used in the past. However, these
methods suffered from a high error rate due to variations in
object appearance and scale, as well as noise and lighting
conditions. Convolutional neural networks (CNNs) have
emerged as a dominant technology in object detection, out-
performing traditional techniques [1].

Recent advances in object detection have led to the
development of various frameworks, including one-stage
and two-stage detectors as well as anchor-free methods.
These frameworks rely on a data-driven approach that en-
ables machines to automatically learn feature expressions,
thereby eliminating the need for feature extraction. Two-
stage detection architectures divide the detection process
into the region proposal and classification stages, with mod-
els such as R-CNN [11], Fast R-CNN [10], and Faster
R-CNN [22] being popular examples. In contrast, one-
stage detectors use a single feed-forward fully convolu-
tional network that directly provides bounding boxes and
object classification. The most widely used models in this
category are SSD [18] and YOLO [21], including variants
such as YOLOv4 [4], YOLOv5 [33], Scaled-YOLOv4 [25],
YOLOR [27], YOLOX [9], and YOLOv8 [13].

Recently, anchor-free detection models have become
more prominent in the field of object detection. These mod-
els have evolved from the anchor-based methods discussed
earlier. For instance, in the YOLOF detector, Chen et al. [5]
revisited the concept of feature pyramid networks (FPN)
used in one-stage detectors. They proposed a technique
to use a single-level feature for detection instead of using
FPN’s divide-and-conquer optimization approach.

Another example is the Task-aligned One-stage Object
Detection (TOOD) method introduced by Feng et al. [8].
This approach combines object localization and classifi-
cation from attention maps into alignment metrics, which
helps to balance learning task-specific and task-interactive
features. They also proposed the Task Alignment Learning
approach for anchor position optimization, which helped

them surpass previous one-stage detectors in performance.
In addition, Ge et al. [9] created YOLOX, which is an

anchor-free evolution of the YOLO series of detector mod-
els. They incorporated advanced detection techniques, such
as a decoupled head and the leading label assignment strat-
egy, SimOTA [31]. YOLOX significantly outperforms com-
parable models. YOLOv7 [26] surpasses all known object
detectors in both speed (5 to 160 fps) and accuracy (56.8%
mAP) among all previously known real-time object detec-
tors capable of an inference speed of 30 or higher fps on
an NVIDIA V100 GPU. Furthermore, the newly released
YOLOv8 also seems to outperform all the previous versions
of YOLO by a significant margin.

To train these models, large datasets such as those from
the MS-COCO Detection Challenge [17], ImageNet Large
Scale Visual Recognition Challenge [24], and PASCAL
VOC Challenge [7] are commonly used, as they cover a
vast number of object categories that facilitate good feature
learning. After training, the models are often fine-tuned on
smaller datasets for specific tasks. However, most object
detection methods face a trade-off between accuracy and
performance, the challenge being that of improving both si-
multaneously.

2.2. Object Tracking

Object tracking is a fundamental task in computer vision
that involves locating and following objects over time in
videos or image sequences. This task is essential for many
real-world applications, such as surveillance, autonomous
driving, robotics, and human-computer interaction. Object
tracking faces many challenges, such as variations in ob-
ject appearance, occlusion, camera motion, and changes
in illumination and scale. To address these challenges,
researchers have developed numerous object-tracking al-
gorithms that employ various techniques, such as feature-
based methods, deep learning, and probabilistic models.
In recent years, object tracking has witnessed significant
progress due to advances in machine learning and computer
vision, leading to the development of more robust and ac-
curate tracking algorithms.

Alex Bewley et al. [3] purposed a practical method
named Simple Online Real-Time Tracker (SORT) for mul-
tiple object tracking that prioritizes efficient and real-time
object association. The research highlights the importance
of detection quality in determining tracking performance,
where the use of different detectors can lead to an improve-
ment of up to 18.9% in performance. Despite utilizing basic
techniques like the Kalman filter and the Hungarian algo-
rithm, the proposed method achieves an accuracy compara-
ble to the latest online trackers. Additionally, the simplic-
ity of this approach allows for a high update rate of 260
Hz, which is more than 20 times faster than other advanced
trackers. The DeepSort [29] tracker is an extension of the

Test Videos

Extracted Frames
60 FPS

Video Inpainting

ROI for Detetction

DeepSort
Tracker

Merge

Frame_Position - 746

Video_id - 2, Class_id-18
Frame_pos - 764

Output

Detection
(YOLOv8)

Figure 1. Framework for retail item detection and counting.

