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Abstract

Understanding complex traffic scenes from video re-
mains a core challenge in building intelligent transporta-
tion systems, especially under varied viewpoints and se-
mantic demands. To address this problem, we intro-
duce a modular multi-agent framework targeting the Traf-
fic Safety Description and Analysis track of the 2025 Al
City Challenge. Our approach dynamically assigns special-
ized vision-language agents to individual sub-tasks, both
for fine-grained safety question answering and for struc-
tured pedestrian and vehicle captioning, based on valida-
tion set performance. Each agent is trained using distinct
supervision strategies, such as role-based data partitions,
fact-augmented inputs, and semantically grouped QA sub-
sets, allowing them to excel in specific roles. During infer-
ence, we route each input segment or question to its best-
performing agent, yielding robust and context-aware out-
puts. Compared to unified models, our framework deliv-
ers consistent improvements across standard metrics like
BLEU, METEOR, ROUGE, CIDEr, and QA accuracy. The
proposed solution ranked 2nd on the official leaderboard,
demonstrating the strength of targeted model specializa-
tion, task decomposition and cooperative inference in mul-
timodal video understanding.

1. Introduction

As urban environments deploy increasingly dense networks
of street-level and vehicle-mounted cameras, the ability to
understand and describe traffic scenes from video has be-
come crucial for intelligent transportation systems. Recent
research on explainable anticipation systems [3] has advo-
cated for traffic safety models that go beyond post hoc event
detection and instead focus on proactive and explainable un-
derstanding of pedestrian-vehicle dynamics, capturing both
visual and contextual cues before incidents occur.

Building on this vision, the Al City Challenge Traffic
Safety Description and Analysis Track [1] was introduced

in 2024 as a benchmark that pushes the boundaries of multi-
modal video understanding. The track was reprised in 2025
with two sub-tasks. Sub-task 1 requires phase-wise genera-
tion of structured captions and fine-grained safety question
answering across multi-camera traffic event segments. For
each incident, models must generate separate pedestrian and
vehicle descriptions across two distinct datasets. The “inter-
nal” dataset, which re-created pedestrian-vehicle accidents
using stunt people, was filmed by Woven By Toyota in a
smart city concept in Japan and includes both overhead- and
vehicle-view camera viewpoints. The “external” dataset
contains a subset of ego vehicle videos from the BDD-100K
dataset [17] denoting vehicles driving in a variety of US
large cities. These diverse perspectives lead to variations
in scene framing, lighting, and motion patterns. Sub-task 2
introduces significant complexity by adding a question an-
swering (QA) component which spans 41 distinct question
types covering appearance, trajectory, awareness, environ-
ment, and interaction cues for all scenes, a subset of which
are asked both from the vehicle and pedestrian perspectives.

Challenges arising from varied viewpoints, occlusions,
temporal complexity, and semantic diversity often render
single-model systems inadequate [16], motivating the de-
velopment of modular, adaptive reasoning pipelines tailored
to specific sub-tasks. To address these challenges, we pro-
pose a multi-agent framework that dynamically selects the
best performing model for each sub-task based on valida-
tion set behavior and output quality. Instead of relying
on a single vision language model or static ensemble, we
trained a diverse pool of models (agents) using variations
in frame sampling strategies, epoch checkpoints, and QA-
to-fact reformulations. For sub-task 1, we assigned sepa-
rate agents to generate pedestrian and vehicle captions for
each dataset split, enabling finer control over viewpoint and
subject specialization. For sub-task 2, we evaluated per-
question accuracy across all agents and routed each of the
41 safety questions to the model that performed best for
that question. This validation-driven assignment strategy
allowed each agent to specialize on the sub-task it handled
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best, leading to improved performance across both caption-

ing and QA objectives. Our results demonstrate that tar-

geted agent cooperation outperforms uniform modeling ap-
proaches while preserving consistency across outputs.
Our key contributions are threefold:

* We propose a validation-guided agent assignment frame-
work, wherein different VLM agents are selected for spe-
cific QA types and caption segments based on their em-
pirical strengths, highlighting how architectural diversity
and training variation could be harnessed through selec-
tive routing.

