
The Gardener’s Problem for Web Information Monitoring

Byron J. Gao1,2, Mingji Xia2, Walter Cai3, David C. Anastasiu1

1 Department of Computer Science, Texas State University – San Marcos, San Marcos, TX, USA
2 Computer Science Department, University of Wisconsin – Madison, Madison, WI, USA

3 Memorial High School, Madison, WI, USA

bgao@txstate.edu, xmjljx@gmail.com, walter.cai1@gmail.com, da1143@txstate.edu

ABSTRACT
We introduce and theoretically study the Gardener’s prob-
lem that well models many web information monitoring sce-
narios, where numerous dynamically changing web sources
are monitored and local information needs to be periodi-
cally updated under communication and computation ca-
pacity constraints. Typical such examples include mainte-
nance of inverted indexes for search engines and maintenance
of extracted structures for unstructured data management
systems. We formulate a corresponding multicriteria opti-
mization problem and propose heuristic solutions.

Categories and Subject Descriptors: H.1.0 [Informa-
tion Systems]: Models and Principles – General

General Terms: Theory, Algorithms, Performance

1. INTRODUCTION
A gardener has n plants to maintain. Each plant labeled i

needs to be maintained at least once every wi days and each
maintenance costs ci workload. The gardener has a daily
workload capacity of k on any day and k ≤ k on average.
Assuming all plants were maintained yesterday, find a fea-
sible schedule starting from today until forever so that all
plants are always maintained in time.

The Gardener’s problem well models many information
monitoring scenarios. Today we have unprecedented access
to information. Information depreciates in value with time.
Given a large number of dynamically changing sources to
monitor, it is important and challenging to make decisions
that keep the information as current as possible yet using as
few as possible resources [3].

The World Wide Web consists of a huge collection of de-
centralized pages that are modified at random times. Thus,
web information monitoring applications abound. For ex-
ample, maintenance of inverted indexes for search engines.
Due to the explosive growth of the web, crawling web pages
has become increasingly challenging. It would take up to
6 months for a new page to be indexed by popular search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

engines [4]. To substantially improve up-to-dateness of in-
verted indexes and save on network bandwidth, incremental
crawling [4, 8] was introduced, where crawlers estimate how
often pages change, and then schedule pages for revisit based
on their estimated change frequency and importance.

As another example, extracted structures (e.g., ER graphs)
in unstructured data management systems (e.g., DBLife [7]
developed in the context of community information man-
agement) need to be maintained periodically. The web is a
colossal free text publishing platform. Today the majority of
data appear unstructured and managing unstructured data
represents the largest opportunity since managing relational
data. An essential step in unstructured data management
is to extract structures embedded in unstructured data, en-
abling structured queries. Web sources are highly dynamic,
maintaining extracted structures is a labor intensive under-
taking, and developing scheduling techniques to improve up-
to-dateness and reduce maintenance cost is critical [7].

From the above-defined Gardener’s decision problem, var-
ious optimization versions can be derived based on tardiness
and workload. The measure tardiness is either 0 (maintained
in time) or a positive number indicating the number of days
after the due day of a maintenance. Parameter wi is the size
of the maintenance window for plant i. The notion of day
here is symbolic, it can be time slot of any length. A feasible
schedule is one satisfying all the given constraints.

Let K(d) be the workload of the gardener at day d, then
the daily average workload K = limt→∞ 1

t

Pt
d=1 K(d). The

inclusion of k in the problem definition allows us to derive
an optimization criterion that minimizes the total workload,
which is equivalent to minimizing K.

For the optimization version, we formulate a multicriteria
problem minimizing tardiness and workload simultaneously.
The Gardener’s problem is about maintenance scheduling.
While existing maintenance scheduling problems are single
objective [1, 2], real applications often involve several incom-
mensurable objectives that need to be optimized simultane-
ously. Taking into account of several criteria enables us to
propose more realistic solutions to the decision maker [11].

