



#### **Problem Description**



 $(x_2 \text{ can also be the Gaussian Mixture Model (GMM) indicator based on <math>x_1$ . In such cases, the problem can be reduced to that of univariate time series forecasting.)

#### Challenges:

- Long-range dependencies.
- Rare but important extreme values.

# Goal:

- > An end-to-end model concurrently learns extreme and normal prediction functions.
- > Long sequence forecasting (predicted length = 288).

#### Dataset:

- > Four groups of hydrologic datasets from Santa Clara County, CA. Over 31 years of sensor data, 1,104,904 values.
- Namely, Ross, Saratoga, UpperPen, and SFC, named after their respective locations.
- Each group included a streamflow dataset and an associated rainfall dataset.

#### **Extreme Events**



|          | Ross    | Saratoga | UpperPen | SFC     |  |
|----------|---------|----------|----------|---------|--|
| min      | 0.00    | 0.00     | 0.00     | 0.00    |  |
| max      | 1440.00 | 2210.00  | 830.00   | 7200.00 |  |
| mean     | 2.91    | 5.77     | 6.66     | 20.25   |  |
| skewness | 19.84   | 19.50    | 13.42    | 18.05   |  |
| kurtosis | 523.16  | 697.78   | 262.18   | 555.18  |  |

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!

# Motivation

Achieving the best overall prediction performance, without sacrificing either the quality of normal or of extreme predictions.

Root Mean Square Error (RMSE) Mean Absolute Percentage Error (MAPE)

| • DAN fram<br>Neural net<br>dynamicall                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Time feat<br>Input sequence                                                                                                                      |
| <ul> <li>DAN's end-to stages, name</li> <li>RepGen or resulting in inputs and</li> <li>These ele stack.</li> </ul>                               |
|                                                                                                                                                  |
| <ul> <li>Examines<br/>medians.</li> <li>The data a<br/>calculated<br/>differences</li> <li>A distribution</li> <li>Over-samp<br/>set.</li> </ul> |
|                                                                                                                                                  |

# Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting Yanhong Li, Jack Xu, David C. Anastasiu

### **Proposed Framework**

**nework:** Distance-weighted Auto-regularized twork (DAN) uses expandable blocks to Ily facilitate long-term prediction.



o-end extendable framework consists of two ed RepGen and RepMerg:

contains three parallel encoder-decoder blocks, in polar representations of ordinary series d refined indicators.

ements are further merged in the RepMerg

# Kruskal-Wallis Test

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1).$$

*k* groups of sub series based on their

are first ranked, and the sum of ranks is for each group. The H value is then to determine if there are significant s between the groups.

tion-free test, not assume a particular

pling regions with extreme events into training



ack:

"f-ED": representation learning of those points that are far away from the mean of the series  $\hat{y}_{f}$ . "n-ED": representation of near points  $\hat{y}_n$ . "i-ED": learn the indicator  $\hat{y}_i$ 

**CONV-LSTM** layers:

> Shorten the input sequence. Alleviate potential exploding or vanishing gradient.

Indicator Refine Layer:

> Made of 2×CNN. Assist in refining the expected indicator representation.

# **Gate control vector**



Another way to hone predicted indicator:

- $M_{far}$  is equal to sigmoid( $\alpha * \hat{y}_i$ ), where  $\alpha = 4$  in our experiments,  $m_{near} = 1 - m_{far}$ .
- Doing the component-wise multiplication with predicted far values  $\hat{y}_f$  and near values  $\hat{y}_n$ .
- Let to  $\hat{y}_w$  to approach | tanh(y) | \* y.

# Auto-regularized Loss Function

- $\mathcal{L}_1 = RMSE((\hat{y}_f \odot w_f), (y \odot w_f)),$  $\mathcal{L}_2 = RMSE((\hat{y}_n \odot w_n), (y \odot w_n)),$  $\mathcal{L}_3 = RMSE(\hat{y}_w \odot w_p, y \odot w_p),$
- $\mathcal{L}_4 = RMSE(\hat{y}_i \odot w_p, y_i \odot w_p),$ where  $\mathcal{L}_1$  and  $\mathcal{L}_2$  are used to regulate the bipolar representation learning and  $\mathcal{L}_3$  and  $\mathcal{L}_4$  force the predicted indicator to reflect the change of predicted values by setting  $y_i$  equal to the first order of y. Then, the overall loss is composed as,

 $\mathcal{L} = RMSE(\hat{y}, y) + \lambda \times (\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4),$ 

experiments) applied on those regulation items, decreasing with each epoch.