* We show that this approach enables modular coopera-
tion between large-scale models (e.g., InternVL3-14B),
resulting in outputs that are both factually grounded and
viewpoint-aware.

e Our solution is competitive against state-of-the-art ap-
proaches from some of the best teams in the world,
achieving 2nd place on the 2025 AI City Challenge Track
2 leaderboard.

Together, these contributions offer a principled solution to

the challenges of heterogeneous input-output mappings in

multimodal traffic video analytics and provide a path for
both explainable and accurate Al solutions to the problem.

2. Related Work

2.1. Video Understanding Models

Vision Language Models (VLMs) have made significant
progress in multimodal reasoning, especially for video tasks
that require temporal alignment and structured scene in-
terpretation. Foundational models such as Flamingo [2],
BLIP-2 [10], and InternVideo [ | 5] integrate multi-frame vi-
sual inputs with large language models, enabling both video
captioning and visual question answering (VQA).

Recent advancements like InternVL [5] and Qwen-
VL [4] improved these capabilities by supporting high-
resolution and context-rich visual inputs through dense su-
pervision and image grouping mechanisms. However, ap-
plying these models to driving scenes remains challeng-
ing due to abrupt viewpoint shifts (e.g., vehicle to over-
head), sparse temporal sampling, and complex inter-agent
dynamics. In our experiments, LLaMA [13] and Qwen
LLMs performed well in language generation but struggled
with visual grounding without a strong encoder. InternVL-
14B, equipped with an EVA-CLIP vision backbone and
instruction-tuned language decoder, consistently outper-
formed alternatives on both captioning and QA tasks.

2.2. Traffic Scene Understanding with Vision-
Language Models

Understanding traffic scenes from video has been central to
intelligent transportation systems. The AI City Challenge
Track 2 serves as a benchmark for structured captioning

and safety-focused VQA. Recent top-performing methods
demonstrated the utility of structured prompts and special-
ized input strategies.

CityLLaVA [8] introduced bounding-box prompts and
dual-view encodings to improve spatial alignment. AIO-
ISC [16] used semantic templates and post-processing rules,
while TrafficVLM [7] applied phase-specific encoding to
align language with event structure. These techniques high-
light the benefits of adapting VLM behavior to different
views or roles. Our approach builds on these insights but
replaces handcrafted logic with agent-based specialization
trained on partitioned data.

2.3. Specialization and Task Decomposition in Mul-
timodal Learning

Recent work emphasizes decomposing multimodal reason-
ing into task-specific or role-specific components. This in-
cludes using separate models or attention heads for differ-
ent question types, roles, or objects, which helps mitigate
label noise and improve generalization. In the Al City con-
text, teams applied template-driven prompts and segment-
wise breakdowns to specialize model behavior [7, 8, 16].
While these systems did not formalize agent architectures,
their successes validated the use of data-driven special-
ization. Our framework introduces semantically distinct
agents, e.g., internal vs. external views, or pedestrian vs.
vehicle descriptions, trained on curated supervision parti-
tions. These agents are dynamically routed at inference time
based on the validation performance of the agents, yielding
modular performance improvements without architectural
branching.

3. Methodology

3.1. Dataset, Input Structure, and Framework

All experiments were conducted on the Al City Challenge
2025 Track 2 dataset [9], which includes annotated traf-
fic incidents split across two sources: the internal dataset
(later referred to as WTS) contains both overhead and ve-
hicle camera views of pedestrian-vehicle interactions in a
smart-city setting in Japan, while the external dataset (later
referred to as BDD) consists of ego vehicle views only from
general US-city driving. These two domains differ signifi-
cantly in camera angles and scene composition, view-point
availability, and even the vehicle road driving side, motivat-
ing the need for specialized processing.

In sub-task 1 (Structured Captioning), the goal was to
generate structured natural language captions describing ei-
ther the pedestrian or the vehicle involved in the event.
Each input included a video segment (frames) and option-
ally accompanying key-value derived content describing the
agent-derived facts in the scene. In sub-task 2 (Question
Answering), each training sample consisted of a sequence
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Figure 1. System overview. Video frames are first processed by a multi-agent QA model to answer 43 predefined questions. These outputs
are combined with frames and passed to a multi-agent captioning model. The best agent per segment generates structured descriptions.

of extracted frames paired with one of 41 predefined chal-
lenge questions, covering pedestrian behavior, vehicle dy-
namics, environmental context, and spatial relations. For
each question, an agent selected the correct answer from
a fixed set of provided choices. The same question set
was applied uniformly across both the internal and external
datasets.

