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Abstract—Communication is paramount, especially during a
natural disaster or other emergency. Even when traditional
lines of communication become unavailable, emergency response
teams must be able to communicate with each other and
the outside world. To facilitate this need, major cities across
the United States are deploying wireless emergency networks
(WENs) that serve as a secure communication channel between
emergency response points (police stations, shelters, food banks,
hospitals, etc.) and the outside world. An important question
when designing such networks is identifying the locations within
the city where access points (APs) should be placed to construct
a reliable WEN. We propose a framework for identifying the
optimal placement of wireless network antennas within a city,
given multiple criteria constraints, and present our initial efforts
to realize this framework.

Index Terms—microwave antenna, network planning, wireless
emergency network, constrained optimization, line of sight.

I. INTRODUCTION

Communication is paramount in case of a natural disaster
or other emergency. A large earthquake or flood may lead
to loss of power or broken cables that can hinder traditional
lines of communication (e.g., land-lines or cellular phones).
Still, emergency response teams must be able to communicate
with each other and the outside world. To facilitate this
need, the City of San José Office of Emergency Services
(OES) and other similar offices in major cities are deploying
wireless emergency networks (WENs) that serve as a secure
communication channel between emergency response points
(police stations, shelters, food banks, hospitals, etc.) and the
outside world. An important question when designing such
networks is identifying the locations within the city where
access points (APs) should be placed to construct a reliable
WEN.

In this paper, we present a novel framework that will
allow identifying the best placement of wireless access points
within a city given several types of constraints. Finding the
optimal placement of APs is a multi-constrained optimization
problem. While these types of problems have been studied
for many years, the unique constraints posed by the WEN
AP placement domain make existing algorithms insufficient.
A WEN is generally composed of multiple APs connected via
microwave antennas capable of high speed data transmission.
In addition to constraints posed by physical limitations of the
antennas (e.g., signal transmission range, transmission type

– sector or point-to-pint), the problem imposes several other
hard and soft constraints. We consider the following types of
constraints on the overall network:

• Antenna type. Wireless network antennas come in differ-
ent types. Directional (point-to-point) antennas must be
pointed directly at the receiving antenna to allow com-
munication. Multidirectional (sector) or omnidirectional
antennas have a much wider signal reception/transmission
cone, at the cost of smaller coverage (shorter signal
range).

• Range. Given the transmission signal strength and type
of the ith antenna, its signal can reliably be transmitted
up to di km.

• Line of sight (LOS). Due to their increased coverage,
directional antennas are often used in WENs. However,
there must be clear line of sight between the transmitting
and receiving antennas.

• Node priority. Node placement cannot be random in a
WEN. APs must be placed at each identified emergency
response point (hospitals, police stations, food banks,
shelters, etc.), and city-owned properties should be given
preference when choosing placement locations for other
APs.

• Minimum degree. To ensure network reliability even in
the event of the collapse of some APs (e.g., due to an
earthquake), each AP should have LOS to a minimum of
k other APs.

• Mobile APs. The system should allow for one or more
mobile APs which can be used to enhance bandwidth or
coverage when needed. This calls for a time and cost
effective solution to the optimization problem, allowing
near-real-time placement of mobile APs.

There has been little research done to solve this problem.
Most academic works have focused on measuring the effects
that distance and barriers have on the signal strength between
two antennas, or on automatic adjustment of an antenna
to capture the strongest signal from a transmitter. A few
recent works [1]–[5] have addressed the related problem of
antenna placement in millimeter-wave networks (mmWave).
While these antennas have some of the same constraints (e.g.,
LOS, range), their range is much more limited (up to 200m).
Szyszkowicz et al. [4] and Palizban et al. [5] both assumed



structures in the city to be at equal altitude, considering only
the polygon shapes of buildings on a flat map as potential
signal transmission obstacles. Moreover, none of the works
consider the additional constraints imposed by a WEN.

