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Abstract

In this work, we introduce AUSGAN, an attention-based generative adversarial
network for accelerated MRI reconstruction from undersampled k-space data. The
architecture incorporates attention mechanisms to enhance tissue-specific feature
learning across two different datasets: BraTs-GBM and QIN-Prostate. We intro-
duce Bhattacharya distance as a novel tissue-specific evaluation metric that provides
a clinically relevant assessment beyond traditional image quality measures. Our
proposed method surpasses established reconstruction techniques, including Dual
GAN and AdaDiff, across multiple undersampling rates (20%, 30%, and 50%),
achieving improved SSIM and PSNR performance. Furthermore, our tissue-specific
Bhattacharya distance evaluation demonstrates superior tissue discrimination ca-
pabilities, confirming robust performance across diverse anatomical regions and
clinical applications.

1 Introduction

Magnetic Resonance Imaging (MRI) depicts anatomical structures and pathological conditions
within the human body in high resolution, which makes MRI a leading diagnostic tool in medical
imaging. To reduce scan time, fewer measurements in signal space (k-space) [1] are acquired, often
called undersampling of the acquisition process. However, undersampling the k-space leads to
an ill-posed image reconstruction problem, resulting in aliasing artifacts and noise enhancement.
Recently, compressed sensing [2] and deep learning based compressed sensing techniques [3]
have been introduced to withstand these artifacts. However, these approaches often fail to recover
high-frequency signals in the k-space, leading to reconstructed MRI images that may lack crucial
anatomical or pathological details.

Recent advancements in generative adversarial networks [4], [5] have shown promise for MRI
reconstruction. However, two key concerns persist: existing networks lack attention mechanisms
for regional fidelity enhancement, and traditional evaluation metrics such as PSNR and SSIM fail to
capture clinically-relevant reconstruction quality across different anatomical regions.

In our work, we introduce AUSGAN, an Attention UNet Spectral GAN model for MRI reconstruction
across multiple anatomical regions. We introduce Bhattacharya distance as a novel tissue-specific
evaluation metric that provides a clinically relevant assessment beyond traditional image quality
measures. Our key contributions include 1) pioneering an attention-based GAN architecture for multi-
dataset MRI reconstruction across brain, breast, and prostate imaging applications, and 2) introducing
Bhattacharya distance as a tissue-specific evaluation metric for improved clinical relevance.
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Table 1: Comparison of Reconstruction Models on Two Datasets Using Different Undersampling
Rates

Dataset Method 20% 30% 50%
SSIM PSNR SSIM PSNR SSIM PSNR

GBM

Zero-filled 0.709 ± 0.018 26.6 ± 1.7 0.748 ± 0.019 29.3 ± 1.8 0.769 ± 0.019 32.0 ± 1.7
AdaDiff [5] 0.375 ± 0.019 23.2 ± 3.6 0.379 ± 0.030 23.3 ± 4.2 0.381 ± 0.132 18.5 ± 1.8
Dual GAN [4] 0.841 ± 0.11 45.02 ± 0.17 0.887 ± 0.13 49.02 ± 0.45 0.912 ± 0.21 50.02 ± 0.76
AUSGAN 0.989 ± 0.0001 46.3 ± 0.1 0.994 ± 0.001 49.8 ± 0.02 0.998 ± 0.001 50.23 ± 0.02

Prostate

Zero-filled 0.854 ± 0.017 29.7 ± 1.2 0.869 ± 0.015 30.4 ± 1.2 0.903 ± 0.011 32.4 ± 1.2
AdaDiff [5] 0.347 ± 0.016 16.38 ± 0.43 0.348 ± 0.02 17.02 ± 0.43 0.349 ± 0.011 17.21 ± 0.30
Dual GAN [4] 0.937 ± 0.002 34.6 ± 0.3 0.947 ± 0.002 35.8 ± 0.4 0.959 ± 0.073 40.4 ± 1.1
AUSGAN 0.951 ± 0.007 35.5 ± 0.2 0.963 ± 0.001 38.0 ± 1.1 0.973 ± 0.001 39.9 ± 0.6

