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AUSGAN is an attention-based spectral GAN for accelerated MRI reconstruction

from undersampled k-space data. Validated on brain and prostate datasets,

AUSGAN outperforms existing methods across undersampling rates and enhances

tissue-specific feature learning. Bhattacharya distance analysis confirms improved

tissue discrimination and clinical robustness
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Introduction

MRI is a non-ionizing diagnostic tool, but its long acquisition time can cause

motion artifacts and patient discomfort. While accelerated scanning methods

address this, they often compromise spatial resolution.

Motivation:
❑ Reconstruct high-fidelity MRI from undersampled data that are perceptually

like the fully-sampled images with accuracy quantified by structural similarity

index metric (SSIM) and peak signal-to-noise ratio (PSNR).

❑ Enhance tissue contrast in the reconstructed images as compared to the

original images measured as Bhattacharya distances between region of

interest segmentation voxel intensities.

Overview of undersampled MRI
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Datasets:
❑ BraTS-GBM1 Glioblastoma brain MRI images with four different acquisition

protocols T1, T1GD, T2 and FLAIR. The manual segmentation include

edema (ED), enhancing tumor (ET) and necrotic core (NC) volumes.

❑ QIN-Prostate2 MRI images with biopsy proven prostate cancer along with

manual segmentations outlining the whole prostate gland and tumor

volumes.

Dataset Brain GBM1 Prostate2

Subjects 135 15

Training slices 20,200 180

Validation slices 10,100 36

Testing slices 10,100 45

Scanner strength 1.5 Tesla 3 Tesla

Problem formulation:

Φ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐿φ(|𝐹 (𝐺(𝐾𝑝;ɸ))|,𝐼 )

G : Generative model defined by a set of unknown parameters ɸ

L(.) : Loss function, Io   ,Kp : Desired real signal, complex k-space signal 
F   H : Orthonormal 2D IFT operation

Loss function:

L = Ladv + LI + LK + LC

Ladv : Adversarial loss (BCE), LI : Image space loss

(MSE), LK : K-space loss (MSE), LC : Content loss

Content loss:

❑ Euclidean distance between the feature map representations of reconstructed

and fully sampled images is content loss.

❑ Features are extracted using the first 35 layers of a VGG19 network, ignoring

the last few fully connected layers.
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Method

Undersampling Rates

20% 30% 50%

SSIM ± SD PSNR ± SD SSIM ± SD PSNR ± SD SSIM ± SD PSNR ± SD

B
ra

in

CS-MRI 0.176 ± 0.009 32.49 ± 0.94 0.201 ± 0.010 35.37 ± 0.93 0.220 ± 0.031 39.47 ± 0.94

AdaDiff 0.375 ± 0.019 23.20 ± 3.55 0.379 ± 0.030 23.25 ± 4.15 0.381 ± 0.132 18.47 ± 1.82

ADMMNet 0.520 ± 0.025 30.15 ± 2.10 0.580 ± 0.020 33.20 ± 1.85 0.600 ± 0.031 35.48 ± 1.73

Zero-filled 0.709 ± 0.018 26.58 ± 1.73 0.748 ± 0.019 29.30 ± 1.81 0.769 ± 0.019 32.04 ± 1.69

Dual GAN 0.841 ± 0.110 45.02 ± 0.17 0.887 ± 0.130 49.02 ± 0.45 0.912 ± 0.210 50.02 ± 0.76

AUSGAN 0.989 ± 0.000 46.29 ± 0.09 0.994 ± 0.001 49.75 ± 0.24 0.997 ± 0.001 52.52 ± 0.07
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AdaDiff 0.347 ± 0.016 16.38 ± 0.43 0.347 ± 0.016 16.27 ± 0.41 0.344 ± 0.015 16.10 ± 0.40

CS-MRI 0.579 ± 0.027 35.71 ± 1.08 0.590 ± 0.026 36.27 ± 1.08 0.644 ± 0.027 37.83 ± 1.08

ADMMNet 0.720 ± 0.020 34.50 ± 1.20 0.750 ± 0.018 35.80 ± 1.10 0.763 ± 0.016 36.02 ± 0.35

Zero-filled 0.854 ± 0.017 29.72 ± 1.24 0.869 ± 0.015 30.44 ± 1.22 0.903 ± 0.011 32.43 ± 1.18

Dual GAN 0.937 ± 0.002 34.62 ± 0.29 0.947 ± 0.002 35.78 ± 0.40 0.959 ± 0.073 40.37 ± 1.09

AUSGAN 0.951 ± 0.007 35.52 ± 0.21 0.963 ± 0.001 37.98 ± 1.14 0.973 ± 0.001 39.87 ± 0.58

Experiments

Method
Contrast Comparison ± SD

ET Vs ED ET Vs NC NC Vs ED

Original Image 2.598 ± 0.081 2.543 ± 0.084 2.535 ± 0.087

AUSGAN 3.065 ± 0.096 2.856 ± 0.085 2.964 ± 0.091

Improvement (p 

< 10-2)
17.98% 12.31% 16.92%

Method
Contrast Comparison ± SD

Prostate gland - Periphery

Original Image 4.528 ± 0.359

AUSGAN 4.548 ± 0.378

Improvement (p = 0.0119) 0.44% 

❑ K-space generator input is 3 adjacent slices; each has 2 channels, real and imaginary, to reconstruct the middle slice. IFT of the

k-space generator output is passed through the image generator, which is a single channel k-space generator.

❑ Discriminator uses both spatial-based features, obtained from PatchGAN discriminator and spectral-based features, obtained

from a frequency aware classifier focusing on high-frequency content, to distinguish the realness of the reconstructed image.

Comparison of Structural Similarity Index Metric and Peak Signal-to-Noise-Ratio across all the models and undersampling rates.

Bold indicates best and underline shows the second-best performing model. AUGAN results are highlighted. SD = Standard Deviation

Bhattacharya distances in Prostate MRI for tissue discrimination 

for AUSGAN against original image. Bold indicates percentage 

improvement. 
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Dataset Demographics and Acquisition Parameters
❑ AUSGAN demonstrates consistent improvements over baseline, with SSIM enhancement of 9-18% and PSNR gains of 1-5%

across all acceleration factors (20-50% sampling) for Brain Glioblastoma images.

❑ AUSGAN model demonstrates consistent improvements over baseline, with SSIM enhancement of 1.5-4.9% and PSNR gains

of 0.3-6.2% across all acceleration factors for Prostate MRI.

❑ AUSGAN significantly improved brain tumor tissue contrast by 12-18% across all region comparisons, while exhibiting

modest contrast improvement of 0.44% for prostate gland vs periphery differentiation.

❑ AUSGAN also demonstrates high reconstruction performance with improved tissue contrast in breast MRI, confirming its

effectiveness across multiple anatomical domains.
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Bhattacharya distances in Brain Glioblastoma MRI for tissue 

discrimination for AUSGAN against original image. Bold indicates 

percentage improvement. ET = enhancing tumor, ED = edema, 

NC = necrotic core, SD = standard deviation

Reconstructed images for 50% undersampled Brain Glioblastoma MRI (first row). Zoom-in images further showcase enhanced tissue 

contrast (second row). 

Reconstructed images for 50% undersampled Prostate MRI (first row). Zoom-in images further showcase enhanced tissue contrast 

(second row). 
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