There are several tools available online, most of them
created by manufacturers of microwave antennas, that are
designed to help users decide whether there is clear LOS
between two points on a map. However, very few of them
consider man-made obstacles when predicting LOS. While
tools provided by Solvise [6] and HeyWhatsThat [7] consider
buildings as potential obstacles, other tools [8], [9] only
consider natural topologies (e.g., hills) when predicting LOS.
Building heights in existing systems are generally queried
using the Google Maps Elevation API [10]. Additional signal
barriers, such as trees, are not considered by any of the
existing tools. In contrast, we propose an extensible framework
that automatically identifies the optimal network placement,
respects additional constraints imposed by the WEN domain,
and utilizes multiple sources of structure height data to ensure
accurate LOS estimates between chosen AP locations.

The remainder of the paper is organized as follows. Sec-
tion II introduces our proposed framework, giving an overview
of its component parts. Section III presents two novel algo-
rithms for estimating line of sight between two locations in a
city. We describe our evaluation methodology in Section IV,
analyze our experimental results in Section V, and Section VI
concludes the paper.

II. PROPOSED FRAMEWORK

A. Wireless emergency network planning

In traditional wireless network planning, one is primarily
concerned with signal coverage, as many clients should be
able to use the network from the covered area. On the other
hand, WEN planning is primarily concerned with broadband
connectivity between a set of distant priority sites within a
city. Coverage is then expanded via traditional techniques
such as WiFi or WiMAX local networks. The long distance
between priority sites often requires the use of point-to-point
microwave antennas like the ones shown in Figure 1. Mobile
communication towers, which can be mounted on top of
vehicles, can also be used to provide increased transmission
bandwidth or temporary coverage in an area. In addition to
physical constraints of the antennas used in the transmission,
the WEN placement problem has additional constraints, which
were listed in Section I.

The proposed framework for solving the optimal constrained
WEN antenna placement problem has two components. First,
we will design a system that can provide efficient LOS
estimates between different points on a map, while taking into
consideration topography, structure heights, and vegetation
that may interfere with LOS between points. Existing systems
utilize Google Earth and Google Maps data for this task, which

1Image source: https://en.wikipedia.org/wiki/File:Frazier Peak, tower
and Honda Element.jpg. Author:GeorgeLouis (talk). Date: September 2008.

Fig. 1. Tower with several microwave antennas.1

is highly inaccurate for long distance LOS estimates, account-
ing only for some large buildings in cities and in general
assuming a flat earth. Second, given efficient and reliable LOS
estimates, we will devise a min-k degree multi-constrained
optimization method that will provide an optimal configuration
of the WEN given input constraints. The algorithm will take as
input a list of all suitable locations for placing WEN antennas
in the city and their associated priorities, a list of antennas
that are part of the WEN and their physical characteristics,
and the minimum number of k potential LOS links that each
AP should have available.

The optimization algorithm we plan to use to solve this
problem will be based on techniques borrowed from Recom-
mender Systems. Assuming a set of already selected optimal
points, the next AP point can be selected by first solving a top-
N recommendation problem with side-information, retrieving
a ranked list of the most “similar” APs, i.e., those with the
highest connectivity and reliability score based on terrain and
other constraints. From the top-N points, the chosen AP will be
the first one that passes each of the imposed constraints. While
the problem is not convex, matrix and tensor factorization
based recommender systems models can capture some inherent
structure in the problem that can lead to good solutions overall.
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Fig. 2. Microwave communication between a transmitting (TX) antenna and
a receiving (RX) antenna.

B. Microwave links

A critical component in WEN planning are microwave
network links. Microwave links use high frequency beams of
radio waves (in the microwave frequency range, thus the name)
to transmit data between two fixed points. Figure 2 shows
an example of two such points. The transmission point (TX)
modulates the radio signal to encode data and sends it out into
“free space,” the void directly in front of the antenna used to
transmit the signal. As the radio waves propagate through the
atmosphere, some of the signal is lost, yet on a clear day a
microwave transmission can be received up to 65 km away.
The receiving (RX) antenna collects the signal sent by the TX
antenna and translates the modulation into binary data.

