
World Wide Web (2013) 16:1–29
DOI 10.1007/s11280-011-0154-0

A novel two-box search paradigm
for query disambiguation

David C. Anastasiu · Byron J. Gao ·
Xing Jiang · George Karypis

Received: 12 May 2011 / Revised: 2 December 2011 /
Accepted: 7 December 2011 / Published online: 28 December 2011
© Springer Science+Business Media, LLC 2011

Abstract Precision-oriented search results such as those typically returned by the
major search engines are vulnerable to issues of polysemy. When the same term
refers to different things, the dominant sense is preferred in the rankings of search
results. In this paper, we propose a novel two-box technique in the context of Web
search that utilizes contextual terms provided by users for query disambiguation,
making it possible to prefer other senses without altering the original query. A
prototype system, Bobo, has been implemented. In Bobo, contextual terms are
used to capture domain knowledge from users, help estimate relevance of search
results, and route them towards a user-intended domain. A vast advantage of Bobo
is that a wide range of domain knowledge can be effectively utilized, where helpful
contextual terms do not even need to co-occur with query terms on any page. We
have extensively evaluated the performance of Bobo on benchmark datasets that
demonstrates the utility and effectiveness of our approach.

Keywords two-box search · query disambiguation · domain knowledge · web search

A preliminary version of this paper was published in the Proceedings of the 23rd International
Conference on Computational Linguistics (COLING’10) [12].

D. C. Anastasiu · B. J. Gao (B)
Texas State University-San Marcos, 601 University Drive, San Marcos, TX 78666, USA
e-mail: bgao@txstate.edu

D. C. Anastasiu
e-mail: da1143@txstate.edu

X. Jiang
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore
e-mail: jian0008@ntu.edu.sg

G. Karypis
University of Minnesota, 4-192 EE/CS Building, 200 Union Street SE,
Minneapolis, MN 55455, USA
e-mail: karypis@cs.umn.edu

2 World Wide Web (2013) 16:1–29

1 Introduction

World Wide Web and search engines have become an indispensable part of every-
one’s everyday life. While Web search has come a long way over the past 10 years, it
still has a long way to go to respond to the ever-increasing size of the Web and needs
of Web surfers. Today, Web search is under intensive and active research, drawing
unparalleled attention from both industry and academia.

Need of disambiguation One of the major challenges in Web search lies in unsatis-
factory relevance of results caused by ambiguity. Query terms are inherently ambigu-
ous due to polysemy, and most queries are short, containing 1 to 3 terms only [17].
Thus queries are in general prone to ambiguity of user intent or information needs,
resulting in retrieval of many irrelevant pages. As the Web size grows at an increasing
rate, ambiguity becomes ubiquitous and users are in greater need of effective means
of disambiguation. The ambiguity issue and its consequences are demonstrated in
Example 1.

Example 1 There are 17 entries in Wikipedia for different renown individuals under
the same name of “Jim Gray”, including a computer scientist, a sportscaster, a
zoologist, a politician, a film director, a cricketer, and so on. Suppose we intend to
find information about Jim Gray”, the Turing award winner, we can issue a query
of “Jim Gray” in Yahoo!.1 For this extremely famous name in computer science,
only 3 are relevant in the top 10 results. They are his Wikipedia entry, homepage at
Microsoft Research, and DBLP entry.

Straightforward query ref inement approach One intuitive way of disambiguation
would be to apply available domain knowledge and refine the query by adding some
confining contextual terms. This would generally improve precision and work well
for navigational queries (queries that seek a single website or Web page of a single
entity), but is problematic for informational queries (queries that cover a broad topic
for which there may be thousands of relevant results), which account for the majority
of Web queries [4, 31].

There are several inevitable problems in this approach. First, the improvement on
precision is at the sacrif ice of recall. For example, many Jim Gray” pages may not
contain the added contextual terms and are thus excluded from the search results.

Second, the query is altered, leading to unfavorable ranking of results. Term prox-
imity matters significantly in ranking [26]. Some good pages w.r.t. the original query
may be ranked low in the new search results because of worsened term proximity and
relevance w.r.t. the new query. Thus, with this straightforward approach only limited
success can be expected at best, as demonstrated in Example 2.

Example 2 Suppose we know that Jim Gray” is a computer scientist, we can issue
a query of “Jim Gray computer”. All the top 10 results are about Jim Gray” and
relevant. However, many of them are trivial pages, failing to include 2 of the 3 most
important ones. His DBLP entry appears as the 27th result, and his homepage at
Microsoft Research appears as the 51st result.

1Other choices of search engine in the examples would not change the validity of the observations.
Also note that search results and their ranks returned by search engines may change over time.

World Wide Web (2013) 16:1–29 3

Figure 1 Snapshot of Bobo.

This limited success is achieved by using a carefully selected contextual term.
“Computer” is a very general term appearing on most of the Jim Gray” pages.
Also, there are no other competitively known computer people with the same name.
Most other contextual terms would perform much worse. Thus a third problem of
this straightforward query refinement approach is that only few contextual terms,
which may not be available to users, would possibly achieve the limited success.
Often, much of our domain knowledge would cause more damage than repair and
is practically unusable, as demonstrated in Example 3.

Example 3 Suppose we know that Jim Gray” has David DeWitt as a close friend and
colleague, we can issue a query of “Jim Gray David DeWitt”. Again, all the top 10
results are about Jim Gray” and relevant. However, the theme of the query is almost
completely altered. Evidently, the first result “Database Pioneer Joins Microsoft to
Start New Database Research Lab”, among many others, talks about David DeWitt.
It is relevant to Jim Gray” only because the lab is named “Jim Gray Systems Lab” in
his honor.

The Bobo approach Can we freely apply our domain knowledge to effectively
disambiguate search intent and improve relevance of results without altering the
original query? For this purpose, we propose and implement Bobo, a two-box search
paradigm.

Figure 1 shows a snapshot of Bobo. For conceptual clarity, the default Bobo
interface features two boxes. Besides a regular query box, an additional box is used
to take contextual terms from users that capture helpful domain knowledge.

Contextual terms are used for disambiguation purposes. They do not alter the
original query defined by query terms. Particularly, unlike in the straightforward
approach, positive contextual terms are not required to be included in search results

4 World Wide Web (2013) 16:1–29

and negative contextual terms are not required to be excluded from search results.
Contextual terms help estimate relevance of search results, routing them towards a
user intended domain, filtering out those not-in-domain, or irrelevant, results.
Bobo works in two rounds. In round I, a query is issued using by default the

combination of query terms and contextual terms, or just the contextual terms if the
query returns too few results. Then from the results, some top-ranked high-quality
pages are (automatically) selected as seeds. In round II, a query is issued using the
query terms. Then the results are compared with the seeds and their similarities are
computed. The similarity values reflect the degree of relevance of search results to
the user intent, based on which the results are re-ranked.

Example 4 reports the Bobo experiment using the same contextual terms as in
Example 3.

Example 4 As in Example 3, suppose we know Jim Gray” has David DeWitt as a
colleague. Then with Bobo, we can enter “Jim Gray” in the query box and “David
DeWitt” in the auxiliary box. As a result with default preferences, all the top 10
results are relevant including all the top 3 important Jim Gray” pages. From the
top 10, only 1 page, the DBLP entry, contains “David DeWitt” as they coauthored
papers. The theme of the query is not altered whereas in Example 3, all the top 10
results contain “David DeWitt”.

In Example 4, the selected seeds are relevant to Jim Gray”. Observe that seeds can
be useful if they are relevant to the user-intended domain, not only the user-intended
query. Bobo works effectively with such seeds and thus can utilize a much expanded
range of domain knowledge. Helpful contextual terms do not even need to co-occur
with query terms on any page. They only need to occur, possibly separately, on some
pages of the same domain, as demonstrated in Example 5.

Example 5 Using the criteria of being in the same community as Jim Gray” but co-
occuring on no web pages, we randomly chose a student name, Flavia Moser. In
Bobo, we entered “Jim Gray” in the query box, “Flavia Moser” in the auxiliary box,
and used only the contextual terms for the round I query. As a result, 11 of the top 12
results were relevant including all the top 3 important Jim Gray” pages. Of course,
none of the returned pages contain “Flavia Moser”.