To support richer captioning supervision, based on
descriptions we observed in the training and validation
datasets, we introduced two additional question types that
were not present in the original dataset: “What is the gender
of the pedestrian?” and “What is the speed of the assailant
vehicle?” These questions were added to both the train-
ing and validation QA sets, with answers inferred from the
ground truth captions using rule-based extraction. For gen-
der, we used keyword matching (e.g., “man”, “woman”) to
assign binary labels. For vehicle speed, we parsed phrases
like “25 km/h” and retained only values within a restricted,
discrete set. During inference, these additional questions
were included alongside the standard 41, expanding the QA
task to 43 total questions.

Logically, our framework tackles the two sub-tasks of
the challenge in reverse order, as noted in Figure 1. Us-
ing a variety of frames extracted from all available input
videos for a scene, we employ a multi-agent approach to
derive answers to all 43 questions, which we store as key-
value pairs in a dictionary. These data are then provided to a
second multi-agent model, along with the extracted frames,
that produces the desired captions. In the following, we will

detail our design of the two types of agents and their inputs.

3.2. Frame Extraction and Bounding Box Overlay

For both sub-tasks of the challenge, answers were requested
for five distinct event phases in each video: Prerecognition,
Recognition, Action, Avoidance, and Judgement. Start and
end timestamps for each phase, along with bounding boxes
for the person and vehicle of interest and other metadata,
were provided by the challenge organizers.

To prepare input frames for vision-language model fine-
tuning, we explored two sampling strategies tailored to
the varying durations of event phases: evenly spaced sam-
pling and midpoint-centric sampling. The evenly spaced
approach (Algorithm 1) ensures broad temporal coverage
by dividing each phase uniformly and extracting frames at
regular intervals. In contrast, the midpoint-centric method
(Algorithm 2) focuses on localized temporal cues by select-
ing frames centered around the midpoint with a fixed offset.
The intuition behind the second strategy is that it may bet-
ter capture movement dynamics than the first, as frames are
sampled at a consistent cadence across all videos, leading to
improved prediction of certain question categories such as
the vehicle speed. While the second strategy proved more
effective in short or dynamic segments, the first offered con-
sistent coverage across variable-length phases. Figure 2 vi-
sually illustrates this strategy, showing how it captures dis-
tinct scene changes across the phase duration.
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In this approach, four frames are extracted at regular inter-
vals across the duration of each phase. By computing fixed
steps between the start and end timestamps, this method
maintains consistency across samples while avoiding redun-
dancy. It is especially effective for capturing gradual scene
transitions or broad context in longer segments.

Algorithm 1 Evenly Spaced Frame Sampling

Require: Phase start s, end e
Ensure: Four evenly spaced frame indices
I T<+e—s > Total phase duration
k«+ |T/4]
for i = 0to 3 do
end for

return { fo, f1, f2, f3}

AN

Midpoint-Centric Sampling

This approach emphasizes time correlation and better local-
ized context capture. For each event phase, it selects the
temporal midpoint and samples frames before and after us-
ing a step size £ = 10. Fallback logic handles cases with
insufficient length:

Algorithm 2 Midpoint-Centric Frame Sampling

Require: Phase start s, end e, step size k
Ensure: Three frame indices centered around the midpoint
1. m<« s+ |(e—s)/2]
ifm—k>sand m+ k < e then
return {m — k,m,m + k}
else if ¢ — £ > s then
return {e — k — 1,e — 1}
else if s + k£ < e then
return {s,s + k}
else
return {s,e — 1}
end if
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This strategy more effectively captured localized con-
text changes within a phase. However, smaller values of &
(e.g., k = b) often yielded visually redundant frames, while
larger values reduced frame availability in shorter segments.
Both strategies were used during model fine-tuning, and
their comparative impact was evaluated on both sub-tasks.

Bounding Box Overlay

To improve visual grounding, all sampled frames were over-
laid with bounding boxes marking the person or vehicle of
interest (when available). Pedestrians were highlighted in
red, and vehicles in blue. Bounding box availability varied
by dataset and camera view:

* WTS overhead views: both pedestrian and vehicle boxes
available.

* WTS vehicle views and BDD vehicle views: only pedes-
trian boxes available.