Table 2: Comparison of Bhattacharya Distances for Reconstruction Models on Two Datasets Using
Different Undersampling Rates

Dataset Method 20% 30% 50%

GBM

ET-ED ET-NC NC-ED ET-ED ET-NC NC-ED ET-ED ET-NC NC-ED
Zero-filled 2.57 ± 0.08 2.53 ± 0.08 2.52 ± 0.08 2.59 ± 0.08 2.51 ± 0.08 2.50 ± 0.08 2.58 ± 0.08 2.50 ± 0.08 2.49 ± 0.08
Dual GAN [4] 2.59 ± 0.08 2.53 ± 0.08 2.53 ± 0.09 2.59 ± 0.08 2.53 ± 0.08 2.53 ± 0.09 2.53 ± 0.08 2.59 ± 0.08 2.53 ± 0.09
GT 2.60 ± 0.08 2.54 ± 0.08 2.54 ± 0.09 2.60 ± 0.08 2.54 ± 0.08 2.54 ± 0.09 2.54 ± 0.08 2.60 ± 0.08 2.54 ± 0.09
AUSGAN 2.60 ± 0.10 2.54 ± 0.10 2.54 ± 0.10 3.07 ± 0.10 2.86 ± 0.09 2.96 ± 0.09 2.94 ± 0.77 2.86 ± 0.20 2.96 ± 0.01

Prostate

Gland-Periphery Gland-Periphery Gland-Periphery
Zero-filled 4.55 ± 0.20 4.56 ± 0.21 4.56 ± 0.21
Dual GAN [4] 4.55 ± 0.39 4.56 ± 0.38 4.55 ± 0.37
GT 4.56 ± 0.20 4.56 ± 0.20 4.56 ± 0.20
AUSGAN 4.57 ± 0.19 4.59 ± 0.21 4.57 ± 0.20

2 Methodology

Our AUSGAN architecture consists of cascaded k-space and image-space UNet generators and a
novel spectral discriminator. The k-space generator takes as input three adjacent slices, each with two
channels corresponding to the real and imaginary components of the partially sampled k-space image,
with the aim of reconstructing the middle slice. The partially reconstructed image is constructed
by combining the unsampled columns in the generated k-space data with the initial input data (the
sampled columns) and performing an IFT operation. The image then passes through the second
generator, which produces the final reconstructed MRI image. The input is progressively filtered
and downsampled by a factor of 2 in the encoding part, with skip connections and attention gates
filtering the features propagated through the connections. Our discriminator takes as input a 128×128
central-cropped region and combines spatial- and spectral-based features to decide the realness of the
input. The spatial-based feature maps are constructed through a cascade of CNNs + LeakyReLU +
instance normalization layers downsampled to a 16× 16 feature map, while spectral-based features
are obtained from a discrete Fourier transform converted to polar coordinates and smoothed by
azimuthally averaging over all angles at each radius. The resulting spectral vector is upsampled to a
16× 16 map and combined with the spatial-based feature map by averaging, with final classification
done via an FC layer with sigmoid activation.

3 Results and Conclusion

AUSGAN demonstrated competitive performance compared to state-of-the-art baselines across
evaluation metrics. On GBM data [6], AUSGAN achieved SSIM improvements of up to 17.6%
and PSNR improvements of up to 2.8% over the best baseline, with more modest gains of 1.7%
SSIM and 6.1% PSNR on Prostate data [7]. For tissue-specific Bhattacharyya distance evaluation,
AUSGAN showed improvements of 18.1% (ET-ED), 12.6% (ET-NC), and 16.5% (NC-ED) on
GBM data, and 0. 7% for the discrimination of the prostate gland periphery. Similar improvements
were observed for ISPY-Breast dataset [8], with detailed results in supplementary materials. These
results demonstrate AUSGAN’s potential in both traditional reconstruction quality and tissue-specific
evaluation measures, with particularly promising performance on brain imaging. We continue refining
the model to improve performance across all imaging modalities.
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