SORT tracker that incorporates a deep association metric
based on image features.

Yifu Zhang et al. [32] proposed an advanced object-
tracking algorithm that uses a deep neural network sim-
ilar to DeepSort to achieve state-of-the-art tracking accu-
racy. This algorithm is designed to address the challenges
posed by real-world object tracking scenarios, including oc-
clusions, scale changes, and motion blur. ByteTracker has
demonstrated remarkable performance on multiple bench-
marks, outperforming other popular object trackers in terms
of both accuracy and speed. By leveraging the power of
deep learning, ByteTracker has the potential to advance the
field of object tracking and outperforms many tracking al-
gorithms.

2.3. Video Inpainting

Video inpainting is the process of filling in missing or
corrupted parts of a video sequence with plausible con-
tent. This technique has many practical applications, such
as restoring old or damaged films, removing unwanted ob-
jects or occlusions from surveillance videos, and even gen-
erating realistic content in special effects for film and video
games. Video inpainting is a challenging task as it involves
reconstructing spatial and temporal information simultane-
ously. To achieve this, various approaches have been pro-
posed, including patch-based and optimization-based meth-
ods, as well as deep learning-based techniques that lever-
age the power of CNNs to learn spatial and temporal con-
text from the surrounding frames. Despite recent advances
in video inpainting, it remains an active area of research
with many open challenges, including handling complex
scenes, preserving temporal consistency, and dealing with
large missing regions.

Zhang et al. [30] introduced a novel flow completion
network that completes corrupted flows by exploiting rel-
evant flow features within a local temporal window. With
the completed flows, they propagated content across video
frames and use the flow-guided transformer to synthesize

the remaining corrupted regions. By separating trans-
formers along temporal and spatial dimensions, they in-
tegrated the locally relevant completed flows to instruct
spatial attention only. To further enhance efficiency, they
introduced a window partition strategy for both spatial
and temporal transformers. Additionally, they designed a
flow-reweighting module to precisely control the impact
of completed flows on each spatial transformer. Their ap-
proach also incorporates a dual-perspective spatial Multi-
Head Self-Attention (MHSA) that integrates global tokens
with window-based attention.

3. Methodology
Figure 1 depicts our framework. The proposed method

is a multi-step approach that will be discussed in detail in
the following sections. In our proposed system, frames ex-
tracted from test set A are utilized as input. The frames
undergo preprocessing in the first step, which results in
cropped and masked frames. The second step involves pass-
ing the processed frames into the detection network, which
generates location bounding boxes. The frames that have lo-
cation information are then fed into DeepSort and the clas-
sification network, producing tracks with category scores.
The final step involves using a merge algorithm to fine-tune
the object tracks and select the item output frame for each
track.

3.1. Data Generation and Model Training

Our object detection model was developed using syn-
thetic images generated from 3D-scanned object models
and their corresponding segmentation masks. Owing to
limitations on external dataset usage, we produced a back-
ground that resembled the tray color in the test video
and incorporated Gaussian noise. To enrich the training
dataset, each image featured up to three objects from dis-
tinct classes, as depicted in Figure 2. Moreover, we ex-
plored techniques for enlarging and enhancing the reso-
lution of objects superimposed on the background image,

Figure 2. Generating our training dataset.

considering the original images’ subpar quality. While
the Super-Resolution Convolutional Neural Network [6]
model did not yield improvements in image resolution, we
successfully employed the Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network
(SRGAN) [15] model to obtain high-resolution images, re-
sulting in superior training image quality. In total, we gener-
ated 130,000 training images and 20,000 validation images.
To train our model, we fine-tuned the pretrained weights of
YOLOv8, which is currently acknowledged as the state-of-
the-art model for object detection.

Figure 3. Real-time tracking of the region of interest.