Note that, although we introduce the two-box paradigm in the context of Web
search, the same idea can be applied to other information retrieval systems such as
traditional archival information retrieval and multimedia information retrieval.

2 Related work

Disambiguating search intent, capturing information needs and improving search
performance have been a fundamental research objective in information retrieval
and have been studied from different perspectives. In this section we review related
work in these areas.

Text classif ication and routing [41] shows that disambiguation cannot be easily
resolved using thesauruses. The filtering problem [2, 35] views disambiguation as
a binary text classification task assigning documents into one of the two categories,

World Wide Web (2013) 16:1–29 5

relevant and irrelevant. The routing problem [36, 38] differs from text classification
in that search results need to be ranked instead of just classified [14].

Contextual and personalized search Contextual search [11, 22, 23, 28], personalized
search [16, 18, 39, 46], and implicit relevance feedback [19, 21, 43] generally utilize
long-term or short-term [6] search history to build explicit or implicit user profiles.
These profiles are used on a regular basis to guide many queries. Such approaches
entail little extra user involvement in search and can be effective in some settings.
However, building effective user profiles is a time-consuming process. There are also
profile management costs and privacy issues. More importantly, these techniques are
inflexible in context switching. In many cases, users may intend to fulfill occasional
information needs that differ from their usual preferences stored in the profiles.

Relevance feedback Explicit and pseudo relevance feedback (RF) techniques [2, 26,
32, 45] are more related to our two-box approach in the sense that they do not build
long-term profiles. Instead, they construct a one-time search context that is used only
once to guide a single query each time. Such approaches enjoy the flexibility of being
able to switch spontaneously from one domain to another in response to different
information needs.

RF is regarded as the most popular query reformation strategy [2]. It iterates
in multiple rounds, typically two, to modify a query step by step. Explicit RF asks
explicit feedback from users, whereas pseudo (or blind) RF assumes relevance of
top-ranked results. The problem of explicit RF is that it requires too much user
involvement. Users are often reluctant to provide explicit feedback, or do not wish
to prolong the search interaction. Web search engines of today do not provide this
facility. Excite.com initially included but dropped it due to the lack of use [26].

Pseudo RF, first suggested by Croft and Harper [8] and since widely investigated,
automates the manual part of RF, so that users get improved search performance
without extended interactions. Psuedo RF has been found to improve performance
in the TREC ad hoc task and Cornell SMART system at TREC-4 [5]. Unfortunately,
pseudo RF suffers from a major flaw, the so-called query drift problem. Query drift
occurs when the feedback documents contain few or no relevant ones. In this case,
search results will be routed farther away from the search intent, resulting in even
worse performance. Different approaches [24, 25, 27, 44] have been proposed to
alleviate query drift but with little success. Some queries will be improved, others
will be harmed [32].

Similarly to RF, two-box search works in two rounds. Similarly to pseudo RF,
it uses top-ranked round I results as seeds (pseudo feedbacks). However, two-box
search and RF differ fundamentally in various aspects.

First, two-box search is not a query reformation technique as RF. In RF, the
automatically generated additional terms become part of the reformed query to be
issued in round II, while in two-box search, the user-input contextual terms are not
used in round II. The terms generated by RF may work well as contextual terms for
two-box search but not the other way around. In general, effective contextual terms
form a much larger set.

In query reformation, it is often hard to understand why a particular document
was retrieved after applying the technique [26]. In two-box search, the original query
is kept intact and only the ranking of search results is changed.

6 World Wide Web (2013) 16:1–29

Second, in RF only query terms are used in round I queries. In two-box search,
by default the combination of query terms and contextual terms, both entered by
users, is used, leading to much more relevant seeds that are comparable to explicit
RF. In this sense, two-box search provides a novel and effective remedy for query
drift. Beyond that, two-box search can also use contextual terms only to obtain
seeds that are relevant to the user-intended domain and not necessarily to the user-
intended query, leading to effective utilization of a largely expanded range of domain
knowledge.

Third, RF can have practical problems. The typically long queries (usually more
than 20 terms) generated by RF techniques are inefficient for IR systems, resulting
in high computing cost and long response time [26]. In two-box search, however,
both query terms (1 to 3) and contextual terms (1 to 2) are short. A round I query
combining the two would typically contain 2 to 5 terms only.

The most well-known algorithm for RF is Rocchio [30, 33]. Originally developed
for query optimization, Rocchio is essentially a linear classifier and can be adapted
to text categorization and routing problems. Rocchio uses prototypes or centroids
of training instances to represent different classes. It is simple and efficient, but
inaccurate if classes are not approximately spheres with similar radii. In later sections
we will talk about Rocchio in more detail as well as its improvement in the presence
of polymorphic (disjunctive) domains.

Query expansion and feedback forms Query expansion can be considered as an
automatic query reformation technique that is useful for short queries. It works by
adding expanding terms into the original query to better guide the search. The ex-
panding terms are selected by using manually built [41] or automatically constructed
thesauruses [29]. Query logs can also be employed to mine the relationship between
query terms and document terms [9], and then the expanding terms can be chosen
from those highly related document terms. Some recent query expansion methods
use click-through and session data for selecting better expanding terms [7, 37].

In Section 1, we discussed the drawbacks of the straightforward query refinement
approach. Query expansion would suffer from similar problems. While it can be
effective for navigational queries, it trades significant recall for precision and is not
good for informational queries. Unlike query expansion, two-box search is not a
query reformation technique and it does not alter the original query.

Kelly et al. [20] investigates a technique encouraging users to be more loquacious.
It elicits additional terms from users regarding their information needs in a feedback
form when ambiguous queries are initially posed. Kelly et al. [20] found that
search performance could be substantially improved showing that eliciting more
information from the user to produce longer queries is a good technique. Different
from RF, the terms are not automatically generated but elicited from users. However,
this is again a query reformation technique, while two-box search is not.

Directory Another straightforward way of disambiguation would be to organize
Web pages into different categories or domains, as in the Open Directory Project,2

and search in a selected one. However, this approach suffers from various problems,

2www.dmoz.org/

http://www.dmoz.org/

World Wide Web (2013) 16:1–29 7

e.g., inaccuracy of categorization, high maintenance cost, and inflexibility in search
since the domains are predetermined. In addition, navigating in the domain hierarchy
is much less favorable for users than keyword input.

3 Overview

In this section we provide an overview of the design and implementation of Bobo,
our prototype system implementing two-box search.

3.1 Design overview

Bobo uses the vector space model, where both documents and queries are repre-
sented as vectors in a discretized vector space. Documents used in similarity compar-
ison can be in the form of either full pages or snippets. Documents are preprocessed
and transformed into vectors based on a chosen term weighting scheme, e.g., TF-IDF.

The architecture of Bobo is shown in Figure 2. Without input of contextual terms,
Bobo works exactly like a mainstream search engine and the dashed modules will
not be executed. Input of contextual terms is optional in need of disambiguation of
user intent. Domain knowledge, directly or indirectly associated with the query, can
be used as “pilot light” to guide the search towards a user-intended domain. The user
may not even know what domain her search intent is in. In this case, based on our
method, as long as she knows some terms that are in the same unknown domain, she
can use them as contextual terms.

With input of contextual terms, Bobo works in two rounds. In round I, a query
is issued using by default the combination of query terms and contextual terms, or
just the contextual terms if they are unlikely to co-occur much with the query terms.
Then from the results, the top κ documents (full pages or snippets) satisfying certain
quality conditions, e.g., number of terms contained in each seed, are selected as seeds.
Optionally, seeds can be cleaned by removing the contained query terms to reduce
background noise of individual seeds, or purif ied by removing possibly irrelevant
seeds to improve overall concentration. Contextual terms themselves can be used as
an elf seed, which is a special document allowing negative terms, functioning as an
explicit feedback.

In round II, a query is issued using the query terms. Then, each returned result
(full page or snippet) is compared to the seeds to compute a similarity using
a designated similarity measure, Jaccard coefficient or Cosine coefficient. In the
computation, seeds can be combined to form a prototype as in Rocchio, or not

round I

round II

search
engine

seed
quality
control

query terms+ contextual terms
or

contextual terms

round I
results

seeds

search
engine

similarity
computation query terms

round II
results

re-ranked
round II
results

Figure 2 Architecture of Bobo.