While microwave links can transmit large amounts of data
over great distances at nearly the speed of light, they require
a clear path between the TX and RX antennas (LOS) for a
successful transmission. Buildings, trees, overpasses, and any
other obstacles in the transmission path must be overcome by
changing the position of one or both of the TX and RX points
or using a bridge to relay information, as long as the bridge
point has a clear path to both TX and RX points. A microwave
signal that passes through a tree may be somewhat strong in
the winter but can become significantly weaker once the tree
grows new leaves in the spring.

Reflective surfaces along the transmission path, such as
bodies of water or smooth terrain, will cause radio waves
to reflect off those surfaces and either never arrive at the
RX point or arrive out of phase, causing degradation in
the transmission [11]. Fresnel zones, shown in Figure 2 and
named after physicist Augustin-Jean Fresnel, who invented the
theory, are concentric ellipsoidical volumes in the transmitted
radiation pattern [12] that help visualize the reflection potential
of the radio waves. Presence of barriers or objects within

more than 40% of the fresnel zone will severely degrade the
transmission signal. When predicting LOS clearance, it is thus
important to consider not only the direct line between the TX
and RX antennas, but also the fresnel zone for the link.

C. Improving height estimates

We will utilize Big Data and computer vision technologies
to expand an existing geographic information system (GIS)
with the ability to predict and visualize LOS between two
given points. A number of open-source Map visualization
libraries exist (e.g., ViziCities [13], or Tangrams [14]) that
can be adapted to account for topography data captured by US
Geographic Survey and satellite data from the GMTED2010,
SRTM, and NED satellites. While the primary function of the
system will be to efficiently estimate LOS between two points
on the map, it will also be able to accurately visualize in 3D
the path between the points. The system will use additional
point altimetry information gathered through Data Mining to
improve LOS estimates. For example, city building permit data
can be used to estimate building heights at certain addresses
based on the number of and type of floors in the building.
Moreover, geo-tagged photographs on social media sites like
Twitter or Instagram can be used to extract building height
estimates when objects with known heights (e.g., light posts)
can also be detected in the picture.

III. ESTIMATING LINE OF SIGHT

A wireless network looses its efficiency due to obstruc-
tions in path of communication. Microwaves used in wireless
communication reflect off of buildings. When we select two
probable antenna locations, we should make sure there is clear
line of sight for full utilization of the wireless channel. In this
section, we will detail two algorithms that can be used to
predict LOS between two arbitrary points in a city.

A. GIS Database

We chose the city of San José as the test location for
our methods. We downloaded San José map data from
Mapzen [15], which in turn uses OpenStreetMap (OSM)
data [16]. We import this data in a PostgreSQL database,
which we use as our chosen Geographic Information System
(GIS). The OSM data is 2-dimensional, providing only latitude
and longitude for buildings in the city. The third dimension,
i.e., the height of each building, was obtained using LiDAR
data [17]. This data contains records in the Lambert Conical
projection format, which we had to convert to the WSG84
projection format of the OSM records. The guide provided by
Yuriy Czoli [18] was very helpful in successfully converting
between LiDAR and OSM data records. We used the libLAS
library [19] and PostGIS tools [20] to do the actual conversion
and stored the height of each building in an additional field
associated with the building record. When more than one
LiDAR altitude records was present for a building, we used
the average of those records to derive the building height.



(a) (b)
Fig. 3. LOS obstruction scenarios. (a) Building C is not tall enough to
obstruct the LOS between buildings A and B. (b) Building C obstructs the
LOS between buildings A and B.