3.2. Outlier Object Removal

The dataset used for our training was comprised of syn-
thetic images of individual products that were embedded
into ordinary images, as detailed in Section 3.1. Dur-
ing training, these products were isolated in the frame and
placed in “free space” without any other objects in close
proximity. However, during inference, the model some-
times detected the worker’s hands or body as false posi-
tives, even when no product was present in the scene. To
tackle this issue, we employed computer vision techniques
to first detect human body parts, particularly hands, in the
given frame and generate a mask to represent their loca-
tion. This involved using keypoint detection or instance
segmentation methods to estimate the position of the hands’
semantic key points or identify the hands as objects, respec-
tively. Subsequently, we applied Flow-Guided Video In-
painting (EFGVI) [16], which utilizes three trainable mod-
ules – flow completion, feature propagation, and content
hallucination – to jointly optimize the inpainting process.
Our proposed method yielded superior results both qual-
itatively and quantitatively, outperforming state-of-the-art
techniques and demonstrating promising effectiveness, as

evidenced in Figure 4. By utilizing video inpainting, we
were able to significantly reduce the false positive detection
rate.

3.3. Region of Interest Detection

Since the primary goal of the challenge was to identify
objects solely above the “white tray”, we decided to dy-
namically identify the bounding box of the tray as our ROI
and limit detection and tracking within that region. This im-
proved both detection accuracy and overall efficiency across
our processing pipeline. The detection process was initi-
ated by extracting the background image of each video us-
ing a Gaussian Mixture Model [23]. Foreground images
were then separated by using background subtraction meth-
ods [20] for each frame of the video while incorporating
the previous frames. Given that the video camera did not
actively move in our scenario, we extracted ROI coordi-
nates only at key frames, once every second. However, to
avoid outlier ROI detections, at each key frame, we com-
puted the ROI for the current frame along with the previous
and following n frames, and selected the ROI with the me-
dian bounding box area within that list.

To extract the ROI in a given frame, the background im-
age was converted to grayscale, and the Scharr operator,
which is an enhanced version of the Sobel operator, was
employed for edge detection. The Scharr operator was exe-
cuted in both the x and y directions and then combined. The
largest rectangle in the frames was used as the ROI (white
tray), as depicted in Figure 3. We also tried using the flood
fill algorithm on a differenced image to identify pixels with
similar values to a given seed. In this case, the seed was
located at the image center, but it could be set arbitrarily.
In this way, all pixels that were connected until edges were
detected, and they were labeled as the “tray”. However, this
method yielded worse overall results.

3.4. Detection and Tracking

After completing all the necessary preprocessing steps,
such as video inpainting and ROI detection, we utilized the
YOLOv8 detector for object detection, as depicted in Fig-
ure 5. This state-of-the-art detector takes the ROI-enhanced

Figure 4. Video Inpainting. The image on the left displays the original image. The image in the center shows the image with a mask
applied, while the image on the right displays the video after the mask has been replaced with background data (inpainted).

Figure 5. Object detection within the ROI.

image as input, which is resized to 640 × 640. To ensure
the highest level of precision and quick inference, we im-
plemented the DeepSort tracker. Our model was trained
on a dataset of generated objects, with 116 output classes,
and achieved an impressive 98.3% mean Average Precision
(mAP) on the validation set during training. Notably, our
post-processing of tracks takes advantage of both detection
confidence and class confidence, in addition to the object
position.

Our solution for individual product tracking involves the
utilization of two online tracking algorithms, namely SORT
and DeepSort. These algorithms are well-known for their
effectiveness in object tracking and rely on the bounding
rectangles of detections to track the objects of interest. The
Kalman filter is employed in both algorithms to make pre-
dictions about the future position of each object. This pre-
diction is then merged with the corresponding tracks, en-
suring that each object is accurately tracked throughout the
entire video sequence. The combination of these algorithms
results in an approach that is both accurate and compu-
tationally efficient, making it ideal for real-world applica-
tions.