8 World Wide Web (2013) 16:1–29

combined, as in instance-based lazy learning, to better capture locality and handle
polymorphic domains. Based on the assumption that seeds are highly relevant, the
similarity values estimate the closeness of search results to the user intent, based on
which the results are re-ranked.

3.2 Implementation overview

Bobo was implemented to take advantage of multiple search data sources, including
search engines such as Google and Yahoo! and local Lucene-based indexes. For each
query, Bobo retrieves up to 1000 results from the data source, though as little as
30 results are sufficient for Bobo to be effective. To evaluate how various factors
affect performance, multiple user preferences are provided in Bobo, although most
of them can be automated for a more user-friendly interface. Default preferences use
conventional schemes whenever possible, e.g., TF-IDF term weighting and Cosine
similarity, to make Bobo more transparent in emphasizing the key idea responsible
for the performance improvement.

Retrieving query results In order to easily test Bobo with multiple search engines
and data sources, we created a Web service, named AbstractSearch, responsible
for hiding query execution details. It runs as a separate Java Enterprise Edition
application and redirects query requests to Apache Lucene for local document
inverted indexes, the Google AJAX Search API,3 or Yahoo! Search API.4

AbstractSearch interprets received query parameters into parameters specific to
the requested search source. For example, Google AJAX Search API expects a
zero-based first requested result parameter, while Yahoo! Search API and Apache
Lucene expect a one-based equivalent parameter.

AbstractSearch also speeds up query execution by parallelizing requests to the
search source. While there is no limit to the number of results that can be requested
from a local Lucene index, the Google API can retrieve a maximum of 8 results per
request and a total of 64 results per query, while the Yahoo! API can retrieve 100
results per request and a total of 1000 results per query. The multi-threaded parallel
execution of requests allows 500 Yahoo! results (executed using 5 Yahoo! requests)
to be returned in less than 2 s instead of the 8 s it would take if the requests were
executed sequentially. AbstractSearch returns the entire requested result set at once
as either XML or JSON data.

Preprocessing Depending on user chosen preferences, Bobo uses the title and
either the snippet or document body to represent a retrieved search result docu-
ment. Each result document is analyzed with the Lucene StandardAnalyzer5 and
transformed into a bag of terms. The terms are then added to an index of collection
terms spanning all retrieved search result documents, and each term is associated with
a numeric index id. Document frequency and collection frequency are also recorded
for each term. Further textual processing such as similarity computation is done using
the assigned numeric term and document ids to increase efficiency.

3code.google.com/apis/ajaxsearch/
4developer.yahoo.com/search/web/V1/webSearch.html
5www.docjar.com/docs/api/org/apache/lucene/analysis/standard/StandardAnalyzer.html

http://code.google.com/apis/ajaxsearch/
http://developer.yahoo.com/search/web/V1/webSearch.html
http://www.docjar.com/docs/api/org/apache/lucene/analysis/standard/StandardAnalyzer.html

World Wide Web (2013) 16:1–29 9

Table 1 Bobo execution times for a typical query over multiple search sources.

Source Doc. type Total time Retrieving results Preprocessing Similarity comp.

Yahoo! snippets 0.956 s 0.950 s 0.005 s 0.598 ms
Google snippets 0.274 s 0.267 s 0.006 s 0.982 ms
Lucene snippets 0.090 s 0.074 s 0.015 s 0.609 ms
Yahoo! full page 137.026 s 136.244 s 0.739 s 0.043 s
Google full page 84.650 s 83.939 s 0.680 s 0.031 s
Lucene full page 0.121 s 0.100 s 0.015 s 0.006 s

As in other average preprocessors, Bobo does not parse JavaScript, which can
lead to missed dynamic content retrieved via AJAX calls in certain Web pages.

3.3 Usability

In terms of usability, the keyword input interface is very user-friendly. Moreover,
Bobo is not picky on contextual terms. A large range of domain knowledge would
help and users do not have to ponder over the choice of contextual terms. Note that,
instead of using an additional auxiliary box, Bobo allows putting query terms and
contextual terms in the same box and separate them with a “/” delimiter. Bobo uses
two boxes by default only for better conceptual clarity.

In Bobo, for a typical two-box query, the time spent on everything except for page
downloading and preprocessing is less than 1 s. Table 1 shows search times averaged
over 10 executions for a 50 result query using three search data sources: Google
Search, Yahoo! Search, and a local Lucene inverted index. Note that the majority
of the time is spent retrieving results, while the parts of the algorithm Bobo is mainly
responsible for, preprocessing and similarity computation, take roughly 0.01 s when
using snippets and 0.7 s when using full pages.

When using an external search data source such as Google or Yahoo! the
document type choice has direct impact on the Bobo execution time. Using snippets,
a typical 50 result query in Bobo takes less than 1 s. When full pages are used with an
external search data source, document download times can add more than 1 minute
for 50 results, which most users are unwilling to wait for.

When using a local search data source Bobo can take advantage of off-line
preprocessing and skip page downloading. Note that Lucene execution times are
only slightly greater when using full pages (line 6) than when using snippets (line 3),
whereas the Yahoo and Google executions using full pages take considerably more
time than their snippet counterparts. Preprocessing for the Lucene search source
consists of the time spent retrieving stored preprocessed documents and is virtually
identical between the snippet and full page tests.6 Similarity computation can also be
done off-line, though it is very fast in Bobo taking only 0.15 s on average for 1000
full text documents.

6Lucene data source preprocessing takes longer than Google or Yahoo! preprocessing only due to
our slow I/O, given a normal desktop PC with a 5400 rpm PATA disk. It would be much faster in a
clustered search engine environment.

10 World Wide Web (2013) 16:1–29

4 Principles and preferences

In this section, we introduce in detail the design principles and preferences of Bobo
regarding the various key issues. We also discuss possible improvements of Bobo in
these aspects.

4.1 Use of contextual terms

The use of contextual terms is the central idea in Bobo. How to use contextual terms
has a fundamental impact on the behavior and performance of Bobo.

In round I By default, the combination of query terms and contextual terms are
used in round I queries. This produces seeds that are relevant to the user-intended
query. For instance, in Example 4, the seeds are relevant to Jim Gray”. In the Web
setting, there are often sufficient such relevant pages, resulting in high relevance of
seeds. This usage of contextual terms actually provides a novel and effective remedy
for query drift, thanks to the input of domain knowledge.

In one-box search, a large portion of domain knowledge cannot be utilized in a
straightforward manner, due to the fact that contextual terms may co-occur with
search terms in very few or no Web pages. However, as shown in Example 5,
Bobo allows using only contextual terms for round I queries, enabling utilization
of indirectly associated domain knowledge.

As elf seed Contextual terms can be considered to form a pseudo document, which
can be optionally used as a seed. We call such a seed elf seed as it is actually a piece
of explicit relevance feedback. Unlike normal seeds, an elf seed may contain positive
as well as negative terms, providing a way of collecting positive as well as negative
explicit feedback.

In actual implementation, an elf seed is divided into a positive seed containing
all the positive contextual terms and a negative seed containing all the negative
contextual terms. Negative seeds contribute negatively in similarity computation
with search results.

Discussion The option of combing query terms and contextual terms in round I
queries can be automated. The idea is to combine the terms first, then test the kth

result to see whether it contains all the terms. If not, only the contextual terms should
be used in the query.

4.2 Quality of seeds

As in pseudo relevance feedback, quality of seeds plays a critical role in search
performance. The difference is that in Boboinput of contextual terms is largely
responsible for the much improved relevance of seeds. To provide further quality
control, Bobo accepts several user-input thresholds, e.g., number of seeds and
number of terms contained in each seed. Beyond that, Bobo also provides the
following options.

Removing query terms By default, Bobo uses a combination of contextual terms
and query terms in round I queries. Thus usually all the seeds contain the query

World Wide Web (2013) 16:1–29 11

terms. Round II results contain the query terms as well. Then, in similarity compu-
tation against the seeds, those query terms contribute almost equally to each round
II result. This amount of contribution then becomes background noise, reducing the
sensitivity in differentiating round II results.

