

Multi-Agent Cooperation for Traffic Safety Description and Analysis Ridham Kachhadiya, Dhanishtha Patil, David C. Anastasiu

Background

Understanding complex traffic interactions from video is crucial for intelligent transportation systems and smart-city safety. However, multi-camera scenes vary dramatically in viewpoint, illumination, and semantics, making unified vision-language models (VLMs) unreliable.

Problem Statement

How can we design a system that:

- Describes pedestrian and vehicle interactions (dense captions)
- Answers safety questions (fine-grained VQA)
- Adapts to different viewpoints and environments
- Remains explainable for downstream decision-making

Datasets

- Internal (WTS): staged accidents filmed in Woven city, dual views (overhead + vehicle)
- External (BDD): natural urban driving from U.S. cities (vehicle view only)
- Combined Dataset: 6K video segments x 5 event phases (Prerecognition, Recognition, Action, Avoidance, Judgement)

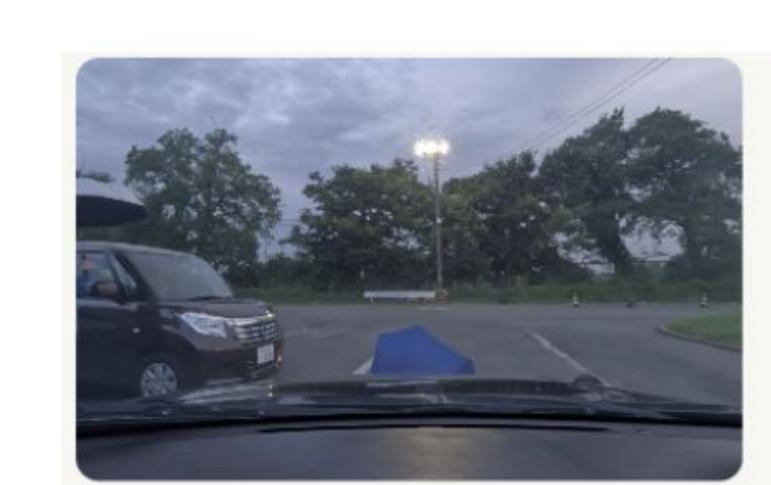


Fig 1. Vehicle view vs Overhead view

Motivation

- Traditional traffic video analysis models focus on detection and tracking, but they fail to explain why events occur or how risk develops.
- Traffic scenes are inherently multimodal, combining visual, spatial, and behavioral cues across multiple viewpoints.
- A single model cannot generalize across such variation.
- Our motivation is to build a modular, cooperative system that learns how different agents perceive and describe a scene, producing safety-aware and interpretable predictions.

Proposed Framework

Multi-Agent Framework

- Backbone: InternVL3-14B for all agents.
- Specialized agents by role (ped. vs. veh.), domain (WTS vs. BDD), semantic group (hard QA subset), and prompt input style (facts vs key-value).
- Validation-guided selection chooses the best agent per QA type / caption segment.

Frame Sampling & Grounding

- Two samplers to capture temporal cues: Evenly-Spaced and Midpoint-Centric (k-spaced)
- Bounding box overlay: red for pedestrians and blue for vehicles, improving spatial grounding.

Evenly Spaced Sampling

Midpoint-Centric Sampling

Fig 2. Frames in both sampling strategies

Prompting & Fact Conditioning

- Caption prompts: phase-aware, role-aware, bbox-aware.
- QA prompts: phase and viewpoint context; answer by letter.
- Fact augmentation: convert QA annotations into natural-language facts prepended to images, boosts semantic fluency.

Pipeline Overview

- The proposed framework executes the two Al City Challenge Track 2
 Sub-Tasks at inference (VQA and Captions).
- Each input video is divided into five event phases, and representative frames are extracted using evenly-spaced and midpoint-centric sampling.

- A multi-agent QA module first answers 43 questions from the frames, producing a structured dictionary of key-value pairs that captures scene semantics (e.g., pedestrian action, road layout, visibility).
- These outputs are transformed into natural-language fact prompts and passed together with the frames to a multi-agent captioning module, which generates phase-aware dense pedestrian and vehicle captions.