SORT and DeepSort are particularly well-suited for sce-
narios where objects are in close proximity or occluded, and
they are designed to handle high-speed tracking. Addition-
ally, the algorithms are able to handle changes in the size,
orientation, and appearance of objects, making them robust

to variations in lighting and background conditions. By
leveraging these tracking algorithms, our solution is able to
achieve high levels of accuracy in tracking individual prod-
ucts in a variety of scenarios. Overall, our approach of-
fers a combination of high accuracy and computational effi-
ciency, which is essential for real-world applications where
both speed and accuracy are critical. This makes our solu-
tion a practical choice for a wide range of applications such
as inventory management, object detection in autonomous
driving, and surveillance systems.

3.5. Track Merging

Our chosen tracker provides our algorithm with a set of
tracklets with different IDs for each. In each tracklet, for
each frame, we maintain the bounding box coordinates of
the object that was detected, its class assignment, and the
confidence of that detection. We then assign a class label
to each tracklet as the class with the highest mean confi-
dence within all detections of the tracklet. We then analyze
whether some tracklets are extensions of a single track that
may have resulted through some occlusion and merge any
such tracklets. For any two tracklets with the same assigned
class label, we compare the two tracklets in ascending or-
der and merge them if the x and y coordinates of the center
points of the last frame in the first tracklet and the first frame
in the second are within K pixels of each other.

3.6. Choosing Output Frames

Once tracks have been determined for each object that
passes through the ROI, we determine the frame ID that
should be reported for each object as the frame with the
most centered object bounding box within the track. To
find this frame, we first compute the center points of all de-
tection bounding boxes in the track, and then compute the
Euclidean distance between those points and the center of
their respective key frame ROI bounding boxes. Finally, we
report the object detection at the frame with the minimum
distance from its respective ROI center.

4. Experimental Evaluation

In the following section, we provide an extensive discus-
sion about the implementation process of our project, in-
cluding detailed information on the execution environment
we used. We also include a thorough analysis of the re-
sults we obtained from our experiments. By doing so, we
aim to provide a comprehensive understanding of the vari-
ous technical aspects of our project and offer insights into
the effectiveness of our approach. Additionally, we will
delve into the challenges we faced during the implementa-
tion process and how we overcame them, providing a valu-
able perspective on the practical applications of our method-
ology. Through this detailed discussion, we hope to provide
a deeper understanding of our project and contribute to the
ongoing research in this field.

4.1. Evaluation Environment

Our experiments were carried out on a system running
Ubuntu Linux 18.04 and equipped with an 8-core Intel(R)
Core(TM) i9-7920X CPU operating at a clock speed of 3.60
GHz, 64 GB RAM, and 2 NVIDIA TITAN Xp 12G GPUs.
The system’s hardware configuration provided us with suf-
ficient computational power to execute the experiments in a
reasonable amount of time.

Although our approach uses both CPU and GPU re-
sources, it is important to note that we only utilized one
GPU for our experiments. The CPU-based processing
was implemented using multi-threaded techniques to ensure
efficient usage of the available computational resources.
However, our method’s primary processing unit was the
GPU, which was responsible for the bulk of the computa-
tion. Our experiments were designed to be scalable, which
means that they can be executed on a range of hardware
configurations, including systems with fewer GPUs or CPU
cores.

4.2. Implementation Details

During inference, we focused on detecting and track-
ing an object that appears within the ROI in videos. We
achieved this by extracting only the pixels in the ROI area,
with a small buffer, which we then resized to 640 × 640 to
provide as input to our detector. The ROI was detected at
the start of each second, choosing the ROI with the median
area within a window of n = 10 frames before and after
the ROI key frame. Since the video was encoded with 60
frames per second, given our choice of n = 10, our method
avoided ROI calculations for 65% of the frames.

The images used to train our detection model were the
ones we created, as described in Section 3.1. We found
the SRGAN model to be most effective at enhancing the
training object images that were randomly composed in our
training set. We initially fine-tuned a pretrained medium

YOLOX model for 80 epochs, which achieved a respectable
mean average precision (mAP) of 96.8%. Our final de-
tection model was fine-tuned using the medium YOLOv8
model for 75 epochs and achieved a higher mAP of 98.3%.
All other network settings were left unchanged from the
original configuration, as described on the YOLOv8 web-
site.