3.3. Prompt Engineering

We designed structured prompts tailored to the specific
objectives of the two core tasks: caption generation and
multiple-choice question answering (QA). For captioning,
the model was instructed to focus on a specific entity using
visual cues and phase context. A representative prompt is:

<image> <image> ...
You are given multiple images for the recognition phase
of an accident scenario.
If red and blue boxes are present, the red box highlights
the pedestrian and the blue box highlights the vehicle.
Generate only the vehicle description using all the
available visual cues and associated facts.
{Facts}

This prompt explicitly specifies the event phase (recog-
nition) and relies on bounding box annotations for spatial
grounding. For QA, prompts were designed to provide both
the event phase and the viewpoint perspective to guide ac-
curate answer selection. A representative prompt is:

<image> <image> ...
This accident scenario is in the avoidance phase.
Images are from the vehicle’s front view (assailant’s
perspective).
If red and blue boxes are present, the red box highlights
the pedestrian and the blue box highlights the vehicle.
{Question with multiple options}
Answer with the option’s letter from the given choices
directly.

This structure grounds the model in both temporal con-
text (e.g., avoidance phase) and spatial perspective (e.g., ve-
hicle or overhead view). For the WTS dataset, both over-
head and vehicle views were used, whereas for BDD, only
vehicle views were available. By standardizing prompts
across datasets and aligning them with the task objectives,
we ensured consistent model behavior and improved cross-
domain generalization.

3.4. Model Architecture

All agents in our system for both captioning and ques-
tion answering were built on top of the InternVL-14B
vision-language model [5]. This model follows the ViT-
MLP-LLM paradigm and integrates a frozen vision encoder
(EVA-CLIP) with an instruction-tuned language decoder,
enabling multi-frame image processing and structured tex-
tual reasoning. InternVL-14B was selected as the unified
backbone for all agents due to its strong empirical perfor-
mance across both sub-tasks.
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Figure 2. Visual comparison of two frame sampling strategies for an avoidance phase in a WTS dataset sample.

The architecture supports dynamic resolution input: each
input frame was resized to 896x1344 and divided into
448x448 pixel tiles. A pixel unshuffle operation reduced
visual token density, improving efficiency without sacrific-
ing resolution. These operations, which align with intended
strategies in our project, were introduced in InternVL 1.5
and extended in InternVL3.

While our training used the InternVL-14B network,
we borrowed architectural advances from InternVL3 such
as Variable Visual Position Encoding (V2PE) and multi-
image/video input support to contextualize the strengths of
the underlying vision backbone. V2PE enables finer spatial
encoding granularity, while multi-image processing sup-
ports richer spatial-temporal understanding, which is key
for traffic scene comprehension.

All downstream agents in our system shared this
InternVL-14B backbone but differed in training supervi-
sion: some were fine-tuned on internal (WTS) or exter-
nal (BDD) data, others were grouped by semantic question
type, and captioning agents varied by subject role (pedes-
trian vs. vehicle) and supervision format (key-value vs.
facts). At inference time, validation-based routing dynami-
cally assigned inputs to the most appropriate agent.

3.5. Role and Domain Specialization

We partitioned training configurations by entity role in cap-
tioning and by dataset domain in question answering, en-
abling agents to learn from semantically or visually coher-
ent subspaces and reducing interference between distinct
reasoning styles.

In the captioning task, we trained separate models for

pedestrian and vehicle captions. This decision was in-
formed by a semantic analysis of the training labels: pedes-
trian captions were more tightly aligned with environment-
related and pedestrian-specific key-value pairs (e.g., posi-
tion on crosswalk, gaze direction, attention), while vehi-
cle captions reflected motion-related or avoidance behavior.
The two caption types emphasized different visual features
and descriptive styles. By training agents on a single role,
we enabled role-specific modeling.

In the QA task, we trained separate agents on the inter-
nal (WTS) and external (BDD) datasets due to their distinct
recording configurations. The WTS dataset [9] included
overhead and vehicle views, often structured and centered
around key interactions in staged scenarios. In contrast,
BDD contained only vehicle views from naturalistic driv-
ing, with high variability in framing and lighting. These
domain differences impacted the visual context. Training
separate agents per domain allowed specialization in inter-
preting their unique perspectives.

