
Efficient Deployment of Very Wide and Very Deep 
Hypersparse FFNs on FPGA

Paramdeep Singh

Computer Science and Engineering

Santa Clara University

Santa Clara, CA, USA

psingh7@scu.edu

www.scu.edu/engineering

David C. Anastasiu

Computer Science and Engineering

Santa Clara University

Santa Clara, CA, USA

danastasiu@scu.edu



� Feed Forward Networks (FFNs) are an integral part of many deep neural networks.

� FFNs account for up to two-thirds of the processing cost of LLMs.

� Compressing FFNs can lead to substantial reduction in overall processing cost of many 
deep neural network architectures, including LLMs.

� FFN compression techniques like pruning and quantization yield irregular structures 
well-suited or FPGA processing.

www.scu.edu/engineering

Introduction



� Minimizing off-chip memory accesses. FPGAs are primarily used as custom processors, 
relying on off-chip DRAM for data.

� Optimizing usage of scarce Block Ram (BRAM) and UltraRAM (URAM).

� Parallelizing the custom processing logic.

www.scu.edu/engineering

Problems solved by this paper



� Unstructured sparsity is the most robust  form 
of sparsity.

� GPUs support structured sparsity (N:M)* only.

� FPGAs uniquely suited to process inference of 
FFNs with unstructured sparsity.

� Data structures used to support structured 
sparsity (indices arrays) can consume the bulk 
of scarce BRAM on the FPGA fabric.

  

www.scu.edu/engineering

Background

*N:M, sparsity means that in a contiguous 
block of M elements within the tensor, exactly 
2 elements are allowed to be non-zero, and 
the other 6 are forced to be zero.



� Use a sparse architecture with robustness of unstructured sparsity, sans all the processing overhead 
associated with it.

� RadixNet pre-pruning fits the bill. 

� Key observation: Fan-out of all neurons in a RadixNet layer is identical, and a factor of the network width.

▪ Develop deterministic compression and decompression algorithms for indices arrays.

▪ Achieve drastic reduction in BRAM required to store indices arrays.

▪ Eliminate off-chip DRAM accesses.

▪ 1000X improvement in inference performance.

www.scu.edu/engineering

Our Solution



www.scu.edu/engineering

Method – Accelerator Architecture
� All data required for forward pass on FPGA fabric.

� Dedicated Processing Element (PE) for each 
network layer (pipeline stage)

� Dedicated BRAMs for each PE. 

� Sparse, compressed weights (4-bit).

� Compressed indices arrays.

� Dense activations.

  



� Hypersparsity with complete path connectedness. 
(each output connected to all inputs)

� Performance at par with unstructured pruning.

� Flexibility in architecture design (variable units per 
layer, total number of layers, concatenation, etc.)

� Training Challenges

www.scu.edu/engineering

Method – Radix-Nets Pre-Pruning



� Pre-Processing Step.

� Considers the weight matrix as a single block with 
structured sparsity in the form N:M , where N ≪ M .

� Compresses indices array of CSR representation
   into bases and offset arrays. 

� Bases of all NNZs in a neuron packed into single bit 
vector.

� The length of the bit vector is bounded by 2N bits.

www.scu.edu/engineering

Method – Encoding Algorithm



www.scu.edu/engineering

Method – Encoding Algorithm (Example)



� Implemented as custom logic in each PE.

� Scans bit vector created by encoding 
algorithm to recover bases of all NNZs.

� Combines bases with offsets to recover 
indices if NNZs.

www.scu.edu/engineering

Method – Decoding Algorithm



www.scu.edu/engineering

Method – Decoding Algorithm (Example)



www.scu.edu/engineering

Experiment Design - Datasets

� MNIST Dataset (32 X 32 images)

� 60K training images, 10K test images, 15 K validation images

� Primary effectiveness metric – accuracy



� Networks pre-pruned using RadixNet pre-pruning.
� Deep Networks (2,3,4,6 layers)
� Very deep networks (10, 20, 30 . . . , 120  layers). Constructed by concatenating 

deep networks.
� 1024 units per layer in all networks
� 10 units in output layer.
� 4-bit weights and activations. 8-bit biases. (Layer-wise quantization)

www.scu.edu/engineering

Experiment Design – Networks



� All networks were trained with Pytorch 2.4.1 on a Super-micro SYS-420GP-TNAR+ 
system with NVIDIA HGX A100. (Only 1 GPU used)

� Quantization performed using Brevitas library.

� Adam Optimizer with learning rate = 10-3

� Batch Size = 256, Loss = CCE

� Pre-pruned networks may need 2-3 training iterations for optimal results.

www.scu.edu/engineering

Experiment Design – Model Training



� Accelerator code generated in 100% HLS.
� Vitis-HLS 2024.2 environment.
� Code generator written in python.
� All arrays initialized as CONST to enable bitstream injection.
� Inference step implemented using Quantize-Dequantize-Quantize (int->float->int) 

approach.
� Scale factors extracted from ONNX representation of trained models.

www.scu.edu/engineering

Experiment Design – FPGA Implementation



� Inference efficiency.
� FPGA resource usage

www.scu.edu/engineering

Results - Efficiency



� Our method does not result in significant degradation in model accuracy.

� Limited degradation in accuracy (< 1%) between networks compressed using our 
method and their fully connected counterparts.

www.scu.edu/engineering

Results - Effectiveness



www.scu.edu/engineering

Q & A                              

Research Partners:                             