By default, Bobo removes query terms from seeds. Although a simple step, this
option significantly improves performance in our experiments.

Purifying seeds Different approaches have been proposed to alleviate query drift by
improving relevance of pseudo feedback, but with limited success [32]. In Bobo, due
to the input of domain knowledge, we can well assume that the majority of seeds are
relevant, based on which we can design simple mechanisms to purify seeds. Briefly,
we first calculate the centroid of seeds. Then, we compute the similarity of each seed
against the centroid, and remove those outlying seeds with poor similarities.

Purifying seeds is not a default option in Bobo. In our initial experiments, Bobo
produces satisfactory quality of seeds in most cases due to input of contextual terms.

Discussion Current search engines take into account link-based popularity scores
such as PageRank [3] in ranking search results. In Bobo, round I search results are
not used to directly meet information needs of users. They are never browsed by
users. Thus, different search engines with alternative ranking schemes may be used
to better fulfill the purpose of round I queries.

Round I queries do not need to be issued to the same region as round II queries
either. Working in a more quality region may help avoid spamming and retrieve
better candidates for seed selection.

4.3 Term weighting

Bobo uses two term weighting schemes. The default one is the conventional TF-IDF.
The other scheme, TF-IDF-TAI, uses term association to favor terms that show high
co-occurrence with query terms. This scheme is tailored to Bobo, where documents
are not compared in isolation, but being “watched” by a query. Thus it is natural to
weight document terms according to their relationship with query terms. While TF-
IDF can be considered global weighting independent of queries, TF-IDF-TAI can be
considered local weighting.

In the TF-IDF-TAI scheme, the TF-IDF value of a term A is further weighted by
T AIq(A), the term association index of A with respect to a query q, where

T AIq(A) = max
T∈q

{T AI(A, T)}.

A query q is a set of terms. T AIq(A) takes the largest TAI value between A
and T ∈ q. T AI(A, T), the term association index between two terms A and T, is
defined on T AR(A, T), the term association ratio for A and T.

T AI(A, T) = 1 + 1

1 − log2 T AR(A, T)
,

T AR(A, T) = DF(A, T)2

DF(A) × DF(T)
.

12 World Wide Web (2013) 16:1–29

In the formula, DF(A) and DF(T) are the document frequencies of A and
T respectively. DF(A, T) is the document frequency of the pair (A, T), i.e., the
number of documents in which A and T co-occur.

Since T AR(A, T) ∈ [0, 1], we have T AI(A, T) ∈ [1, 2] and T AIq(A) ∈ [1, 2].
Note that T AR(T, T) = 1 and T AI(T, T) = 2, then T AIq(T) = 2 if T ∈ q. If A and
T ∈ q never co-occur in any Web page, then T AR(A, T) = 0, T AI(A, T) = 1, and
T AIq(A) = 1, in which case TF-IDF-TAI is equivalent to TF-IDF for term A.

IDF estimation IDF values can be accurately computed for local data sources.
However, we do not have access to collection statistics for the Internet, thus IDF
values must be estimated when using an external search engine data source. To
estimate the term IDF values in this case, Bobo extracted term statistics from a
set of 664,103 documents in the TREC Ad-hoc track dataset.7 These documents
can produce a reasonable approximation for term distribution in English language
documents as they cover various domains such as newspapers, U.S. patents, financial
reports, congressional records, federal registers, and computer related contents.

In particular, for a term A,

I DF(A) = log2
n

DF(A)
,

where DF(A) is the document frequency of A in the TREC data set and n = 664,103.
TAR values are also estimated using the same TREC dataset as for IDF estima-

tion. A technical issue is that in Bobowe consider about 110,000 terms, and managing
110, 000 × 110, 000 TAI values can be quite resource-consuming. The solution is that
for each term A, we only store T AI(A, T) ≥ δ. T AI(A, T) = 1 if it is not stored.

4.4 Similarity computation

By computing similarities between round II results and seeds, Bobo estimates how
close different results are to the search intent, based on which round II results are
re-ranked.

Document type Seeds can either be in the form of snippets (including titles) or full
pages. So it is with round II results. White et al. [42] reported that snippets performed
even better than full texts for the task of pseudo RF. In our experiments, snippets also
performed comparably to full pages. Thus, Bobo uses “snippet” as the default option
for both the types of seeds and round II results for fast response time.

Similarity measure Bobo uses two standard similarity measures, Cosine coefficient
(default) and Jaccard coefficient. Both performed very well in our experiments, with
the default option slightly better.

Prototype-based similarity Bobo implements two types of similarity computation
methods, prototype-based or instance-based, with the latter as the default option.

The prototype-based method is actually a form of the well-known Rocchio
algorithm [30, 33], which is efficient but would perform poorly in the presence of

7trec.nist.gov/data/docs_eng.html

http://trec.nist.gov/data/docs_eng.html

World Wide Web (2013) 16:1–29 13

polymorphic domains. In this method, the seeds are combined and the centroid of
seeds is used in similarity computation. Given a set S of seeds, the centroid u is
calculated as follows:

u = 1

|S|
∑

s∈S

s,

where s is the vector space representation of seed s ∈ S.
Recall that the original Rocchio algorithm for query reformation is defined as

follows:

qe = αq + β
1

|Dr|
∑

d j∈Dr

d j − γ
1

|Dir|
∑

d j∈Dir

d j,

where q is the original query vector, qe is the modified query vector, and Dr and Dir

represent the sets of known relevant and irrelevant document vectors respectively.
α, β, and γ are empirically-chosen tuning parameters.

If we assign α = 0 and γ = 0, the Rocchio formula agrees with our definition of
centroid of seeds. We assign α = 0 because Bobo does not target query reformation.
We assign γ = 0 not because of the lack of negative feedback, which is not hard to
identify from low-ranked round I query results. The reason is that even in explicit
RF, there is no evidence that negative feedback improves performance [36].

Instance-based similarity Rocchio is simple and efficient. However, it over-
generalizes training data and is inaccurate in the presence of polymorphic, or
disjunctive, domains. In Figure 3, the 10 seeds labeled by “+” are split into two
separate and rather distant sub-domains. The centroid of seeds labeled by “⊕” is
not local to any sub-domain. Search result 1 is close to the centroid whereas result 2
is not. Rocchio would give high relevance score to result 1 and poor score to result
2. However, result 2 actually belongs to one of the two sub-domains whereas result 1
does not.

To handle polymorphic domains and capture locality, Bobo uses an instance-
based approach, where the similarity of a document against each individual seed is
computed, weighted, and aggregated. Let sim(d, S) denote the similarity between a
document d and a set S of seeds, then,

sim(d, S) =
∑

s∈S

sim(d, s) × sim(d, s).

Using this approach, result 2 will receive much higher relevance score than result
1 in Figure 3. Note that, this approach resembles instance-based lazy learning such as
k-nearest neighbor classification. Lazy learning generally has superior performance

Figure 3 A polymorphic
domain.

14 World Wide Web (2013) 16:1–29

but would suffer from poor classification efficiency. This, however, is not a critical
issue in our application because we do not have many seeds. The default number of
seeds in Bobo is set to 10.

Discussion While Bobo adopts rather standard approaches, we are aware of the
many other approaches proposed in the literature for pairwise Web page similarity
computation. An interesting direction to investigate would be a link-based or hybrid
approach. For example, [40] uses Web-graph distance for relevance feedback in web
search. Link-based similarity computation can be prohibitively expensive and must
be done off-line.

4.5 Re-ranking of results

A straightforward way of re-ranking round II results would be presenting them
in decreasing order of similarity. However, this approach ignores page popularity
information embedded in the original ranking, which is important for result browsing
and good to be retained.

If we had a reliable threshold that can correctly classify the results as relevant
or irrelevant, we would only need to present the relevant results with their original
relative ranks retained. However, it is hard to find this decision boundary.
Bobo re-ranks results in a stratified manner. It takes a user-input parameter b ,

finds the b − 1 most probable decision boundaries, and divides the results into b
categories, or layers. Within each layer, results retain their original relative ranks. A
simple approach is used to find the b − 1 probable boundaries. First, search results
are sorted in decreasing order of similarity. Then, the top b − 1 positions with the
largest similarity drops are selected. Note that if b = 1, the re-ranked results are
simply in their original order. If b equals the number of results, then the re-ranked
results are in decreasing order of similarity.