3.6. Semantic Grouping in Question Answering

To improve performance on visually entangled questions,
we introduced a specialized QA agent trained on a grouped
subset of 14 low-performing questions. These involved nu-
anced pedestrian and vehicle behaviors like gaze, line of
sight, and relational motion requiring subtle, multi-frame
reasoning.

We began by training a base InternVL-14B model on all
41 questions. After validation, we identified questions with
low accuracy and grouped them based on shared semantic
traits. A new InternVL-14B model was then retrained using



only this subset, preserving architecture and input format.
By constraining supervision to a focused domain, this
model developed sharper attention to cues required for an-
swering difficult questions. The grouped QA agent was in-
cluded in the inference-time selection pool (Section 3.8).

3.7. Fact Augmented Conditioning in Captioning

To enhance semantic grounding and improve scene under-
standing, we explored an input conditioning strategy that
augments vision-language model inputs with structured
factual statements. These statements were generated by
converting question-answer (QA) annotations into natural
language using fixed templates.

For example, the QA pair, “Q: What is the age group
of the pedestrian? A: 30s” was converted into the statement
“The pedestrian is in the 30s age group.”.

This process was applied across all safety-relevant at-
tributes, including road conditions, pedestrian orientation,
visual awareness, obstacle geometry, and environmental
features. Some additional fact-style statement examples in-
clude

"The pedestrian is squatting."
"The road surface is wet."

"There are sidewalks on both sides
of the road."

These fact-enhanced prompts were prepended to visual
tokens and proved particularly useful for internal pedestrian
captioning, where multi-view inputs and dense annotations
enabled strong semantic alignment. Inspired by fact-based
prompting strategies in recent VLMs [2, 10], our method
guides the model toward more explicit and accurate descrip-
tions.

3.8. Agent Selection

Given the diverse agent configurations explored across both
captioning and QA tasks, we employed a performance-
driven agent selection strategy to choose the best model per
output unit.

For QA, selection was done per question. Each QA
model was evaluated independently, and for each of the 43
questions, we selected the model with the highest validation
accuracy for that question. We evaluated candidate agents
on a held-out validation set using accuracy and chose the
highest performing agent among all the trained agents for
each question.

For captioning, agent selection was done independently
for each of the four output segments: internal pedestrian, in-
ternal vehicle, external pedestrian, and external vehicle cap-
tions. We evaluated candidate agents on a held-out valida-
tion set using BLEU-4 [12], METEOR [6], ROUGE-L [11],

and CIDEr [14]. The agent with the highest average score
was selected per segment.

This selection framework allowed us to adaptively com-
bine the strengths of specialized agent models and improved
overall robustness across tasks.

4. Experiments

4.1. Fine-Tuning Setup

All individual agents for both sub-tasks were built on top of
the InternVL3-14B vision-language model [5]. Each agent
was trained independently using full-parameter fine-tuning,
which included updating the weights of the LLM decoder,
MLP layers, and the vision encoder backbone. This level
of adaptation allowed agents to specialize deeply in their
respective domains and reasoning tasks.

Training was performed using distributed infrastructure
with DeepSpeed ZeRO Stage 2 optimization, enabling ef-
ficient memory management and scalability for large-scale
vision-language models. All models were trained in mixed
precision mode with automatic bf16 or fpl6 casting on
a Supermicro SYS-420GP-TNAR+ system equipped with
NVIDIA HGX A100 8-way GPUs (80 GB RAM each) run-
ning Rocky Linux 9.4 (Blue Onyx).

4.2. Evaluation Setup

We evaluated each agent on the validation and test splits
using the metrics specified by Al City Challenge Track 2:
BLEU-4, METEOR, ROUGE-L, and CIDEr for captioning,
and classification accuracy for question answering. Agent
selection is performed based on validation performance.

4.3. Unified Baseline

While unified multitask learning is common in large vision-
language models (VLMs), we found that a single model
trained jointly on both captioning and QA struggles to bal-
ance the conflicting objectives of descriptive generation and
categorical reasoning. The unified baseline learns broad
representations but lacks task-specific specialization.

To validate this, we trained a unified InternVL-14B
model on a mix of both captioning and QA data using
shared prompts. During training, the model was exposed
to both types of inputs randomly. However, as shown in
Table 1, this unified model underperformed significantly
across both tasks: it achieved only 23.47 average score on
captioning and 81.43% QA accuracy.