Multicriteria problems do not have a single optimal solu-
tion. Instead, all non-dominated solutions form an optimal
Pareto set. The entire problem solving procedure usually
involves a human decision maker, who evaluates the many
alternatives in the Pareto set and chooses the best trade-off.
Thus, beyond providing heuristics that generate alternative
schedules, we further utilize OLAP technology, allowing de-
cision makers to interactively evaluate these schedules by
navigating in a simulation cube.

1525

2. RELATED WORK
Web Information Monitoring. Although not a tech-

nical paper, [3] discusses the opportunities and challenges in
web information monitoring in a convincing manner.

[4, 8] propose incremental crawlers in an effort to keep
inverted indexes fresh. They do not discuss scheduling. [5]
theoretically studies a crawler scheduling problem minimiz-
ing the fraction of time pages spend out of date, assuming
Poisson page change processes and a general distribution for
page access time. We do not make such assumptions and we
focus on multicriteria maintenance scheduling.

Unstructured data management systems, e.g., DBLife [7],
provide an excellent testbed for studying web information
monitoring and maintenance scheduling.

Maintenance Scheduling. Scheduling theory first ap-
peared in the mid 1950’s. Scheduling concerns the allocation
of limited resources to tasks over time and is normally for-
mulated as optimization problems [10, 6].

Maintenance scheduling is a non-typical category of schedul-
ing problems. Instead of completion time, it concerns pe-
riodic in-time maintenance of jobs over a long time span.
[1, 2] theoretically studied the windows scheduling problem,
which is similar to the Gardener’s problem but without the
specification of k. By including k, the Gardener’s problem
allows as to derive optimization problems minimizing to-
tal workload, which is much desirable in web information
monitoring, e.g., to save on total bandwidth. Their prob-
lems, however, minimize the maximum daily workload over
all days, which does not directly lead to minimized average
daily workload and equivalently total workload.

Multicriteria Maintenance Scheduling. Multicrite-
ria optimization has been studied for decades [9]. An ex-
cellent overview for multicriteria scheduling can be found in
[11]. Maintenance scheduling has not been extensively stud-
ied. To our knowledge, multicriteria maintenance scheduling
has not been explored previously.

3. THEORETICAL RESULTS
In this section, we study interesting properties of the Gar-

dener’s problem, its NP-hardness and approximation.

Notations. We use a tuple (k, k, (c1, w1), . . . , (cn, wn))
to denote an instance of the Gardener’s problem. In the
instance, each plant i has a maintenance window of size
wi and maintenance cost of ci. The maintenance window
constraint requires a plant to be maintained at least once
within its arbitrarily located maintenance window.

We use K(d) to denote the workload of the gardener at
day d, Kmax to denote the largest daily workload over all
days. Then the total workload of the gardener in the first
t days K(t) =

Pt
d=1 K(d), and the average daily workload

K = limt→∞ 1
t

Pt
d=1 K(d) = limt→∞

K(t)
t

. We also define
Ω =

Pn
i=1

ci
wi

.

We say a schedule is periodic if and only if there exists τ
such that for any day d, the plants scheduled to be main-
tained are identical to the ones for day d + τ . In a strictly
periodic schedule, each plant labeled i is maintained exactly
once every wi consecutive days.

Properties. We prove the following properties.

Property 1. For any feasible schedule, K ≥ Ω.

Proof. We divide the schedule into blocks of length b =
lcm(w1, . . . , wn), the least common multiple of {w1, . . . , wn}.

By the maintenance window constraint, plant i is scheduled
to be maintained at least b

wi
times in each block, and the

average daily workload in each block is at least
Σn

i=1
cib
wi

b
= Ω.

Now consider the K(t)
t

sequence of this schedule. Suppose

t = pb+t′, where 0 ≤ t′ < b. K(t)
t
≥ pb

t
Ω. Since limt→∞ pb

t
=

1, limt→∞
K(t)

t
≥ Ω.

Property 2. If there is a schedule for (k, k, (c1, w1), . . . ,

(cn, wn)), there exists a periodic schedule for (k, k
′
, (c1, w1),

. . . , (cn, wn)) for some number k
′
.