It may not be intuitive for the users to choose b , just like in many cases, it is not
easy to specify the number of clusters for clustering. Based on the observation that it
is more intuitive to specify the maximum radius or diameter of a legitimate cluster,
a possible improvement of the above approach is to solve a so-called converse k-
center or converse pairwise clustering problem [13] that minimizes the number of
clusters, where each cluster must satisfy a given radius or diameter constraint. For
example, we can specify 0.2 to be the maximum allowable difference of relevance
(diameter) for any pair of results in a cluster, then solving the converse pairwise
clustering problem returns a minimized number of legitimate clusters (layers). We
leave this improvement for future work.

5 Empirical evaluation

Bobo is maintained on a regular desktop PC with Intel 3.0 GHz Duo processor and
4GB memory. We evaluated the performance of Bobo using various data sources,
including local indexes built from TREC datasets and Yahoo! Search. The results
of experiments based on the Yahoo! data source confirm the trends seen in those
performed on local index data sources. Search results returned from Yahoo! may
vary with time. This, however, will not change the general trends revealed by our

World Wide Web (2013) 16:1–29 15

empirical study. From the comprehensive evaluation we conclude that two-box
search is a simple yet effective paradigm for query intent disambiguation without
altering the original query and with maximized utilization of domain knowledge.

5.1 Methodology and metrics

To emphasize the Bobo idea, unless otherwise specified, we used default options
in the experiments that implement conventional approaches, e.g., TF-IDF for term
weighting and Cosine coefficient for similarity computation. By default, number of
seeds was set to 10 with each seed having at least 10 terms. Cleaning seeds was set
to yes. Combining and weighting seeds were set to no. The value of the number of
layers parameter was set equal to the number of results, canceling the effect of this
parameter.

Data sources Bobo was implemented to take advantage of multiple data sources,
including Google AJAX Search API (code.google.com/apis/ajaxsearch), Yahoo!
Search API (developer.yahoo.com/search/web/webSearch.html), and local Lucene
indexes built on top of the New York Times Annotated Corpus [34] and sev-
eral datasets from the TIPSTER (disks 1–3) and TREC (disks 4–5) collections
(www.nist.gov/ tac/data/data_desc.html). Users are allowed to choose their preferred
data source before executing the search. The Google API can retrieve a maximum of
8 results per request and a total of 64 results per query. The Yahoo! API can retrieve
a maximum of 100 results per request and a total of 1000 results per query. Due to
user licence agreements, the New York Times, TIPSTER and TREC datasets are not
available publicly.

Local index experiments The local index experiments were based on TREC disks 4
& 5 (the Congressional Record data is not included). For each document, we built
the index using the content of the headline and text fields which were analyzed with
the Lucene StandardAnalyzer. Then, we conducted two experiments using TREC ad
hoc track topics 351–400 and 401–450, which were designed for this dataset and used
during the TREC-7 and TREC-8 proceedings.

Given users’ propensity for short queries [17], we constructed our queries using
the title field in the TREC topics, which is generally a short phrase, containing 1-3
terms. We manually chose 1–5 terms from the narrative and description TREC topic
fields to be used as Bobo contextual terms. For topics that only provided a negative
description of the search intent (what should not be included in the search results)
we chose contextual terms from general terms associated with the query. The TREC
topics along with the Bobo queries and contextual terms used in the experiments are
available upon request.

In each experiment we compared Bobo results with those returned by the
straightforward base Lucene query (labeled Lucene) and two search techniques
which alter the returned result set: the first searches using the combined Bobo
query and contextual terms (labeled Combined) and the second executes pseudo-
relevance feedback search using the Bobo query terms (labeled Prf). We used
standard Rocchio expansion [30] for our pseudo-relevance feedback implementation
with α, β and γ parameters set to 1, 0.75 and 0.15 respectively as suggested in [26],

http://developer.yahoo.com/search/web/webSearch.html
http://www.nist.gov/tac/data/data_desc.html

16 World Wide Web (2013) 16:1–29

analyzing the first 10 returned documents and expanding the query up to a length of
100 terms.

For each query type we collected the top 1000 results. The results were then
analyzed with the standard TREC evaluation tool, trec_eval,8 using TREC confer-
ence submission trec_eval parameter defaults. The evaluation metrics we used were
11-point interpolated average precision graph, precision at k graph, mean average
precision (MAP) and R-precision.

Yahoo! experiments This set of experiments shows Bobo performance in Web
search and confirms the findings of the local index experiments. Additionally, we have
tailored these experiments to emphasize the disambiguation capabilities of Bobo
focusing on the important people search problem.

Finding information about people is one of the most common Web search
activities. Around 30% of Web queries include person names [1]. Person names,
however, are highly ambiguous, e.g., only 90,000 different names are shared by 100
million people according to the U.S. Census Bureau [15]. To test the disambiguation
effectiveness of Bobo, we constructed 60 ambiguous name queries and 180 test cases
from the Wikipedia disambiguation pages.9

In Wikipedia, articles about two or more different topics could have the same
natural page title. Disambiguation pages are then used to solve the conflicts. From
the various categories, we used the human name category, containing disambiguation
pages for multiple people of the same name. For each name, the disambiguation page
lists all the different people together with their brief introductions. For example,
an Alan Jackson is introduced as “born 1958, American country music singer and
songwriter”.

Person names were chosen from the most common English first and last names for
the year 2000 published on Wikipedia. The first ten male and first ten female given
names were combined with the first ten most common last names to make a list of 200
possible names. From this list, names were chosen based on the following criteria. For
each name, there are at least two distinct people with the same name, each having at
least three relevant pages in the first 30 returned Yahoo! search results.

In total 60 names were chosen as ambiguous queries. For each query, the actual
information need was predetermined in a random manner. Then, for this predeter-
mined person, three contextual terms were selected from her brief introduction, or
her Wikipedia page in case the introduction was too short. For example, for the
above Alan Jackson query, “music”, “singer”, or “songwriter” can be selected as
contextual terms. Contextual terms were used one at a time, thus there are three test
cases for each ambiguous query. A subset of the names and contextual terms chosen
are included in Table 2 as example.

The identification of relevance of search results was done manually by a third
party, some Masters students in the English department at Texas State University-
San Marcos. For each query, let R30 be the set of relevant pages w.r.t. the information
need contained in the first 30 retrieved results. Most users only look through 1–3
short pages of results before abandoning the search or altering their search criteria

8trec.nist.gov/trec_eval/
9en.wikipedia.org/wiki/Category:Disambiguation_pages

http://trec.nist.gov/trec_eval/
http://en.wikipedia.org/wiki/Category:Disambiguation_pages

World Wide Web (2013) 16:1–29 17

Table 2 Subset of ambiguous name queries and test cases.

Query terms Contextual terms (one at a time)

John Adams Song Composer Classical
David Adler Author Children Jansen
Michael Asher Artist Conceptual Exhibition
Larry Bell Artist Taos Glass
Sheldon Brown Cycling Bicycle Gear
Edward Clark Governor Texas Confederate
John Dobson Astronomer Telescope Sidewalk
Charles Garnier Missionary Jesuit Catholic
Rachel Harrison Sculptor Artist Installation
Thomas Hastings Composer Hymn Rock
Paul Jansen Piano Bench Artist
Andy Johnson Football English Soccer
Kelly Johnson Pitcher Baseball Baseman
Lonnie Johnson Soaker Invention Nuclear
Michael Johnson Music Album Guitar
Richard Lane Actor Robinson Movie
Bryan Meyers Author Book Programming
William Rush Artist Sculptor Philadelphia
John Williams Composer Score Film
George Winter Artist Frontier Native

[26]. Therefore, R30 can be considered containing the most important relevant pages
for the original query.

To compare with Bobo, two types of regular search methods were used. The
base Yahoo! method uses the original query and performs the simplest Yahoo! Web
search, returning the same set of results as Bobo but without re-ranking. The Yahoo!-
ref ined method is the straightforward query refinement approach we previously
discussed. It refines the original query by adding some contextual terms. The refined
query alters the original query, leading to unfavorable ranking of results and failing
to include many important relevant pages, i.e., R30 pages, in the top results.

