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Figure 1. This figure illustrates a sample frame from the Corl2017 Benchmark Test in the Carla Driving Simulator.

Abstract
Deep Neural Networks have demonstrated impressive per-
formance in complex tasks, such as image classification and
speech recognition. However, due to their multi-layer struc-
ture combined with non-linear decision boundaries, it is hard
to understand what makes them arrive at a particular out-
put. In many state-of-the-art interpretability solutions for
vision-based models, a passive method is applied after the
model is trained. This means that no modifications are made
to the network until after it is fully trained.

Therefore, we propose InterpNet, an active interpretability
method for autonomous driving neural networks that oper-
ates by adding a penalty function in the convolutional layers
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of the network. This method is intended to prevent the model
from developing complex data representations that are not
human-understandable by creating sparse feature maps that
can ignore noise. Through the use of an autonomous driving
simulator and feature extraction methods, we proved that
our regularized model was more effective and interpretable
than the baseline version. Specifically, our results show that
our regularized model was more autonomous and learned
more compressible and less random features than the base-
line model.
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1 Introduction
1.1 Motivation
The problem with neural networks in modern-day technol-
ogy is that they are considered black boxes. When the perfor-
mance of the model is substandard or unexpected, machine
learning engineers have a difficult time figuring out why the
neural network produced a specific prediction. This can be
especially problematic in the domain of autonomous driv-
ing, since the lack of understanding of a neural network’s
incorrect decision can present a significant negative impact
on the safety of the passengers in those vehicles.
For example, in 2018, a Tesla Model X crashed into a ce-

ment wall on the freeway [10], and the company could not
understand the reasoning behind the car’s movements until
long after the accident had occurred. With an interpretability
method, a company could trace the path that the data takes
in providing a driving decision. This tracing could take place
before or immediately after the actual deployment of the
self-driving system. This would help reduce the probability
of additional such accidents happening in the real world.

1.2 Challenges of Implementing Neural Network
Interpretability in Self-Driving Vehicles

There are two main reasons why autonomous systems are
not inherently interpretable as indicated by Zablocki et al. [12]:

1. Deep learning models may potentially face the limi-
tations due to datasets that contain numerous biases,
are too general, and are not properly curated. This
leads the system to learn from spurious correlation
and overfit to certain situations.

2. Self-driving systems have to solve incredibly complex
problems. For humans, it may be simple, but it is very
difficult for a system to solve related tasks with dif-
ferent environments. Thus, the model that led to the
prediction is very chaotic and difficult to navigate for
humans.

Autonomous driving is a high-stake, safety-critical applica-
tion. From a societal point of view, performance guarantees
should be mandatory. However, there are many scenarios
where self-driving models are not testable due to the im-
possibility of listing and evaluating every scenario that a
model can encounter. A solution to this issue is to be able to
explain a model’s decision making process in making certain
decisions in a given scenario and pinpoint the area of error.

1.3 Solution
To this end, we propose a solution to improve the inter-
pretability of neural networks on autonomous cars. Our
method is applied as the model is learning, such that the
learning process does not compromise prediction accuracy.
To verify this, a feature visualization method is executed
to determine what features/concepts the model has learned

based on how input data is transformed by the neural net-
work.

2 Related Work
Within the domain of Explainable Artificial Intelligence,
various neural network interpretability methods have been
defined and are organized using the taxonomy defined by
Zhang et al. [13]. Within this taxonomy, interpretability tech-
niques can be decomposed into three dimensions.
The first of these three dimensions specifies the type of

engagements. This is further broken down into passive and
active. Passive engagement introduces interpretability after
model training. Active engagement introduces interpretabil-
ity behavior during model training and actively influences
the network or training process
The second dimension is type of explanation. This is de-

composed into the following: examples, attribution, hidden
semantics, or rules.
The third dimension is the focus of the interpretability

method. This is categorized as local, semi-local, or global.
Local focus seeks to explain network’s prediction based on
an individual sample. Semi-local focus attempts to explain a
group of similar inputs. Lastly, global focus strives to explain
the network as a whole.