B. Sequential LOS

Our straight forward baseline LOS estimation method works
by querying the GIS for all buildings C between the two
selected points (A and B), which are polygons intersecting
the line segment between the points. Then, for each returned
building, we verify whether its height is higher than the
intersecting point on the slope from the A to the B points.
Figure 3 shows two scenarios for one such building C. In
the first case (a), it is clear that building C will not obstruct
LOS between buildings A and B. The three buildings start
at the same altitude, and buildings A and B are both taller
than building C. In the second case (b), it is not as clear, as
building B is not as tall as building C. Note, however, that
LOS would be clear, for example, if building C and B were
the same height. Specifically, the height of building C must
be lower than the height of the transmission line (connecting
the tops of the A and B buildings) at building C.

One potential problem with the SLOS method is the case
when the transmission line passes narrowly between two
tall structures. As noted in Section II-B, the path between
the TX and RX antennas should be clear not only on the
direct line between them, but also within at least 60% of the
freznel zone of the two antennas. Figure 4 shows one such
potential example. To account for this scenario, we execute
two additional queries, for parallel lines situated at γ m on
each side of the transmission line. SLOS then checks the height
of buildings that were not present in the original query result
to ensure they will not create obstacles in the transmission
path.

C. Tiled LOS

In the case of a clear line of site, the SLOS algorithm has
to check each building that intersects the transmission line
to ensure they will not obstruct transmission. We propose
an efficient data structure that can significantly reduce the
number of buildings whose height must be retrieved and
considered, based on a hierarchical tiling of the city’s surface
area. Figure 5 shows an initial decomposition of the surface
area into equally sized tiles. Note that the number of tiles may
be different between levels. In the example, green tiles have a
maximum height lower than the minimum intersecting point of
the transmission line slope, while red tiles exceed that height.

Given the number of tiles per level, the tiling algorithm
is straight-forward. For each tile, we pre-compute and store

Fig. 4. Potential fresnel obstruction.

Fig. 5. Surface area tiling in the TLOS algorithm. Green tiles have a maximum
height lower than the minimum intersecting point of the transmission line
slope, while red tiles exceed that height.

the highest elevation of any building in the tile. Note that the
maximum heights of lower-level tiles can be easily aggregated
to find the maximum height of a higher level tile. The highest
elevation in a higher level tile is the maximum elevation
among all child tiles. When predicting LOS, we first check the
maximum height of tiles intersecting the transmission path. If
a tile’s maximum height does not obstruct the transmission
path, we can skip checking all the buildings within that tile.
On the other hand, in the case of an obstruction, we can dig
into the next lower level, retrieving child tiles that intersect
the transmission path. At the lowest (leaf) level, data is stored
without tiling and we determine the line of sight using the
baseline SLOS approach. This method will significantly reduce
number of calculations required to solve the LOS prediction
problem. Note that this work is in progress and we have not yet
finished implementing TLOS. We will thus not be including
this method in our experiments.

IV. EXPERIMENT SETUP

In order to determine the effectiveness of our baseline
method, we compared its ability to detect clear or obstructed
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Fig. 6. Distribution of execution time among the 200 queries in our
effectiveness experiment.

LOS, which is solved as a classification problem. We use
accuracy to measure the effectiveness of our method, which
is defined as the ratio between the number of correctly
predicted samples and the total number of samples predicted.
Additionally, we report precision, recall, and F1-measure for
the prediction. Precision is defined as the fraction of samples
that are relevant in the prediction, recall is the fraction of
relevant samples that were successfully predicted, and F1-
measure is the harmonic mean of the precision and recall
scores. Note that precision, recall, and F1-measure depend on
which class is considered relevant and produce different results
in an imbalanced binary classification scenario. We measure
efficiency as the time (wall-clock) taken by each query, in
milliseconds.