We used ranking-aware evaluation measures to demonstrate the relevance im-
provement of Bobo over the Yahoo! method: 11-point interpolated average pre-
cision, precision at k, MAP and R-precision. We used the recall at k evaluation
measure, which measures the fraction of relevant pages (here, ones in R30) contained
in the top k results, to demonstrate that the Yahoo!-ref ined method fails to include
many important relevant pages.

Domain diversity experiments This series of experiments shows the disambiguation
power of Bobo in a diverse set of ambiguous query domains. Additionally, by
testing distinct domains for each query, we show Bobo is not only effective on
dominant query senses. Rather, contextual terms in Bobo guide the search toward
the preferred user sense.

We chose queries by randomly selecting multiple-sense terms from version 2.1 of
WordNet [10]. For each query, we retrieved 30 results from Google and users were
asked to ensure each query had at least two senses with a minimum of 3 relevant
results in R30. Classification of search result relevance was done manually by a third
party, some Masters students in the English department at Texas State University-
San Marcos. We kept the first 100 queries the users found. For each query, we

18 World Wide Web (2013) 16:1–29

asked the users to create two relevance judgements for two distinct query senses.
We asked other users to provide 1–5 domain terms suitable for each sense. For
each query sense we compared Bobo with the base Google search method. In all,
users classified 100 × 2 × 30 = 6,000 results. We used the following standard ranking-
aware evaluation measures to demonstrate the relevance improvement of Bobo over
the Google base method: 11-point interpolated average precision, precision at k,
MAP and R-precision.

Evaluation metrics The 11-point interpolated average precision graph plots the
interpolated precisions measured at the 11 recall levels 0.0, 0.1, ... , 1.0 averaged at
each level over all executed queries. The interpolated precision at a certain recall
level r is defined as the highest precision found for any recall level r′ ≥ r [26]:

pinterp(r) = maxr′≥r p(r′).

The precision at k graph plots the proportion of relevant results among the first k
retrieved results averaged for that k value over all executed queries.

For each query, the average precision (AP) is computed as the average of the
precisions for the set of top k documents retrieved after each relevant document is
retrieved. The MAP value for a set Q of executed queries is computed by averaging
AP values over all queries in Q. In other words, given a query q j ∈ Q, the set {d1...d j}
of relevant documents for q j, and R jk, the set of retrieved documents from top to dk,
and considering the precision of a set of retrieved documents with no relevant results
to be 0,

MAP(Q) = 1

|Q|
|Q|∑

j=1

1

m j

m j∑

k=1

Precision(R jk).

R-precision computes the precision at rank R, where R is the total number of
relevant documents. The value is averaged over all executed queries.

5.2 Local index experiment results

In this series of experiments, we evaluated the performance of Bobo by executing
queries directly on a Web document inverted index. We compared Bobo with the

Figure 4 TREC topics
351–400 on 11-point
interpolated average precision.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

Combined Prf Lucene Bobo

World Wide Web (2013) 16:1–29 19

Figure 5 TREC topics
401–450 on 11-point
interpolated average precision.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

Combined Prf Lucene Bobo

base Lucene search (labeled Lucene), the combined Bobo query and contextual
terms search (labeled Combined) and pseudo-relevance feedback search using the
same query terms as Bobo (labeled Prf).

Figure 4 shows the 11-point interpolated average precision graph for TREC topics
351–400. As can be seen, Bobo consistently improves on all three search methods it
was compared to, with roughly 8–31% higher precision than Lucene for recalls higher
than 0.5. The Combined and Prf methods start with higher precisions than Lucene,
but for recalls higher than 0.2 perform similarly or worse than Lucene, likely due to
query drift.

Figure 5 shows the 11-point interpolated average precision graph for our second
test, using TREC topics 401–450. The performance is similar to our first test, with
roughly 1–21% higher precision values than Lucene for recalls higher than 0.5. Prf is
the only search method in this test able to provide slightly better (1–2%) precision
than Bobo for recalls higher than 0.2, at the expense of possible query drift.

Figures 6 and 7 show the averaged precision at k for our two tests. Bobo offers a
consistent improvement over Lucene in both tests. For the most important first few
pages of results (k ≤ 30), Bobo precision values are 9–26% higher than Lucene’s in
the first and 3–18% in the second test. Prf is the only method which performs slightly
better than Bobo for k ≥ 200 in the first and k ≥ 500 in the second test.

Table 3 shows the MAP and R-precision values for our two tests, which show
consistent improvements of Bobo results over all three search methods compared

Figure 6 TREC topics
351–400 on averaged precision
at k.

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 30 100 200 500 1000
k

P
re

ci
si

o
n

Combined Prf Lucene Bobo

20 World Wide Web (2013) 16:1–29

Figure 7 TREC topics
401–450 on averaged precision
at k.

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 30 100 200 500 1000
k

P
re

ci
si

o
n

Combined Prf Lucene Bobo

against. In the first test Bobo improves over the worst scoring competitor method,
Lucene, by 74% (MAP, 49% R-precision) and 40% (MAP, 28% R-precision) over
the best competitor method, Prf. In the second test Bobo improves over the worst
scoring competitor method, Combined, by 51% (MAP, 28% R-precision).

Our two local index experiments show that Bobo consistently provides better
results than the other three search methods compared against, especially in the top-
ranked results, which are arguably the most important.

5.3 Yahoo! experiment results

In this series of experiments, we evaluated the performance of Bobo by comparing it
with the Yahoo! and Yahoo!-ref ined search methods.

In Figures 8, 9, and 10, Bobo results using both Cosine similarity and Jaccard
coefficient are shown. The two performed similarly, with the former (default) slightly
better.

Bobo vs. Yahoo! Web search users would typically browse a few top-ranked results.
From Figure 9 we can see that for k = 15, 10 and 5, the precision improvement
of Bobo over Yahoo! is roughly 20–40%. In addition, the MAP and R-precision
values for Bobo are 0.812 and 0.740 respectively, whereas they are 0.479 and 0.405
for Yahoo! respectively. The improvement of Bobo over Yahoo! is about 33% for
both measures.

Table 3 MAP and R-precision
values for TREC topics
351–400 and 401–450.

Run Topics 351–400 Topics 401–450

MAP R-precision MAP R-precision
Combined 0.0882 0.1399 0.0787 0.1267
Prf 0.1089 0.1531 0.1117 0.1571
Lucene 0.0875 0.1310 0.0940 0.1417
Bobo 0.1523 0.1954 0.1188 0.1624

World Wide Web (2013) 16:1–29 21

Figure 8 Bobo vs. Yahoo! on
11-point interpolated average
precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

BoBo - Cosine BoBo - Jaccard Yahoo!

Figure 9 Bobo vs. Yahoo! on
averaged precision at k.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30
k

P
re

ci
si

o
n

BoBo - Cosine BoBo - Jaccard Yahoo!

Figure 10 Bobo vs.
Yahoo!-refined on averaged
recall at k.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30
k

R
ec

al
l

BoBo - Cosine BoBo - Jaccard Yahoo!-refined

22 World Wide Web (2013) 16:1–29

Table 4 Example WordNet
diversity queries and
user-chosen contextual terms.

Query terms Contextual terms

Sense 1 Sense 2

Stillness Calm silent Lifelessness
Denote Announce known inform Designate assign
Center Pass play field team Organization place
Stir Budge agitate fidget Swirl
Way Manner mode style Passage
Wildly Uncontrolled unrestrained Greatly exaggerated
Turn back Backtrack trail return Clock

Bobo vs. Yahoo!-refined The recall at k graphs are presented in Figure 10. From
the figure we can see that for k = 15, k = 10 and k = 5, the recall (of important R30

pages) improvement of Bobo over Yahoo! is roughly 30%.
The results demonstrate that, although the straightforward query refinement

approach can effectively improve relevance, it fails to rank those important relevant
pages high, as it alters the original query and changes the query theme. Bobo,
on the other hand, overcomes this problem by using the contextual terms “in
the background”, effectively improving relevance while keeping the original query
intact.

