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Background Proposed Framework
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How can we design a system that:
d y e Validation-guided selection chooses the best agent per QA type / caption

segment.

Captioning 23.47 38.53

e Describes pedestrian and vehicle interactions (dense captions) QA Accuracy (%) 81.43 87.14

Frame Sampling & Grounding

Fig 5. Avg. score in both cases

e Answers safety questions (fine-grained VQA)
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Experiments and Ablation Study 2 leaderboard. Our team, SCU Anastasiu, secured second place

e External (BDD): natural urban driving from U.S. cities (vehicle view only)

e Combined Dataset: 6K video segments x 5 event phases (Prerecognition, using the proposed multi-agent framework.
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