A. Execution environment

Our baseline method, SLOS, was executed, without other
running programs, on a server with dual-socket 12-core 2.5
GHz Intel Xeon E52680 v3 (Haswell) processors and 384 Gb
RAM. We used PostgreSQL version 9.6.1 to host our GIS
database. As a proof of concept, we used a subset of OSM
and LiDAR data covering the city of San José, which takes up
685GB of storage, including all indexes. While our system has
24 cores available, the PostgreSQL engine used only one core
for executing each query. In all experiments, we set γ = 6.

V. RESULTS & DISCUSSION

We executed two experiments in order to test the efficiency
and effectiveness of our baseline SLOS method. In the first
experiment, we compared the ability of SLOS to detect clear
or obstructed LOS on 200 random queries. We selected LOS
queries by choosing two random buildings from the city of
San José and predicting the link between them. We then
obtained the link’s real LOS status using an external LOS
validation tool [7]. Among the 200 links, only 7 were miss-
classified, resulting in an accuracy of 96.5%. While this result
is encouraging overall, it turns out that our random point
sampling strategy resulted in a majority of obstructed links
(197). With regards to obstructed links, the method performed
quote well, resulting in 0.9948 precision, 0.9745 recall, and
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Fig. 7. Efficiency of line-of-sight queries using the SLOS algorithm.

0.9845 F1-measure. The method did not perform well with
regards to clear LOS links, resulting in 0.0052 precision,
0.3333 recall, and 0.0103 F1-measure. Additional experiments
are needed to validate the effectiveness of the method for clear
links as well as obstructed links.

On average, the distance between selected points in the
queries was 1266 m. The classification line in Figure 6 shows
the distribution of execution time among the 200 queries in our
effectiveness experiment. Note that the y-axis is log-scaled.
Most queries took between 60 and 100 ms to execute. As a
way to further investigate the efficiency of our method, we
executed a set of 20,000 random LOS queries, recording the
execution time for each. The random line in Figure 6 shows
the distribution of execution times among these queries, which
almost exactly matches that of the classification experiment,
with the exception of the extreme start of the distribution. A
few points in our classification experiments took 150-217 ms
to execute. Similarly, a few of the points in our random query
experiment took 500-2567 ms to execute. However, we could
not see a clear correlation of between-point distance and query
execution time among these few points in either experiment.
We conclude that the high execution times in these few queries
are likely due to the GIS system loading certain indexes from
disk.

To better understand the relationship between query execu-
tion time and distance in our experiments, we computed the
correlation of the two variables. The 200 sample classification
experiment results showed a correlation of 0.49, while the
20,000 sample random experiment results showed a correlation
of 0.21. Figure 7 shows a scatter plot of the random experiment
results, denoting the distance and execution time of each
query. While many queries take between 50–150 ms, the graph
shows a clear slightly positive correlation between distance
and execution time. Queries for points farther than 4,000 m
apart take longer to execute, in general, than those closer
together.

While 50–100 ms may seem pretty fast to compute the
LOS prediction for a pair or points, solving the optimization
problem requires hundreds of thousands of such computations,
making SLOS unsuitable for the task. The TLOS algorithm
and other methods that can prune the search space and



avoid retrieving and considering all the data for buildings
on the transmission path are key to efficient near-real-time
solutions to the WEN planning problem. In the continuation
of this work, we will investigate such methods and propose
efficient solutions to both the LOS estimation and the wireless
emergency network planning problems.

VI. CONCLUSION

In this paper, we first presented a general framework for
solving the optimal constrained wireless network antenna
placement problem, and then detailed two algorithms for
efficiently identifying whether there is a clear line of sight
between two locations in the city, which is a critical component
in the framework. Our first baseline algorithm, SLOS, uses off-
the-shelf GIS aware database systems and open-source data to
effectively solve the problem, resulting in 96.5% accuracy in
our initial experiments. While its average execution time may
impede it from solving the optimization problem in a reason-
able amount of time, our Tiling Line of Sight (TLOS) method
promises much higher efficiency by drastically reducing the
number of structures whose height must be checked to ensure
it does not obstruct LOS.
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