SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Efficient Deployment of Very Wide and Very Deep
Hypersparse FFNs on FPGA

Paramdeep Singh David C. Anastasiu
Computer Science and Engineering Computer Science and Engineering
Santa Clara University Santa Clara University
Santa Clara, CA, USA Santa Clara, CA, USA

psingh7@scu.edu danastasiu@scu.edu

www.scu.edu/engineering f’,\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Introduction

0 Feed Forward Networks (FFNs) are an integral part of many deep neural networks.
0 FFNs account for up to two-thirds of the processing cost of LLMSs.

0 Compressing FFNs can lead to substantial reduction in overall processing cost of many
deep neural network architectures, including LLMs.

[FFN compression techniques like pruning and quantization yield irregular structures
well-suited or FPGA processing.

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Problems solved by this paper

0 Minimizing off-chip memory accesses. FPGAs are primarily used as custom processors,
relying on off-chip DRAM for data.

[0 Optimizing usage of scarce Block Ram (BRAM) and UltraRAM (URAM).

[Parallelizing the custom processing logic.

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Background
[0 Unstructured sparsity is the most robust form Network Width
: Quantization (bits) 1024 2048 4096 8192
of sparS|ty. 16 3846% 40.74% 42.86% 44.833%
8 55.56% 57.89% 60.00% 61.90%
4 71.43% 73.33% 75.00% 7647%

0 GPUs support structured sparsity (N:M)* only.

0 FPGAs uniquely suited to process inference of
FFNs with unstructured sparsity.

*N:M, sparsity means that in a contiguous
block of M elements within the tensor, exactly
2 elements are allowed to be non-zero, and
the other 6 are forced to be zero.

[Data structures used to support structured
sparsity (indices arrays) can consume the bulk
of scarce BRAM on the FPGA fabric.

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Our Solution

0 Use a sparse architecture with robustness of unstructured sparsity, sans all the processing overhead
associated with it.

0 RadixNet pre-pruning fits the bill.

0 Key observation: Fan-out of all neurons in a RadixNet layer is identical, and a factor of the network width.

= Develop deterministic compression and decompression algorithms for indices arrays.
= Achieve drastic reduction in BRAM required to store indices arrays.
= Eliminate off-chip DRAM accesses.

= 1000X improvement in inference performance.

www.scu.edu/engineering f’,\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Method — Accelerator Architecture

0 All data required for forward pass on FPGA fabric.

0 Dedicated Processing Element (PE) for each
network layer (pipeline stage)

bias

Dedicated BRAMs \
idx base sas |
idx_offset eee decoding algo.
- sparse dot prod.

Dedicated BRAMs |
idx_base B
idx_off?l:: :i':;
0 Dedicated BRAMs for each PE. g l'\ i \ £
g FPGA %:
8 Bitstreams ‘é
0 Sparse, compressed weights (4-bit). e s 2
- ~ val §

bias

Compressed amays.

Generated by encoding s
algorithm and programmed

permanently into FPGA

BRAMs. FPGA Fabric

0 Compressed indices arrays.

A OULPULS s

[0 Dense activations.

www.scu.edu/engineering f’.\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Method — Radix-Nets Pre-Pruning

i Hypersparsity with Complete path connectedness. Blors valias. Blace ekt [Biavakind Pl vk
(each output connected to all inputs) hsantessSiT bt e
| | AN AN
0 Performance at par with unstructured pruning.] WIH\ B B
[] [] i+ 3 ~] []
0 Flexibility in architecture design (variable units per [] 1 i\ = B
layer, total number of layers, concatenation, etc.) EI = * = =
O & = = m
0 Training Challenges L, T S I

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

Method — Encoding Algorithm

0 Pre-Processing Step.

0 Considers the weight matrix as a single block with
structured sparsity in the form N:M , where N < M .

0 Compresses indices array of CSR representation
into bases and offset arrays.

0 Bases of all NNZs in a neuron packed into single bit
vector.

0 The length of the bit vector is bounded by 2N bits.

www.scu.edu/engineering

SCHOOL OF ENGINEERING

Data: sortedlist, N, M

Result: bitvec.of fsets

bitvec + 1, currentbase + 0, baseinc «+ M /N, idxr «+ 0
while idxr < N do

if (sortedlistidr] — currentbase) < baseinc then
bitvec + bitveck;

idr + idr + 1;

of fsets|idzx] + sortedlist[idz] — currentbase:
else

bitvec + bitvec&1;

currentbase «+ currentbase + baseinc;

end
end

h\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Array of absolute indices (bit-width of each index = log,(Network Width))