Proof. Suppose there is a (Kmax, K) schedule X for in-
stance ((c1, w1), . . . , (cn, wn)). We divide X into blocks of
length b = max{w1, . . . , wn}. Since the number of types
of blocks is finite, there exists a block appearing twice in
X. Suppose S, S1, . . . , Sm, S is part of X that contains two
appearances of block S.

Consider schedule S, S1, . . . , Sm, S, S1, . . . , Sm, S, Ob-
viously, its largest daily workload is no more than Kmax ≤ k.
Now we show the schedule also satisfies the maintenance
window constraint for each plant. For any plant i, any wi

consecutive days in the schedule must be contained in two
blocks that are also part of the original schedule. Hence,
plant i is scheduled at least once in these wi days.

Property 3. If there is a schedule for (k, k, (c1, w1), . . . ,
(cn, wn)), then for any ε > 0 there exists a periodic schedule
for (k, k + ε, (c1, w1), . . . , (cn, wn)).

Proof. Let X be a schedule for (k, k, (c1, w1), . . . , (cn, wn)).
We divide X into blocks of length b = max{w1, . . . , wn}.
Since the number of types of blocks is finite, there must be
a block that appears infinite number of times in X. Let S be
such a block, and dj be the last day of the jth appearance of
S. We divide the schedule into supper-blocks, {0, . . . , d1},
{d1 +1, . . . , d2}, ..., denoted by u1, u2, Let K(uj) denote
the total maintenance costs of plants in uj , and |uj | denote
the number of days in supper-block uj .

Consider the subsequence {K(dj)

dj
}, j = 1, 2, . . . of sequence

{K(t)
t
}, t = 1, 2, Since

lim
j→∞

K(dj)

dj
≤ lim

t→∞
K(t)

t
≤ k and lim

m→∞
m

m− |u1| = 1,

there exists m s.t. K(dm)
dm

< k + ε/4 and m
m−|u1| < k+ε/2

k+ε/4
.

Since K(dm)
dm

= Σm
j=1(

|uj |
m
· K(uj)

|uj |)

= |u1|
m

K(u1)
|u1| + m−|u1|

m
(Σm

j=2
|uj |

m−|u1| ·
K(uj)

|uj |),

Σm
j=2

|uj |
m− |u1| ·

K(uj)

|uj | < (k + ε/4)
m

m− |u1| < k + ε/2.

Note that the left-hand side is a weighted average number

of
c(uj)

|uj | , so there exist j′ such that
c(uj′)
|uj′ |

< k + ε/2.

We now construct a periodic schedule S, uj′ , uj′ , By

Property 2, this is a (Kmax, K) schedule. We only need to
prove K < k + ε.

We can find a large enough number m′, such that the con-

tribution of days not in the whole period of K(m′)
m′ is smaller

than ε/2. Since in the period uj ,
K(uj′)
|uj′ |

< k + ε/2, the

conclusion follows.

1526

Hardness. We first prove the Gardener’s problem is NP-
hard by a reduction from the Bin Packing problem. Then we
give a stronger NP-hardness result for the unweighted Gar-
dener’s problem, where the maintenance costs for all plants
are 1. The idea is to let k′ = Ω and force any feasible sched-
ule to be strictly periodic.

Theorem 3.1. The Gardener’s problem is NP-hard.

Proof. Let I = (w, k, c1, . . . , cn) be an instance of the
NP-hard Bin Packing problem, which asks whether n items
(plants) with weights c1, . . . , cn can be packed into w bins,
each having capacity k.

We reduce I to I ′ = (k, k = k, (w, c1), . . . , (w, cn)), an
instance of the Gardener’s problem.

If I has a solution, there is a solution for I ′, where the
plants scheduled on day d + wt (t ∈ N) are exactly the
plants in the dth bin.

If I ′ has a feasible solution, then each plant is scheduled
at least once in the first w days. Since the maximum daily
workload is k, we can pack all plants into w bins.