# Motivations:

- > Multiple distance-weighted loss functions with the objective of compelling the model to learn more informative representations.
- > Serve as an effective regularizer for preventing overfitting in the long-term time series prediction task.

### **Baselines**

- DNN-U: univariate LSTM-based encoder-decoder hydrologic model.
- Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.
- N-BEATS: outperformed all competitors on the standard M3, M4 and TOURISM datasets.
- FEDFormer.
- InFormer.
- NLinear.
- DLinear.



where  $\lambda$  is a multiplier ( $\lambda = max(-1 \cdot e^{\frac{epoch}{45}} + 2, 0.2)$  in our

#### **Research Questions**

- What is the effect of DAN's extensible framework?
- What is the effect of the Kruskal-Wallis oversampling policy?
- How do the critical design elements of the framework affect performance?

#### **Effects of Proposed Methods**

• Effects of DAN's extensible framework.

We experimented with various combinations and identified the best results as "EDEDRR", "EDR", "EDEDRR", and "EDEDR" for Ross, Saratoga, UpperPen, and SFC, respectively.

#### • Effects of Kruskal-Wallis oversampling policy.



Maintain the p value and increase the  $\varepsilon$  value, the training set will contain more samples with H values exceeding  $\varepsilon$ .

#### • Effects of the critical design elements of the framework.



# Evaluation

Table 2: Multivariate/Univariate Long-Term (h = 288) Series Forecasting Results on Four Datasets

| Methods       | Metric | Ross              |        | Saratoga |        | UpperPen |        |             |
|---------------|--------|-------------------|--------|----------|--------|----------|--------|-------------|
|               |        | Multi             | Single | Multi    | Single | Multi    | Single | Mult        |
| FEDformer     | RMSE   | 6.01              | 6.49   | 6.01     | 6.85   | 3.05     | 2.38   | 23.54       |
|               | MAPE   | $\overline{2.10}$ | 2.49   | 1.55     | 2.26   | 1.87     | 1.02   | 2.35        |
| Informer      | RMSE   | 7.84              | 9.14   | 5.04     | 4.89   | 5.88     | 5.33   | 39.89       |
|               | MAPE   | 4.05              | 5.45   | 1.43     | 0.73   | 4.10     | 4.21   | 8.64        |
| Nlinear       | RMSE   | 6.10              | 5.84   | 5.23     | 4.98   | 1.57     | 1.74   | 18.47       |
|               | MAPE   | <u>1.99</u>       | 1.62   | 0.83     | 0.75   | 0.45     | 0.57   | <u>0.92</u> |
| Dlinear       | RMSE   | 7.16              | 6.90   | 4.33     | 4.06   | 3.53     | 3.25   | 21.62       |
|               | MAPE   | 3.10              | 2.79   | 1.40     | 1.31   | 2.35     | 2.04   | 2.74        |
| NEC+          | RMSE   | 9.44              | 9.33   | 1.88     | 1.95   | 2.22     | 1.94   | 17.00       |
|               | MAPE   | 4.80              | 4.53   | 0.17     | 0.21   | 0.95     | 0.80   | 1.07        |
| LSTM-Atten /  | RMSE   | 7.35              | 5.16   | 6.49     | 3.60   | 6.35     | 1.23   | 34.17       |
| <b>NBeats</b> | MAPE   | 3.74              | 1.25   | 1.80     | 0.70   | 4.76     | 0.25   | 9.90        |
| DAN           | RMSE   | 4.25              | 4.24   | 1.80     | 1.84   | 1.10     | 1.31   | 15.23       |
|               | MAPE   | 0.07              | 0.09   | 0.14     | 0.16   | 0.15     | 0.32   | 0.26        |



Contact Information: danastasiu@scu.edu