5.4 Domain diversity experiment results

We had two goals in executing the domain diversity experiment. First of all, by
randomly choosing queries from WordNet we wanted to show that Bobo is effective
in diverse domains, not just for the person disambiguation domain. While chosen
queries had to meet some simple usefulness criteria, such as having relevant results
within R30, the words were chosen randomly and included nouns, verbs, and even
adverbs and idiomatic phrases. Table 4 shows a few of the randomly selected queries
and user-provided contextual terms.
Bobo performed well even when faced with obscure query senses, showing a

21–29% and 25–50% relative improvement over the Google baseline in MAP and
R-precision values respectively. Table 5 shows the MAP and R-precision values for
our test, reported for the individual query sense and for the combined sets.

It is also interesting to note that Bobo performed well even with little domain
information. While we instructed users to choose up to five domain terms, they
often chose few domain terms, the majority of the queries being executed with a
single domain term. None of the users chose five domain terms. Figure 11 shows
the distribution of the number of domain terms chosen by users for the randomly
selected WordNet queries.

Table 5 MAP and R-precision
values for Bobo and Google
diversity queries.

Run Bobo Google

MAP R-precision MAP R-precision

Sense 1 0.5118 0.6320 0.4221 0.4221
Sense 2 0.3624 0.5427 0.2815 0.4021
All 0.4371 0.5874 0.3518 0.4684

World Wide Web (2013) 16:1–29 23

Figure 11 Distribution on
number of contextual terms
chosen by users for domain
diversity queries.

120

100

80

60

40

20

0
1

2
3

4

All Queries

Sense 2

Sense 1

Our second goal for the diversity experiment was to show that Bobo is not only
effective for a given sense of a query, e.g. the dominant sense, but rather it guides
the search towards the user’s search intent. To show this, we independently tested
two distinct senses of each query. Figues 12 and 13 show the 11-point interpolated
precision recall and precision at k results for our experiment. The relative improve-
ment over the baseline in the 11-point interpolated precision recall graph is above
20% for most recall values, in both the individual sense queries and overall. From
the second figure we can see that, for k = 15, k = 10 and k = 5, the precision and
recall (of important R30 pages) relative improvement of Bobo over Google is 20-
40%. This shows that in most cases Bobo is able to successfully promote good results
given simple domain terms provided by the user.

5.5 Other evaluations

In addition to Bobo performance evaluations we conducted two more sets of exper-
iments to gauge Bobo flexibility when choosing contextual terms and preferences.
The results show that Bobo can work effectively in cooperation with a wide range of
domain knowledge and is not adversely affected by badly chosen preferences.

Domain knowledge utilization The performance improvement of Bobo has to do
with the choice of contextual terms. In this series of experiments, we tested Bobo on
the flexibility in choosing effective contextual terms.

Figure 12 Bobo vs. Google on
11-point interpolated average
precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

Bobo sense 1

Bobo sense 2

Google sense 1

Google sense 2

Google All

Bobo All

24 World Wide Web (2013) 16:1–29

Figure 13 Bobo vs. Google on
precision at k.

0

0.2

0.4

0.6

0.8

1

k

P
re

ci
si

o
n

Bobo sense 1

Bobo sense 2

Google sense 1

Google sense 2

Google All

Bobo All

5 10 15 20 25 30

In the performance evaluation experiments we used not-carefully-crafted contex-
tual terms for each query. Thus, we have initially demonstrated the flexible domain
knowledge utilization of Bobo. Here, we focused on a single query, Jim Gray”, to
further the evaluation.

For Bobo, with “Jim Gray” as the query term, 10 different contextual terms
were used. They were “computer”, “science”, “Microsoft”, “research”, “university”,
“David DeWitt”, “Raghu”, “AnHai”, “Jiawei”, and “Flavia Moser”. The default
preferences were used in the experiments. Precision and recall values were averaged
over the 10 test cases.

For Yahoo!, out of the 30 search results for query “Jim Gray”, 13 were relevant,
so |R30| = 13. Their ranks were 1, 2, 10, 12, 14, 16, 18, 19, 21, 25, 26, 27 and 29. For
Yahoo!-ref ined, “Jim Gray” was combined with the above 10 contextual terms, one
at a time, and the averaged recall values w.r.t. R30 were recorded.

Figure 14 shows the Bobo results compared to Yahoo! on precision at k and
Yahoo!-ref ined on recall at k. From the results, we can see that Bobo worked
effectively in disambiguation using varied contextual terms, significantly outperform-
ing the two straightforward search methods.

Preference sensitivity In this series of experiments, we evaluated how the varied user
preferences in Bobo would affect its performance in search intent disambiguation

Figure 14 Bobo vs. Yahoo! on
averaged precision at k &
Bobo vs. Yahoo!-refined on
averaged recall at k.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30
k

BoBo - average precision BoBo - average recall

Yahoo! - average precision Yahoo!-refined - average recall

World Wide Web (2013) 16:1–29 25

Figure 15 Document type on
11-point interpolated average
precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

D-D D-S S-D S-S Yahoo!

and relevance improvement. We used a subset of 75 query and contextual term
combinations from the Yahoo! performance experiment query pool and the same
relevance judgements collected for those queries. Default Bobo parameter choices
were used when executing each query with the exception of the parameter being
tested.

For each query we compared the Bobo results ranking with that of the base
Yahoo! method. All in all we tested 20 parameter combinations for each query, using
two ranking methods, for a total of 75 × 20 × 2 = 3000 executed queries. We report
ranking-aware evaluation metrics 11-point interpolated average precision graph and
precision at k graph. We also present the Yahoo! results in the Figures 15, 16, 17 and
18 for convenience of comparison.

Document type Both round II results and seeds can take the form of full document
(D) or snippet (S). We tested the 4 combinations of D-D, D-S, S-D, and S-S. For
example, D-S means the search results and seeds are in the forms of full document
and snippet respectively.

From Figure 15, we can see that there is no significant difference among the 4
combinations. This confirms the observation reported previously in White et al. [42].

Cleaning seeds If cleaning seeds is set yes, query terms will be removed from seeds.
As shown in Figure 16, this minor step surprisingly improves precision by 8.3% on
average.

Figure 16 Cleaning seeds on
11-point interpolated average
precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

Clean No clean Yahoo!

26 World Wide Web (2013) 16:1–29

Figure 17 Minimum seed size
on 11-point interpolated
average precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

5 10 20 30 40 Yahoo!

Minimum seed size The size of a seed is the number of terms contained in the
seed. As shown in Figure 17, we used 5, 10, 20, 30 and 40 for the minimum seed
size threshold, and observed that the parameter is not sensitive. Thus, we choose a
relatively small number of 10 as the default option.

Number of seeds We took choices of 1, 3, 5, 10, 15, 20 and 30 to see how the number
of seeds affects the performance. From Figure 18 we can see that, while the choice of
1 performed slightly worse, other choices performed very similarly. The parameter is
not sensitive and for efficiency concerns, we use a small number of 10 by default.

Similarity measure Bobo implemented two most popular similarity computation
schemes, Cosine coefficient and Jaccard Coefficient. From Figures 8–10, we can
see that they both performed very well, with Cosine coefficient, the default option,
slightly better.

Other preferences There are some other preferences in Bobo, e.g, elf seed, purifying
seeds, combining seeds, weighting seeds, and term weighting. Their variations did not
lead to a significant difference in performance. All these preferences are “shut down”
by default in Bobo.

The results of our preference sensitivity experiments show a definite improvement
of Bobo over the base methods compared against regardless of parameter choices
and provided us with best-choice parameter “defaults”.

Figure 18 Number of seeds on
11-point interpolated average
precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

o
n

1 3 5 10
15 20 30 Yahoo!

World Wide Web (2013) 16:1–29 27

5.6 User study

We also performed a simple yet helpful user study collecting feedback on the
usability and performance of Bobo.

A survey was distributed to a data mining undergraduate class with 26 students,
among whom 14 replied. The following lists the survey questions and the correspond-
ing received scores that are on a scale of 1 (worst) to 10 (best).