Theorem 3.2. The unweighted Gardener’s problem is NP-
hard.

Proof. An NP-hardness proof [1] is given for a variant
of the Gardener’s problem, where there is no k specification,
k = 1, and the task is to find a strictly periodic schedule.

Given I as an instance of the unweighted Gardener’s prob-
lem, we ask whether there is a schedule with k = 1 and
k = Ω. If there is a strictly periodic schedule for I, since its
average workload is Ω, it is also a feasible schedule for I for
the Gardener’s problem.

We say a segment of length lcm(w1, . . . , wn) of a sched-
ule is good if in a concatenation of two such segments, the
distance between each two consecutive appearances of any
plant i is exactly wi − 1. Obviously, if there is a good seg-
ment, there is a strictly periodic solution.

If there is a solution for I, by Property 3, for any ε, there
is a (k, k + ε) periodic solution. Here we need to do some
minor modification for the proof of property 3. Instead of
having b = max{w1, . . . , wn}, we let b be lcm(w1, . . . , wn)
multiplied by 4 ·max{w1, . . . , wn}. We take ε < 1

b
. Suppose

τ = λb is the period of this periodic solution. The average
workload of one period is less than Ω + ε.

In a strict period, in which all plants are strictly period-
ically scheduled, the average workload is Ω. Now, we can
have at most ετ = λ more plants than the strict period. We
divide one period into λ blocks of length b. There must be
one block that gets at most one more plant than the strict
period for this block. Suppose this plant is the ith one. In
this block, there are at most wi pairs of consecutive appear-
ances of plant i having distance less than wi − 1. We divide
this block into 4·max{w1, . . . , wn} segments. These wi pairs
will make at most 2wi segments not good. There is at least
one good segment left in this block, hence there is a strictly
periodic solution.

Approximation. Since it is hard to decide whether there
is a solution satisfying k, it is hard to give an approximation
algorithm optimizing K while satisfying k. In the following
we show a simple algorithm that gives a 4-approximation for
the Gardener’s problem minimizing K.

Lemma 3.1. Given k, ((c1, w1), . . . , (cn, wn)), an instance
of the Gardener’s problem minimizing K, where each wi has

a form of 2q and each ci, 0 < ci ≤ 1, has the form of 2−q.
There exists a schedule with workload Ω + 2.

Proof. Suppose 2s = max{w1, . . . , wn}, and Ps is the
set of all plants with window size of 2s. Let Cs denote the
summation of the maintenance costs of plants in Ps.

We first pack all plants in Ps into dCse bins of size 1.
Then we merge every two bins into a plant with window
size of 2s−1. Thus, we can replace all plants in Ps by
ddCse/2e plants with window size of 2s−1 to get a new in-
stance I ′. If I ′ has a (Kmax, K) solution, we can get a
(Kmax, K) solution for the original instance I. ΩI′ − ΩI =
(2ddCse/2e − Cs)2

−s ≤ 21−s.
For I ′, the largest window size is 2s−1. We repeat the

same process until we get an instance I ′′ with the largest
window size of 1. ΩI′′ − ΩI ≤

P1
i=s 21−i ≤ 2. Since I ′′ has

a solution with workload ΩI′′ , there is a solution for I with
workload no more than ΩI + 2.

Theorem 3.3. There exists a polynomial time algorithm
for the Gardener’s problem that gives a schedule with work-
load no more than 4Ω+ 2. The average daily workload K of
this schedule is also no more than 4Ω + 2.

Proof. Given an instance I for the Gardener’s problem,
we get a new instance I ′ by rounding each wi to the maxi-
mum number in the form of 2q that is no more than wi, and
each cost ci to the minimum number in the form of 2q that
is no less than ci.

Since each ci and each 1
wi

are enlarged no more than twice,

by the definition of Ω, ΩI′ ≤ 4ΩI . Applying lemma 3.1 to I ′

gives us a schedule with workload no more than 4Ω + 2.

