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Abstract

Model compression techniques such as quantization and pruning have shown great
promise in drastically reducing model size without degrading model effectiveness.
Quantization of model parameters when combined with parameter pruning results
in a significantly reduced model size. However, such sparse neural networks have
irregular structures. As such the forward pass (inference step) of such networks
cannot be executed efficiently by processing hardware like GPUs. FPGA’s offer a
flexible platform to process irregular sparse networks. However, in order to fully
realize the efficiency gains promised by the FPGA architecture, it is essential to
minimize or completely eliminate off-chip memory accesses. Accommodating a
large model completely on the FPGA fabric is restricted by the scarcity of available
high-speed on-chip RAM, forcing a fraction of model weights to be stored in
off-chip DRAM. We propose a method to accommodate very wide and very deep
hypersparse feed forward networks (FFNs) completely on the FPGA fabric by
compressing data structures in addition to quantizing the network parameters. Our
method makes it possible to fit large FFNs completely on the FPGA fabric, resulting
in inference performance almost 1000x higher than that of the state-of-the-art.

1 Introduction

In this project, we overcome challenges that inhibit the realization of all the benefits of the FPGA
architecture to enable highly efficient inference at the edge. Specifically, we focus on eliminating
off-chip memory accesses, optimizing usage of scarce Block Ram (BRAM) and parallelizing the
custom processing logic. FPGAs are primarily used as custom processors, relying on off-chip DRAM
for data. We alleviate this bottleneck by completely eliminating DRAM accesses. Our optimizations
enable the deployment of very wide and very deep hypersparse FFNs completely on the FPGA fabric.
FFNs are integral part of modern cognitive networks such as CNN’s [1, 2] and Transformer-based
LLMs [3, 4]. Our work results in inference performance that is orders of magnitude higher than the
baseline.

2 Background

Compressed Sparse Row (CSR) is a widely used data structure for storing weight matrices in globally
sparse networks. However, for extremely wide and deep quantized sparse FFNs, the memory demand
for storing the indices of non-zeros (NNZs) can surpass that required for storing quantized weights.
Table 1 shows the proportion of total memory occupied by indices arrays at different quantization
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Table 1: Proportion of memory occupied by indices arrays

Network Width
Quantization (bits) 1024 2048 4096 8192
16 38.46% 40.74% 42.86% 44.83%
8 55.56% 57.89% 60.00% 61.90%
4 71.43% 73.33% 75.00% 76.47%

levels for very wide FFNs. In this work, we present an algorithm to reduce the number of bits required
to store indices information, enabling the accommodation of very large FFNs completely on the
FPGA fabric

3 Method

Our method reduces the total memory footprint of very wide and very deep sparse FFNs represented
using the CSR data structure. Although applicable to any sparse FFN, our method focuses on pre-
pruned [5, 6, 7] FENs which are pruned using RadiX-Net pre-pruning [8]. RadiX-Net pre-pruning
results in FFNs as expressive as their dense counterparts [9], while facilitating the encoding of the
indices arrays into a compressed format. We develop novel decoding and encoding algorithms to
compress and decompress the indices arrays.

3.1 Encoding Algorithm

The encoding algorithm is a one-time pre-processing step. It transforms the array of indices from
the CSR format into a more memory-efficient representation. The method assumes that the FFN’s
width (M) is a power of 2 (e.g., 1024, 2048, 4096, ...) and considers the weight matrix as a single
block with structured sparsity in the form N:M, where N < M. This sparsity pattern, referred to as
quasi-unstructured sparsity, allows for a compact representation of indices.

3.2 Decoding Algorithm

The decoding algorithm is implemented as custom processing logic within the Processing Elemnt
(PE) of each layer, and is invoked at each inference pass. It reconstructs the absolute values of
indices from the compressed formats created by the created by the encoding algorithm. The decoding
algorithm operates concurrently for all layers, ensuring efficient and high-throughput execution.

4 Results

We compared our method against that of Huang et al. [10]. Our results, shown in Table 2 are
composed of two parts. The first part of the results compares the efficiency of our method with that of
the baseline, both in terms of inference time and resource utilization. The second part of the results
demonstrate that model effectiveness is retained after the optimizations performed by our method.

Table 2: Efficiency Results

Method Efficiency (sec) Resource Usage (%)
latency  Throughput LUTs FFs BRAMs DSPs
Baseline (Matlab) 124.07 N/A* N/A*  N/A* N/A* N/A*
Baseline (Huang et. al.) 251.31 N/A* 4843 26.86 5544 4.17
Ours 0.247 0.0020 10.76  3.62 94.35 3.03

*N/A = not reported

5 Conclusion

To the best of our knowledge, our work is the very first attempt to deploy a very large pre-pruned FFN,
which is pruned using Radix-Net pre-pruning, completely on the FPGA fabric. By combining the
compression of sparse data structures and quantizing model parameters, we were able to accommodate
a very wide and very deep sparse FFN completely on the FPGA fabric. This led to performance gains
that were orders of magnitude greater compared té) the SOTA.
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