Method — Encoding Algorithm (Example)

0001111011 | 0001111011 | 0010000101 | 0011010000 | 0011010111 | 0011101111 | 0011111101 | 0100010001
0100011000 | 0100101110 | 0100110000 | 0101011010 | 0110011000 | 0110110010 | 0111100110 | 0111101100
0111110100 | 1000001111 | 1000100000 | 1000110100 | 1001111010 | 1010001111 | 1010111000 | 1011010100
1011100011 | 1100000000 | 1100100010 | 1101010101 | 1101101100 | 1110010111 | 1110011011 | 1110111000
idx_offset array

1101111011 {00101 | 10000 | 10111 |01111 | 11101 [10001 [11000 | 01110 | 10000 | 11010 | 11000 | 10010 | 00110 {01100
10100 | 01111 | 00000 | 10100 | 11010 | 01111 | 11000 | 10100 | 00011 | 00000 | 00010 [10101 | 01100 [10111 {11011 | 11000

single entry in idx_base array (bitmap corresponding to neuron)

1111001011001001001001011010110001010011010101010101010101001000+—— Entry padded to 64 bits
Initialization bit

www.scu.edu/engineering "’y Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Method — Decoding Algorithm

0 Implemented as custom logic in each PE. Data: bitvec, N, M, of fsets
Result: indices
currentbase + 0, baseinc + M/N,idx + 0,1+ 0

while i < N do

] Scan_s bit vector created by encoding if bitvec|idz] == 0 then
algorithm to recover bases of all NNZs. indicesli] « currentbase + of f setsli:
t 1+ 1;
eise
_ _ | currentbase «+ currentbase + baseinc;
[0 Combines bases with offsets to recover end
indices if NNZs. Y i

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Method — Decoding Algorithm (Example)

Retrieve base for first index
11110010110010010010010110101100010100110101010101010101010010000
“M1'=32+ 32+ 32=96=1100000 (First base)

lgnore leading ‘1’ Add offset to base

11011 (First offset)

0001111011 (Absolute index value)

www.scu.edu/engineering f’,\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Experiment Design - Datasets

0 MNIST Dataset (32 X 32 images)
[60K training images, 10K test images, 15 K validation images

0 Primary effectiveness metric — accuracy

www.scu.edu/engineering f’.\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Experiment Design — Networks

[0 Networks pre-pruned using RadixNet pre-pruning.
0 Deep Networks (2,3,4,6 layers)

0 Very deep networks (10, 20, 30 ..., 120 layers). Constructed by concatenating
deep networks.

[0 1024 units per layer in all networks
0 10 units in output layer.
[0 4-bit weights and activations. 8-bit biases. (Layer-wise quantization)

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Experiment Design — Model Training

0 All networks were trained with Pytorch 2.4.1 on a Super-micro SYS-420GP-TNAR+
system with NVIDIA HGX A100. (Only 1 GPU used)

[0 Quantization performed using Brevitas library.

0 Adam Optimizer with learning rate = 107

[Batch Size = 256, Loss = CCE

0 Pre-pruned networks may need 2-3 training iterations for optimal results.

www.scu.edu/engineering f’.\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Experiment Design — FPGA Implementation

0 Accelerator code generated in 100% HLS.

0 Vitis-HLS 2024.2 environment.

[0 Code generator written in python.

[0 All arrays initialized as CONST to enable bitstream injection.

[0 Inference step implemented using Quantize-Dequantize-Quantize (int->float->int)
approach.

[Scale factors extracted from ONNX representation of trained models.

www.scu.edu/engineering f’.\ Santa Clara University

Results - Efficiency

[Inference efficiency.
0 FPGA resource usage

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

EFFICIENCY RESULTS

Method

Efficiency (sec)

Resource Usage (%)

latency Throughput

FFs BRAMs DSPs

Baseline (Matlab)

Baseline (Huang et. al.)
Ours

124.07 N/A*
251.31 N/A*
0.247 0.0020

N/A* N/A* N/A*
26.86 55.44 4.17

3.62 94.35 3.03

*N/A = not reported

www.scu.edu/engineering

h\ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Results - Effectiveness

0 Our method does not result in significant degradation in model accuracy.

[0 Limited degradation in accuracy (< 1%) between networks compressed using our
method and their fully connected counterparts.

www.scu.edu/engineering f'ﬁ Santa Clara University

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

Research Partners:

®

<2 NVIDIA. SUPERMICR

www.scu.edu/engineering f'ﬁ Santa Clara University