Note that Ω is a lower bound for both workload and av-
erage daily workload by Property 1.

4. THE OPTIMIZATION PROBLEM
In this section, we present a multicriteria formulation for

the Gardener’s optimization problem, for which we propose
a heuristic scheduling algorithm MMEDD.

Measures and Objectives. In the Gardener’s problem,
we have two measures: tardiness and workload, from which
we can derive various objective functions, or criteria.

For a plant i, there are many tardiness values, one for
each maintenance day. Let Ti(d) be its tardiness of main-
tenance at day d. We define Ti(d) = 0 if plant i is not
maintained on day d. Then for plant i, the largest tardi-
ness Ti = limt→∞max1≤d≤t{Ti(d)}, and the average tardi-
ness T i = limt→∞ 1

t

Pt
d=1 Ti(d). Then, the largest tardiness

Tmax and average tardiness T over all plants are

Tmax = max
1≤i≤n

{Ti} T =
1

n

nX
i=1

Ti

We use K(d) to denote the workload of the gardener at
day d, then the largest daily workload Kmax and average
daily workload K over all days are

Kmax = lim
t→∞

max
1≤d≤t

{K(d)} K = lim
t→∞

1

t

tX

d=1

K(d)

Minimization of Tmax, T , Kmax and K are all reasonable
objectives. For web information monitoring applications,
usually there is a hard constraint given for Kmax, and min-
imizing T and K is much desirable.

1527

Problem Definition. A gardener has n plants to main-
tain. Each plant labeled i needs to be maintained at least once
every wi days and each maintenance costs ci workload. The
gardener has a daily workload capacity of k. Let K be the
average daily workload over all days. Let T be the average
tardiness over all days and all plants. Assuming all plants
were maintained yesterday, find a feasible schedule starting
from today until forever so that K and L are minimized.

We use a tuple, (k, (c1, w1), . . . , (cn, wn)), to denote an
instance of the above Gardener’s optimization problem. The
problem is NP-hard. A multicriteria problem is NP-hard if
the optimization of a single criterion is NP-hard. In the
following we propose greedy heuristics.

EDD. A simple greedy algorithm EDD (Earliest Due Day
first) provides optimal solutions for many non-maintenance
scheduling problems minimizing the maximum tardiness [6].
In EDD, jobs (plants) are ordered by non-decreasing order
of due dates and scheduled in that order.

However, if used in maintenance scheduling, EDD would
“exhaust”the gardener. Consider a simple instance with n =
2, w1 = w2 = 365, c1 = c2 = 1, and k = 2. Optimally, the
gardener only needs to work one day a year if he maintains
plants 1 and 2 on their due days. However, with EDD, the
gardener would maintain the two plants every day and work
365 days a year! Instead of early completion, maintenance
scheduling concerns long-term in-time maintenance. Jobs
will not be completed. Each maintenance of a job simply
generates a new due day for the same job. EDD would end
up generating too many due days unnecessarily.

MEDD. MEDD is a maintenance version of EDD that
minimizes tardiness while concerning workload. Algorithm 1
presents the pseudocode of MEDD.

Let Li denote the current lateness of plant i, i.e., the
number of days after its current due day. The difference be-
tween lateness and tardiness is that lateness can be a nega-
tive value, indicating the due day is in the future. Obviously,
“earliest due day first” is the same as “largest lateness first”.

In the algorithm, we first calculate the lateness for each
plant based on its current due day (line 1). Then, we sort all
plants in non-increasing order of lateness (line 2). We use the
smallest cost first criterion to break ties in order to maintain
more plants. Then, we choose as many as possible (satisfying
the k constraint) the top ranked plants with lateness ≥ 0 to
maintain. kresidue is the remaining capacity that can be
used to maintain some plants due in the future (line 3).
Let wmax be the maximum window size (line 4). Assign to
c the estimated total maintenance cost in the next wmax

days assuming all plants are maintained on their due days
(line 5). Then assign to overload the difference of c and the
accumulated capacity over wmax days (line 6).