For tracking, we experimented with two different algo-
rithms, SORT and DeepSort. In both cases, we increased
the period for which the track could be broken to 30 frames,
enabling more robust and reliable tracking capabilities. We
experimented with different lengths of frames, but we were
able to get the best result with 30 frames. Finally, we set K,
the maximum number of pixels between the center of the
last frame in the previous track and the center of the first
frame in the next track in our merge algorithm to 100.

Table 1. Ablation Study

Detector ROI Tracker F1 score
YOLOX Mean Frame SORT 0.590
YOLOX Windowed ROI Median SORT 0.651
YOLOX Mean Frame Deep SORT 0.681
YOLOX Windowed ROI Median Deep SORT 0.701
YOLOv8 Mean Frame SORT 0.628
YOLOv8 Windowed ROI Median SORT 0.737
YOLOv8 Mean Frame Deep SORT 0.768
YOLOv8 Windowed ROI Median Deep SORT 0.817

4.3. Ablation Study

We investigated the effectiveness of various stages of our
framework in achieving desirable outcomes and show the
results in Table 1. Specifically, we aimed to identify the
individual contributions of each stage in the pipeline. To
this end, we used test set A to test our pipeline. We found
that the YOLOv8 detector model paired with the DeepSort
tracking method yielded the best results, achieving an F1
score of 0.817. This demonstrates the importance of care-
fully selecting the detector model and tracking method to
optimize performance. In addition, we also explored dif-
ferent approaches to ROI detection. We found that taking
the ROI of each key frame improved the performance of
the pipeline compared to using a single ROI for the entire
video. This highlights the importance of adapting the ROI
detection approach to the specific conditions of the video
surveillance task at hand.

4.4. Results and Discussion

Our model’s performance in the competition is a testa-
ment to the rigor of our experimentation process and the
robustness of our object detection pipeline. As shown in
Table 2, we achieved an F1 score of 0.8177, placing us in
the 4th position out of 10 teams that submitted results to the
Track 4 public leaderboard.

Table 2. Top-10 of the AIC 2023 Track 4 Leader Board

Rank Team Name F1 score
1 SKKU Automation Lab 0.9792
2 BUPT MCPRL 0.9787
3 Zebras 0.8254
4 SCU Anastasiu 0.8177
5 Fujitsu R&D Center 0.7684
6 Centific 0.6571
7 dtb2023 0.4757
8 Fu 0.4215
9 HCMIU-CVIP 0.3837
10 UTE AI 0.3441

To obtain this positive performance, we conducted ex-
tensive experimentation with different YOLO models, in-
cluding YOLOX and YOLOv8, with the aim of optimizing
object detection performance. After a thorough analysis of
the results, we concluded that YOLOv8 outperformed the
other models. We also explored the impact of different im-
age sizes on the results, and while we found that variants
produced similar and almost identical results, we concluded
that the input image size may not be a critical factor in op-
timizing performance.

In addition to the YOLO models, we also evaluated the
performance of the SORT and DeepSort trackers. While
both trackers exhibited excellent performance, we found
that the latter exhibited better stability and achieved an F1
score of 0.8167. The result is impressive considering the
image resolution we used was only 640× 640 and might be
able to be improved by using higher resolution inputs in the
tracking.

5. Conclusion

Our submission to the 2023 AI City Challenge Track 4,
Multi-Class Product Counting and Recognition for Auto-
mated Retail Checkout, presents a comprehensive frame-
work that is able to accurately detect and count individ-
ual items that pass through an automatically detected region
of interest. Our approach employs video inpainting to en-
hance detection results and minimize the occurrence of false
positives. By automatically detecting the region of interest
and segmenting humans, followed by their removal from
the scene, our approach delivers competitive results that are
comparable to those of the top 3 teams. We achieved these
results by utilizing the YOLOv8 detection network, which
runs in real-time, and trackers that solely rely on bounding
boxes.