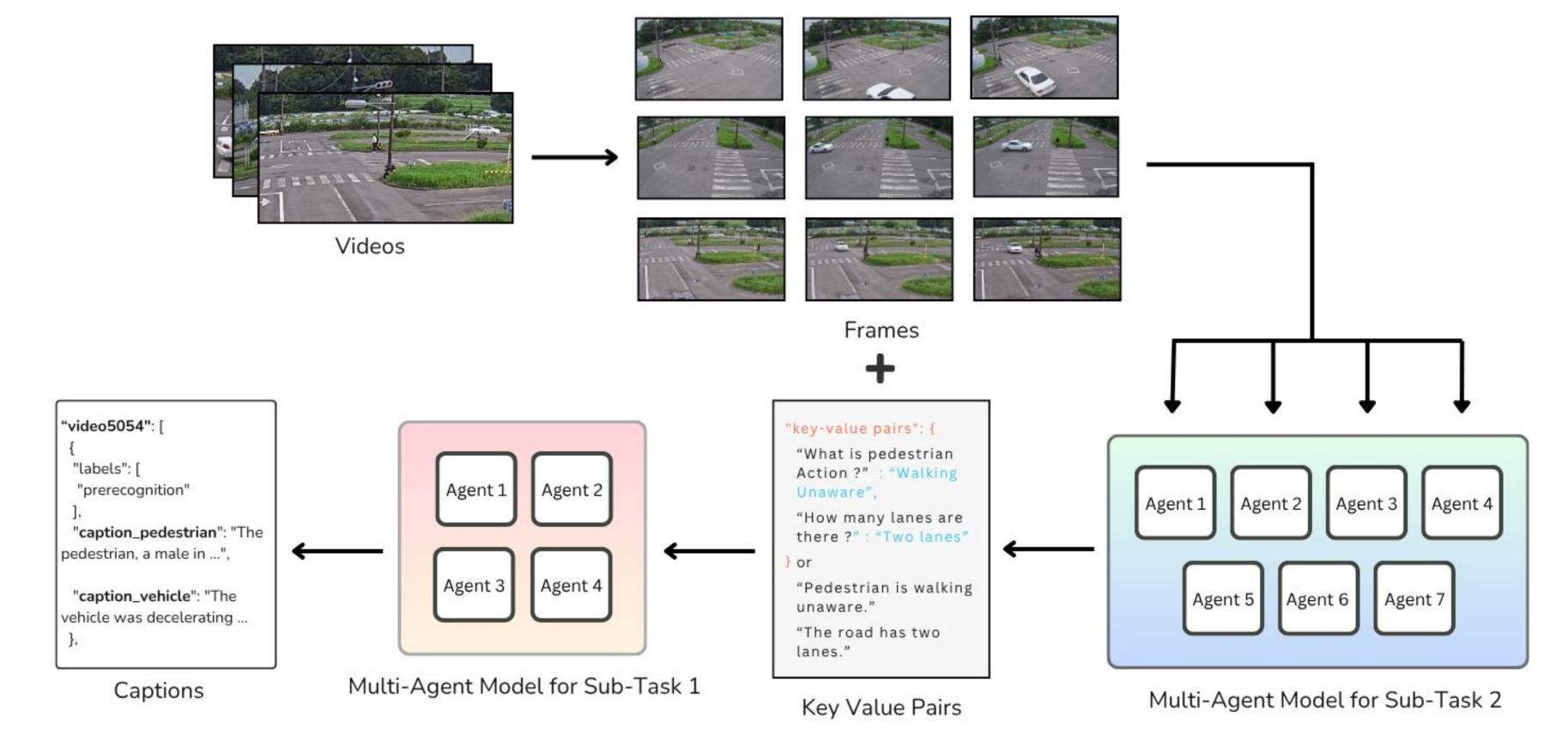


Fig 3. Pipeline Diagram

Experiments and Ablation Study

Training Setup

- InternVL3-14B, full-parameter fine-tuning; DeepSpeed ZeRO-2 on HGX A100 (8×80GB).
- Metrics: BLEU-4, METEOR, ROUGE-L, CIDEr (captions) and Accuracy (VQA).

Frame Strateg	y Datase	t Q-Type	Epochs	WTS (9	%) BDD	(%) (Overall (%)
Mid k-spaced	Both	all	3	81.75	86.	37	85.90
Mid k-spaced	Both	all	2.5	81.58	86.	03	85.58
Mid k-spaced	Both	all	2	81.14	85.	85	85.37
Mid k-spaced	Both	subset	2	73.57	76.	81	76.37
Mid k-spaced	BDD	all	2	n/a	86.	80	n/a
Evenly spaced	WTS	all	2	75.85	n/	a	n/a
Evenly spaced	BDD	all	2	n/a	84.	46	n/a
Multi-agent	n/a	n/a	n/a	84.31	87.	46	87.14
Strategy	Split	Input	Int Veh	Int Ped	Ext Veh	Ext P	ed Overall
Mid k-spaced	No	Facts	43.12	31.49	44.45	31.3	3 37.59
Evenly spaced		Key-Val		32.65	43.31	30.3	
Mid k-spaced	Ped-Veh		41.11	31.74	42.41	30.8	6 36.53
Multi-agent	n/a	n/a	45.68	32.65	44.45	31.3	3 38.53

Fig 4. Scores for individual and multi-agent VQA and captioning agents

Results

Why Modular Beats Unified

- A single cross-task model underperforms on both captioning and QA versus specialized multi-agents.
- Comparison of Unified and Modular avg score for both the subtasks in Fig 5.

Task	Unified Cross-Task Model	Ours (Modular)
Captioning	23.47	38.53
QA Accuracy (%)	81.43	87.14

Fig 5. Avg. score in both cases

Leaderboard

Rank	Team ID	Team Name (Affiliation)	Score
1	145	CHTTLIOT (Chunghwa Telecom, Taiwan)	60.0393
2	1	SCU_Anastasiu (SCU, USA)	59.1184
3	52	Metropolis_Video_Intelligence (NVIDIA, USA)	58.8483
4	137	ARV (ARV, Thailand)	57.9138
5	121	Rutgers ECE MM (Rutgers University, USA)	57.4658

Fig 6. Avg. score in both cases

Fig. 6 shows the top 5 teams in the final 2025 Al City Challenge Track 2 leaderboard. Our team, SCU Anastasiu, secured second place using the proposed multi-agent framework.

Conclusion

Targeted Specialization:

Role-aware and domain-specific agents adapt more effectively to visual and semantic variations in traffic scenes.

Validation-Driven Routing:

Each output unit is dynamically assigned to the best-performing agent, leading to stronger consistency and robustness.

Future Traffic Intelligence:

Demonstrates the potential of agentic modeling for scalable, context-sensitive, and explainable vision-language systems in real-world traffic analysis.

This work opens pathways for future research on modular and interpretable Al for traffic safety and intelligent transportation systems.

Acknowledgements

Research supported by a Supermicro GPU SuperServer SYS-420GP-TNAR+ node contributed by Supermicro and NVIDIA, integrated into the Santa Clara University HPC.

SUPERMICR

DVIDIA

Contact Information: danastasiu@scu.edu