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Introduction

0 Feed Forward Networks (FFNs) are an integral part of many deep neural networks.
0 FFNs account for up to two-thirds of the processing cost of LLMSs.

0 Compressing FFNs can lead to substantial reduction in overall processing cost of many
deep neural network architectures, including LLMs.

[ FFN compression techniques like pruning and quantization yield irregular structures
well-suited or FPGA processing.
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Problems solved by this paper

0 Minimizing off-chip memory accesses. FPGAs are primarily used as custom processors,
relying on off-chip DRAM for data.

[0 Optimizing usage of scarce Block Ram (BRAM) and UltraRAM (URAM).

[ Parallelizing the custom processing logic.
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Background
[0 Unstructured sparsity is the most robust form Network Width
: Quantization (bits) 1024 2048 4096 8192
of sparS|ty. 16 3846% 40.74% 42.86% 44.833%
8 55.56% 57.89% 60.00% 61.90%
4 71.43% 73.33% 75.00% 7647%

0 GPUs support structured sparsity (N:M)* only.

0 FPGAs uniquely suited to process inference of
FFNs with unstructured sparsity.

*N:M, sparsity means that in a contiguous
block of M elements within the tensor, exactly
2 elements are allowed to be non-zero, and
the other 6 are forced to be zero.

[ Data structures used to support structured
sparsity (indices arrays) can consume the bulk
of scarce BRAM on the FPGA fabric.
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Our Solution

0 Use a sparse architecture with robustness of unstructured sparsity, sans all the processing overhead
associated with it.

0 RadixNet pre-pruning fits the bill.

0 Key observation: Fan-out of all neurons in a RadixNet layer is identical, and a factor of the network width.

= Develop deterministic compression and decompression algorithms for indices arrays.
= Achieve drastic reduction in BRAM required to store indices arrays.
= Eliminate off-chip DRAM accesses.

= 1000X improvement in inference performance.
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Method — Accelerator Architecture

0 All data required for forward pass on FPGA fabric.

0 Dedicated Processing Element (PE) for each
network layer (pipeline stage)
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Method — Radix-Nets Pre-Pruning

i Hypersparsity with Complete path connectedness. Blors valias. Blace ekt [Biavakind Pl vk
(each output connected to all inputs) hsantessSiT bt e
| | AN AN
0 Performance at par with unstructured pruning. ] WIH\ B B
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layer, total number of layers, concatenation, etc.) EI = * = =
O & = = m
0 Training Challenges L, T S I
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Method — Encoding Algorithm

0 Pre-Processing Step.

0 Considers the weight matrix as a single block with
structured sparsity in the form N:M , where N < M .

0 Compresses indices array of CSR representation
into bases and offset arrays.

0 Bases of all NNZs in a neuron packed into single bit
vector.

0 The length of the bit vector is bounded by 2N bits.
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Data: sortedlist, N, M

Result: bitvec.of fsets

bitvec + 1, currentbase + 0, baseinc «+ M /N, idxr «+ 0
while idxr < N do

if (sortedlistidr] — currentbase) < baseinc then
bitvec + bitveck;

idr + idr + 1;

of fsets|idzx] + sortedlist[idz] — currentbase:
else

bitvec + bitvec&1;

currentbase «+ currentbase + baseinc;

end
end
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Array of absolute indices (bit-width of each index = log,(Network Width))

Method — Encoding Algorithm (Example)

0001111011 | 0001111011 | 0010000101 | 0011010000 | 0011010111 | 0011101111 | 0011111101 | 0100010001
0100011000 | 0100101110 | 0100110000 | 0101011010 | 0110011000 | 0110110010 | 0111100110 | 0111101100
0111110100 | 1000001111 | 1000100000 | 1000110100 | 1001111010 | 1010001111 | 1010111000 | 1011010100
1011100011 | 1100000000 | 1100100010 | 1101010101 | 1101101100 | 1110010111 | 1110011011 | 1110111000
idx_offset array

1101111011 {00101 | 10000 | 10111 |01111 | 11101 [ 10001 [ 11000 | 01110 | 10000 | 11010 | 11000 | 10010 | 00110 {01100
10100 | 01111 | 00000 | 10100 | 11010 | 01111 | 11000 | 10100 | 00011 | 00000 | 00010 [ 10101 | 01100 [ 10111 {11011 | 11000

single entry in idx_base array (bitmap corresponding to neuron)

1111001011001001001001011010110001010011010101010101010101001000+—— Entry padded to 64 bits
Initialization bit
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Method — Decoding Algorithm

0 Implemented as custom logic in each PE. Data: bitvec, N, M, of fsets
Result: indices
currentbase + 0, baseinc + M/N,idx + 0,1+ 0

while i < N do

] Scan_s bit vector created by encoding if bitvec|idz] == 0 then
algorithm to recover bases of all NNZs. indicesli] « currentbase + of f setsli:
t 1+ 1;
eise
_ _ | currentbase «+ currentbase + baseinc;
[0 Combines bases with offsets to recover end
indices if NNZs. Y i
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Method — Decoding Algorithm (Example)

Retrieve base for first index
11110010110010010010010110101100010100110101010101010101010010000
“M1'=32+ 32+ 32=96=1100000 (First base)

lgnore leading ‘1’ Add offset to base

11011 (First offset)

0001111011 (Absolute index value)
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Experiment Design - Datasets

0 MNIST Dataset (32 X 32 images)
[ 60K training images, 10K test images, 15 K validation images

0 Primary effectiveness metric — accuracy
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Experiment Design — Networks

[0 Networks pre-pruned using RadixNet pre-pruning.
0 Deep Networks (2,3,4,6 layers)

0 Very deep networks (10, 20, 30 ..., 120 layers). Constructed by concatenating
deep networks.

[0 1024 units per layer in all networks
0 10 units in output layer.
[0 4-bit weights and activations. 8-bit biases. (Layer-wise quantization)
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Experiment Design — Model Training

0 All networks were trained with Pytorch 2.4.1 on a Super-micro SYS-420GP-TNAR+
system with NVIDIA HGX A100. (Only 1 GPU used)

[0 Quantization performed using Brevitas library.

0 Adam Optimizer with learning rate = 107

[ Batch Size = 256, Loss = CCE

0 Pre-pruned networks may need 2-3 training iterations for optimal results.
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Experiment Design — FPGA Implementation

0 Accelerator code generated in 100% HLS.

0 Vitis-HLS 2024.2 environment.

[0 Code generator written in python.

[0 All arrays initialized as CONST to enable bitstream injection.

[0 Inference step implemented using Quantize-Dequantize-Quantize (int->float->int)
approach.

[ Scale factors extracted from ONNX representation of trained models.
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Results - Efficiency

[ Inference efficiency.
0 FPGA resource usage

SANTA CLARA UNIVERSITY

SCHOOL OF ENGINEERING

EFFICIENCY RESULTS

Method

Efficiency (sec)

Resource Usage (%)

latency  Throughput

FFs BRAMs  DSPs

Baseline (Matlab)

Baseline (Huang et. al.)
Ours

124.07 N/A*
251.31 N/A*
0.247 0.0020

N/A* N/A* N/A*
26.86 55.44 4.17

3.62 94.35 3.03

*N/A = not reported
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Results - Effectiveness

0 Our method does not result in significant degradation in model accuracy.

[0 Limited degradation in accuracy (< 1%) between networks compressed using our
method and their fully connected counterparts.
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