Our method’s performance achieved the fourth position
on the Public leaderboard, with an F1 score of 0.8177. Fu-
ture work includes expanding our approach to accommo-
date more complex scenarios, exploring the use of deep
learning to enhance object detection, and incorporating con-
textual information to further improve the system’s ac-

curacy. Furthermore, we aim to investigate the use of
advanced tracking methods, such as particle filters and
Kalman filters, to achieve even better tracking accuracy in
challenging scenarios.

References
[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi.

Understanding of a convolutional neural network. In 2017
International Conference on Engineering and Technology
(ICET), 2017. 2

[2] Yesenia Aquilina and Michael A. Saliba. An automated su-
permarket checkout system utilizing a scara robot: prelimi-
nary prototype development. Procedia Manufacturing, 2019.
2

[3] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE International Conference on Image Processing (ICIP).
IEEE, sep 2016. 2

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection, 2020. 2

[5] Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang,
Jian Cheng, and Jian Sun. You only look one-level feature,
2021. 2

[6] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerat-
ing the super-resolution convolutional neural network, 2016.
4

[7] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pas-
cal visual object classes (voc) challenge. Int. J. Comput. Vis.,
88(2):303–338, 2010. 2

[8] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R. Scott,
and Weilin Huang. Tood: Task-aligned one-stage object de-
tection, 2021. 2

[9] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021, 2021. 2

[10] Ross Girshick. Fast r-cnn, 2015. 2
[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, 2014. 2

[12] Namitha James and Student. Automated checkout for stores:
A computer vision approach. Revista Gestão Inovação e Tec-
nologias, Vol. 11 No. 3 (2021):Vol. 11 No. 3 (2021), 07 2021.
2

[13] Glenn Jocher. Yolov8. Accessed on April 05, 2023. 2
[14] Guoyu Lan, Heng Qi, Keqiu Li, Kai Lin, Wenyu Qu, and

Zhiyang Li. A framework of mobile visual search based
on the weighted matching of dominant descriptor. In MM
’14: Proceedings of the 22nd ACM international conference
on Multimedia, New York, NY, USA, 2014. Association for
Computing Machinery. 1

[15] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe
Shi. Photo-realistic single image super-resolution using a
generative adversarial network, 2017. 4

[16] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and
Ming-Ming Cheng. Towards an end-to-end framework for
flow-guided video inpainting, 2022. 4

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 2

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer
Vision – ECCV 2016, pages 21–37, Cham, 2016. Springer
International Publishing. 2

[19] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M. Chang,
Y. Yao, L. Zheng, M. Shaiqur Rahman, A. Venkatachala-
pathy, A. Sharma, Q. Feng, V. Ablavsky, S. Sclaroff, P.
Chakraborty, A. Li, S. Li, and R. Chellappa. The 6th ai
city challenge. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), June
2022. 1

[20] OpenCv. Opencv. Accessed on April 05, 2023. 4
[21] Redmon. Yolo9000: Better, faster, stronger. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6517–6525, 2017. 2

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks, 2016. 2

[23] Douglas A. Reynolds. Gaussian mixture models. In Ency-
clopedia of Biometrics, 2009. 4

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015. 2

[25] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-yolov4: Scaling cross stage partial
network, 2021. 2

[26] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors, 2022. 2

[27] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao.
You only learn one representation: Unified network for mul-
tiple tasks, 2021. 2

[28] Kirti Wankhede, Bharati Wukkadada, and Vidhya Nadar.
Just walk-out technology and its challenges: A case of ama-
zon go. In 2018 International Conference on Inventive Re-
search in Computing Applications (ICIRCA), pages 254–
257, 2018. 1

[29] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric,
2017. 2

[30] Kaidong Zhang, Jingjing Fu, and Dong Liu. Flow-guided
transformer for video inpainting, 2022. 3

[31] Tianxiao Zhang, Bo Luo, Ajay Sharda, and Guanghui Wang.
Dynamic label assignment for object detection by combining
predicted ious and anchor ious. Journal of Imaging, 8(7),
2022. 2

[32] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box, 2022. 3

[33] Xingkui Zhu, Shuchang Lyu, Xu Wang, and Qi Zhao. Tph-
yolov5: Improved yolov5 based on transformer prediction
head for object detection on drone-captured scenarios, 2021.
2