At this point, the non-negative overload represents the
workload absolutely needed in the next mmax days in order
to maintain all plants in time. Thus we would not waste
any workload if we spend min(kresidue, overload) workload
to relieve some maintenance pressure for the future. So we
choose some plants (line 7, to be explained shortly) that use
up min(kresidue, overload) ≤ k to maintain (line 8). Plants
in M1 are due earlier or today. Plants in M2 are due in
the future but the workload is well spent. They together
form the set M of plants scheduled to maintain (line 9). We
assume the plants in M are always maintained as scheduled,
thus we update the due days for all of them (line 10).

Algorithm 1 MEDD

Input: (k, (c1, w1), . . . , (cn, wn))
Output: M : a set of labels for plants scheduled to be maintained
1: calculate Li for each plant i;
2: sort the plants in non-increasing order of lateness, breaking ties

smallest cost first and then largest window first;
3: choose the set of top plants M1 such that kresidue = k −P

i∈M1
ci ≥ 0 and ∀i ∈ M1, Li ≥ 0;

4: wmax ← max(w1, w2, . . . , wn);
5: c ← estimate the total maintenance cost in the next wmax days

assuming all plants are maintained on their due days;
6: overload ← max(0, c− wmax ∗ k);
7: sort the plants in non-decreasing order of wasteness;
8: choose the set of top plants M2 such that

P
i∈M2

ci ≤
min(overload, kresidue);

9: M ← M1 ∪M2;
10: update the due day for each plant i ∈ M ;

In line 7, it may seem more natural to use the same crite-
ria as in line 2, largest lateness first, to select plants. How-
ever, there is a fundamental difference. In line 2, we want
to choose some plants that are due already. In line 7, we
want to choose some plants that are due in the future. An
early maintenance incurs wasteness of workload, where the
wasteness of plant i is defined as Li

wi
ci. Here Li represents

the wasted days. It is normalized by wi and weighted ci.

MMEDD. MEDD still emphasizes minimizing tardiness
as in EDD but uses workload wisely. It returns a good sched-
ule with respect to the given daily capacity k.

MMEDD, the multicriteria version of MEDD, tries to find
other good alternative schedules with respect to some k′ <
k. We can simply repeatedly generate some k′ < k and feed
(k′, (c1, w1), . . . , (cn, wn)) to MEDD.

5. CONCLUSION
We focused on theoretical aspects of the Gardener’s prob-

lem. The implemented OLAP system with built-in sched-
ulers is available at http://dmlab.cs.txstate.edu/scube/, as
well as a more complete technical report with experiments.

Although our study is in the context of web information
monitoring, our results and approaches can be applied to
applications related to information monitoring in general,
e.g., materialized view maintenance in data warehouses.

6. REFERENCES
[1] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing

service and operation costs of periodic scheduling.
Mathematics of Operations Research, 27(3):518–544, 2002.

[2] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling
as a restricted version of bin packing. ACM Transactions on
Algorithms, 3(3), 2007.

[3] B. E. Brewington and G. Cybenko. Keeping up with the
changing web. IEEE Computer, 33:52–58, 2000.

[4] J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. In SIGMOD, 2000.

[5] E. Coffman, Z. Liu, and P. Weber. Optimal robot scheduling
for web search engines. Journal of Scheduling, (1):15–29, 1998.

[6] C. S. David R. Karger and J. Wein. Scheduling Algorithms.
Algorithms and Theory of Computation Handbook, 1998.

[7] A. Doan et al. Community information management. IEEE
Data Engineering Bulletin, 29(1):64–72, 2006.

[8] J. Edwards, K. McCurley, and J. Tomlin. An adaptive model
for optimizing performance of an incremental web crawler. In
WWW, 2001.

[9] M. Ehrgott. Multicriteria optimization. Springer, 2005.

[10] M. Pinedo. Scheduling - Theory, Algorithms, and Systems.
Prentice Hall, 1995.

[11] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling.
Springer, 2006.

1528