In contrast, our multi-agent framework routes each
sub-task to a specialized agent trained using task-pure su-
pervision and selected via validation resulting in a consis-
tent performance gain across both modalities. These re-
sults confirm that modular specialization is critical for ef-
fectively handling complex multimodal reasoning tasks in
traffic video understanding.



Table 1. Validation Performance of the Unified Baseline Com-
pared to Our Modular Agent-Based Framework

Task Unified Cross-Task Model Ours (Modular)
Captioning 23.47 38.53
QA Accuracy (%) 81.43 87.14

Table 2. Validation Accuracy (%) for Individual QA Agents
Across Sampling Strategies and Data Partitions vs. Our Multi-
Agent Model

Frame Strategy Dataset Q-Type Epochs WTS (%) BDD (%) Overall (%)

Mid k-spaced ~ Both  all 3 81.75 86.37 85.90
Mid k-spaced ~ Both  all 2.5 81.58 86.03 85.58
Mid k-spaced  Both  all 2 81.14 85.85 85.37
Mid k-spaced ~ Both  subset 2 73.57 76.81 76.37
Mid k-spaced  BDD  all 2 n/a 86.08 n/a
Evenly spaced WTS  all 2 75.85 n/a n/a
Evenly spaced BDD  all 2 n/a 84.46 n/a
Multi-agent n/a n/a n/a 84.31 87.46 87.14

4.4. Question Answering Effectiveness

We evaluated question answering (QA) performance using
question-wise classification accuracy on the validation set.
Each question was routed to the agent that performed best
for that specific query type, allowing the system to leverage
agent-specific strengths.

As shown in Table 2, this routing mechanism led to
consistent improvements across both datasets: the multi-
agent model achieved 84.31% on WTS and 87.46% on
BDD, compared to the best single-agent scores of 81.75%
and 86.37% respectively, for an overall gain from 85.90%
to 87.14%. These improvements were observed even
though the highest-scoring individual configurations dif-
fered between datasets and frame strategies, showing that
validation-guided routing successfully captures comple-
mentary strengths.

Notably, questions involving pedestrian awareness, gaze
direction, and relative motion benefited from the specialized
QA agent trained on grouped low-performing queries as in
§3.6. By narrowing supervision to a focused domain, this
agent captured subtle visual cues that are often overlooked
by generalist models.

These results affirm the importance of modular spe-
cialization in safety-oriented traffic video understanding.
Rather than relying on a single model to generalize across
all questions and domains, our validation-guided approach
enables more accurate and context-aware reasoning through
tailored agent assignment.

4.5. Captioning Effectiveness

Results from the QA model are then processed to be used as
input to captioning models either in the form of key-value
pairs or fact-based sentences. As exemplified in Table 3, we

Table 3. Agent Selection Results for Captioning

Strategy Split  Input Int Veh Int Ped Ext Veh Ext Ped Overall

Mid k-spaced No Facts 43.12 3149 4445 3133 3759
Evenly spaced No Key-Val 45.68 32.65 4331 30.37 38.00
Mid k-spaced Ped-Veh Key-Val 41.11 31.74 4241 30.86 36.53
Multi-agent n/a n/a 45.68 32.65 4445 31.33 38.53
We report the average score across BLEU-4, METEOR, ROUGE-
L, and CIDEr on the validation set for each captioning segment.
Each row represents an InternVL3-14B-based agent variant with
different input configurations. Best-performing agents per seg-
ment (bolded) are selected for the final system described in §3.8.

observed that role-specific models trained solely on pedes-
trian captions outperformed those trained jointly on both
roles in some cases. For example, the model trained specif-
ically for internal pedestrian captions achieved a score of
32.65 versus the model trained on both roles only obtained
a score of 31.49, suggesting it was better able to focus on at-
tributes like pose and gaze. Fact-based inputs derived from
QA annotations also yielded superior CIDEr and METEOR
scores compared to raw key-value supervision, for example
+1.14 for external vehicles (44.45 vs. 43.31) and +0.96 for
external pedestrians (31.33 vs. 30.37), indicating improved
semantic fluency and alignment in generated captions.