1. Is Bobo easy to learn? (range: 7–10; average: 8.5)
2. Is Bobo easy to use? (range: 5–10; average: 7.3)
3. Does Bobo help in disambiguating search intent? (range: 6–10; average: 8)

We received many inspiring and helpful comments. One in particular, showed
some confusion between the way Bobo is implemented and how some of the users
thought it was. About one third of the participants commented that, while Bobo
did work, in some cases it did not return as many relevant results as the Combined
search approach. An explanation for this confusion is that Bobo only re-ranks the
Lucene query results. For a fair comparison with Combined queries in terms of
number of relevant pages, Bobo should be implemented such that both the Lucene
and Combined query results should be retrieved with their union re-ranked. This
way, those additional relevant pages from Combined queries would most likely be
included in the top Bobo results.

6 Conclusions

As the Web grows in size at an increasing rate, ambiguity becomes ubiquitous. For
example, there are 87 Wikipedia entries for “Michael Smith” as of today. In this
paper, we introduced a novel two-box search paradigm to achieve simple yet effective
search intent disambiguation without altering the original query and with maximized
domain knowledge utilization. Comparing to the straightforward query refinement,
this approach is particularly useful for informational queries where users want to
learn about something. Comprehensive empirical evaluation using both local and
remote data sources demonstrated the utility and potential of our approach.

For future work, while there are many directions to explore, a particularly
interesting one is to seamlessly integrate two-box search with personalized search.
The integrated system would have combined advantages from the two, flexibility and
convenience, in guiding search towards a user intended domain.

References

1. Artiles, J., Gonzalo, J., Verdejo, F.: A testbed for people searching strategies in the WWW. In:
Proceeding of the 28th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 569–570 (2005)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)
3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proceedings

of the 7th International World Wide Web Conference (WWW), pp. 107–117 (1998)
4. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
5. Buckley, C., Amit, S., Mandar, M.: New retrieval approaches using smart: Trec 4. In: Proceeding

of the 4th Text Retrieval Conference (TREC-4), pp. 25–48 (1995)

28 World Wide Web (2013) 16:1–29

6. Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware search by learning a very large
variable length hidden markov model from search logs. In: Proceedings of the 18th International
World Wide Web Conference (WWW), pp. 191–200 (2009)

7. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by
mining click-through and session data. In: Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 875–883 (2008)

8. Croft, W., Harper, D.: Using probabilistic models of information retrieval without relevance
information. J. Doc. 35(4), 285–295 (1979)

9. Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In:
Proceedings of the 11th International World Wide Web Conference (WWW), pp. 325–332 (2002)

10. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)
11. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.:

Placing search in context: the concept revisited. ACM Trans. Inf. Sys. 20(1), 116–131 (2002)
12. Gao, B.J., Anastasiu, D.C., Jiang, X.: Utilizing user-input contextual terms for query disam-

biguation. In: Proceedings of the 23rd International Conference on Computational Linguistics
(COLING), pp. 329–337 (2010)

13. Gao, B.J., Ester, M., Cai, J.Y., Schulte, O., Xiong, H.: The minimum consistent subset cover prob-
lem and its applications in data mining. In: Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 310–319 (2007)

14. Gkanogiannis, A., Kalamboukis, T.: An algorithm for text categorization. In: Proceeding of
the 31st International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 869–870 (2008)

15. Guha, R.V., Garg, A.: Disambiguating people in search. In: Proceedings of the 13th International
World Wide Web Conference (WWW) (2004)

16. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th International World
Wide Web Conference (WWW), pp. 517–526 (2002)

17. Jansen, B.J., Spink, A., , Saracevic, T.: Real life, real users and real needs: A study and analysis
of users queries on the web. Information Process. and Manage. 36(2), 207–227 (2000)

18. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International
World Wide Web Conference (WWW), pp. 271–279 (2003)

19. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough
data as implicit feedback. In: Proceeding of the 28th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pp. 154–161 (2005)

20. Kelly, D., Dollu, V.D., , Fu, X.: The loquacious user: a document-independent source of terms for
query expansion. In: Proceeding of the 18th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pp. 457–464 (2005)

21. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR
Forum 37(2), 18–28 (2003)

22. Kraft, R., Chang, C.C., Maghoul, F., Kumar, R.: Searching with context. In: Proceedings of the
15th International World Wide Web Conference (WWW), pp. 477–486 (2006)

23. Lawrence, S.: Context in web search. IEEE Data Eng. Bull. 23(3), 25–32 (2000)
24. Lee, J.H.: Combining the evidencde of different relevance feedback methods for information

retrieval. Information Process. and Manage. 34(6), 681–691 (1998)
25. Lee, K.S., Croft, W.B., Allan, J.: A cluster-based resampling method for pseudo-relevance

feedback. In: Proceeding of the 31st international ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pp. 235–242 (2008)

26. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

27. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Proceeding of
the 21st International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 206–214 (1998)

28. Mizzaro, S., Vassena, L.: A social approach to context-aware retrieval. World Wide Web 14(4),
377–405 (2011)

29. Qiu, Y., Frei, H.P.: Concept based query expansion. In: Proceedings of the 16th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pp. 160–169 (1993)

30. Rocchio, J.: Relevance Feedback in Information Retrieval. In The SMART Retrieval System—
Experiments in Automatic Document Processing. Prentice-Hall (1971)

31. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proceedings of the 13th
International World Wide Web Conference (WWW), pp. 13–19 (2004)

World Wide Web (2013) 16:1–29 29

32. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access
systems. Knowl. Eng. Rev. 18(1), 95–145 (2003)

33. Salton, G., Buckley, C.: Improving Retrieval Performance by Relevance Feedback. Morgan
Kaufmann (1997)

34. Sandhaus, E.: The New York Times Annotated Corpus. Linguistic Data Consortium,
Philadelphia (2008)

35. Schapire, R.E., Singer, Y., Singhal, A.: Boosting and rocchio applied to text filtering. In: Pro-
ceeding of the 21st International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 215–223 (1998)

36. Schutze, H., Hull, D.A., Pedersen, J.O.: A comparison of classifiers and document representa-
tions for the routing problem. In: Proceeding of the 18th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), pp. 229–237 (1995)

37. Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In:
Proceedings of the 28th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pp. 43–50 (2005)

38. Singhal, A., Mitra, M., Buckley, C.: Learning routing queries in a query zone. In: Proceeding of
the 20th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 25–32 (1997)

39. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests
and activities. In: Proceeding of the 28th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pp. 449–456 (2005)

40. Vassilvitskii, S., Brill, E.: Using web-graph for relevance feedback in web search. In: Proceeding
of the 29th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 147–153 (2006)

41. Voorhees, E.M.: Using wordnet to disambiguate word senses for text retrieval. In: Proceeding of
the 16th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 171–180 (1993)

42. White, R.W., Clarke, C.L., Cucerzan, S.: Comparing query logs and pseudo-relevance feedback
for web search query refinement. In: Proceeding of the 30th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR), pp. 831–832 (2007)

43. White, R.W., Jose, J.M., Rijsbergen, C.J.V., Ruthven, I.: A simulated study of implicit feedback
models. In: Proceeding of the 26th European Conference on Information Retrieval (ECIR),
pp. 311–326 (2004)

44. Yu, S., Cai, D., Wen, J.R., Ma, W.Y.: Improving pseudo-relevance feedback in web information
retrieval using web page segmentation. In: Proceedings of the 12th International World Wide
Web Conference (WWW), pp. 11–18 (2003)

45. Zhang, H., Chen, Z., Li, M., Su, Z.: Relevance feedback and learning in content-based image
search. World Wide Web 6(2), 131–155 (2003)

46. Zhu, Y., Callan, J., Carbonell, J.: The impact of history length on personalized search. In:
Proceeding of the 31st International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pp. 715–716 (2008)

	A novel two-box search paradigm for query disambiguation
	Abstract
	Introduction
	Related work
	Overview
	Design overview
	Implementation overview
	Usability

	Principles and preferences
	Use of contextual terms
	Quality of seeds
	Term weighting
	Similarity computation
	Re-ranking of results

	Empirical evaluation
	Methodology and metrics
	Local index experiment results
	Yahoo! experiment results
	Domain diversity experiment results
	Other evaluations
	User study

	Conclusions
	References