We also examined the impact of input representation.
Using the method described in §3.7, QA annotations were
converted into natural language statements to form fact-
based inputs. These inputs improved semantic grounding
and fluency, particularly in external-view segments, where
diverse visual content benefits from richer contextual lan-
guage. The gains observed suggest that fact-based con-
ditioning enhances alignment with ground-truth semantics
under less constrained viewpoints.

When we analyzed the effect of role specific modeling,
we found that models trained jointly on both pedestrian and
vehicle captions consistently performed better than those
trained on only one role in several configurations, indi-
cating that combining supervision across roles helps the
model learn more comprehensive visual-contextual rela-
tionships, such as pedestrian-vehicle interactions and scene-
level cues, ultimately leading to stronger captioning perfor-
mance.

Figure 3 shows a representative example of the gener-
ated captions. The outputs reflect strong grounding in role-
specific semantics, capturing a range of attributes such as
pedestrian posture and awareness, vehicle dynamics, envi-
ronmental context, and safety indicators. Color highlighting
is used to emphasize different semantic categories without
any post-editing or handcrafted templates.

Finally, the best results are achieved through a multi-
agent approach, where each agent is selected based on its
performance on a specific segment. This paradigm lever-
ages the strengths of different frame sampling strategies and



Pedestrian caption: The pedestrian, with a height of , was wearing a

and . He was standing directly in of a vehicle on a residential road
with . The pedestrian's body was oriented in the to the vehicle,
and his line of sight was focused on a that he held in his hand. Although closely
watching his surroundings, he seemed of the vehicle. The pedestrian was moving

slowly, going straight ahead, and traveling in a car lane, despite being far from the vehicle. The

weather was , but the . The road surface was with level incline,
made of asphalt. The traffic volume was , and there were no . Overall, the
pedestrian's action and the environmental conditions suggested a due

to the pedestrian's of the vehicle and the

Vehicle caption: The vehicle is of the pedestrian, and the relative distance

between them is far. The vehicle's field of view allows it to see the pedestrian . The

vehicle is going ata . The environment condition includes a
with a . He is wearing a and

. The weather is , with . The road surface is and level, made of

asphalt. There are no roadside strips, but there are along the road.

Figure 3. Sample pedestrian and vehicle captions generated by our
multi-agent framework.

input types, resulting in the highest overall captioning score.
These findings support the effectiveness of agentic model-
ing, where modular specialization enables better adaptation
to the visual and semantic characteristics of each sub-task.

4.6. State-of-the-Art Comparison

The performance trends observed in Table 2 and Table 3
show that our multi-agent system consistently outperforms
a unified baseline trained jointly across all data. This per-
formance gap, seen across both QA accuracy and caption-
ing metrics, supports our design choice to use specialized
agents for different segments and questions.

As a way to compare our model against other state-of-
the-art approaches, we submitted test set inference results
using our multi-agent framework to Track 2 of the 2025 Al
City Challenge. As shown in Table 4, our method was able
to achieve 2nd place in the challenge, confirming the effec-
tiveness of our agentic framework in a competitive setting.

Table 4. Test Set Effectiveness Comparison

Rank Team ID Team Name (Affiliation) Score
1 145 CHTTLIOT (Chunghwa Telecom, Taiwan) 60.0393
2 1 SCU_Anastasiu (SCU, USA) 59.1184
3 52 Metropolis_Video_Intelligence (NVIDIA, USA) 58.8483
4 137 ARV (ARYV, Thailand) 57.9138
5 121 Rutgers ECE MM (Rutgers University, USA) 57.4658

We show the top 5 teams in the final 2025 AI City Challenge Track
2 leaderboard. Our team, SCU_Anastasiu, secured second place
using the proposed multi-agent framework.

5. Conclusion

In this work, we presented a modular, validation-driven
multi-agent system for structured captioning and fine-

grained safety question answering in multimodal traf-
fic videos. By decomposing the problem into role-
and question-specific subtasks and leveraging specialized
vision-language agents trained on targeted supervision, our
framework achieves superior performance compared to
monolithic models. Key design strategies such as fact-
based input conditioning, role-aware training, and domain-
specific agent specialization proved effective in capturing
the complex visual and contextual cues inherent in real-
world traffic footage. The competitive performance of our
system at the 2025 Al City Challenge validates the agentic
approach and opens pathways for future research into mod-
ular, context-sensitive VLM architectures for real-world
traffic intelligence.
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