2.1 Passive Interpretability
Woh and Liang [7] used a technique from statistics known
as influence functions, which are capable of indicating how
a change in one data instance can impact an overall esti-
mator. Within this particular work, Woh and Liang applied
influence functions to trace the path taken by a training
data instance from the model’s prediction through the model
and back to the original training instance. In the empirical
evaluation of this approach, Woh and Liang demonstrated
how they were able to understand model behavior, assess
model vulnerability to adversarial training examples, debug
models, and detect dataset errors. However, since this model
mainly focuses on the impact of individual training points
towards a model’s prediction output under the assumption
of minimal model change, it does not possess the capability
of explaining global changes made to a network.
Bojarski et al. [2] produced a new method in the field

of neural network interpretability of autonomous driving
called VisualBackProp. VisualBackProp visualizes and deter-
mines which set of pixels of the input image made the most
contributions to the prediction made by the convolutional
neural network. Bojarski et al’s method was shown to be
computationally competent as well as able to provide effi-
cient and accurate visualizations. Although this method is
very fast and applicable to real-time application, it does not
provide any practical information for debugging the original
autonomous driving neural network.
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2.2 Active Interpretability
Wu et al. [11] created a new tree regularization method to
make deep models that can be closely modeled by decision
trees with a few nodes, so that the deepmodels can be human-
simulatable. This tree regularization method takes the form
of a true-average-path-length penalty function, such that the
deep model would still maintain its accuracy and avoid com-
plexity, which is defined as long average path length. The
authors discovered that tree regularized models were able
to outperform conventional regularization methods such as
L1 norm and L2 norm in accuracy, while maintaining inter-
pretability through the use of decision tree proxies. Even
with these exemplary results though, this tree regularization
technique is limited only to input features that are inter-
pretable and would not work on other types of input features,
such as pixel data from images.
Alvarez-Melis and Jaakkola [1] created a bottom-up in-

terpretable model that maintains desirable characteristics
of simple linear models in terms of features and coefficients
without limiting performance. They made a self-explaining
neural network model (SENN) that progressively generalizes
linear classifiers to complex architecturally explicit models.
Instead of looking at single pixels on predictions, their model
aims to examine the higher-level features because individual
pixels tend to be hard to analyze and often lead to chaotic ex-
planations. The results showed that they were able to create
complex models with robust explanations.

2.3 Hybrid Interpretability
Plumb et al. [8] designed a hybrid approach known as EXPO.
Within this method, a domain-independent regularization
technique is applied to black-box models, which provides
greater control over the quality of post-hoc explanations
generated to elucidate the logic used by the model. The re-
sults of the application of EXPO regularization to increase
fidelity and stability show that this method slightly improves
model accuracy and greatly improves the quality of inter-
pretability across each of the datasets. However, this method
does not provide a resolution to the issue of vulnerability of
local explanations to adversarial training examples and does
not provide results when trained on data without semantic
features.
Dong et al. [4] built a novel neural network architecture

specifically within the domain of autonomous driving known
as a global soft attention model. The results produced by the
authors support the accuracy improvement brought by the
global soft attention model compared to the baselines due to
its focus on global features, the fusion of individual pieces
of information, and the ability to capture long-range correla-
tions in the input data. However, even with the introduction
of some form of a set of explanations for the logic used by
this architecture, the authors did not evaluate the quality of
these explanations.

3 Method
3.1 Dataset
To train the end-to-end self-driving model, the Udacity Self
Driving Car Dataset 3-1: El Camino [6] is used. This dataset
consists of 3 hours of driving data from the Udacity office
in Mountain View to San Francisco and from San Francisco
back to the Mountain View Udacity office.

This dataset is then preprocessed to only contain the cen-
ter camera viewwith the corresponding steering wheel angle.
Furthermore, the dataset images in which the car is station-
ary either at the beginning or the end of the dataset are
removed, resulting in a final dataset size of 210,000 data
points. The first 190,000 of these points are used for training
the model and the last 20,000 are used as a validation set, to
verify that the model is not overfitting to/memorizing the
training data labels. Further preprocessing is applied to the
center camera images, by resizing the input images from
480x640 (height x width) to 125x349, converting the dataset
image representation from an 8-bit unsigned integer to Ten-
sorflow’s 32-bit floating-pointing number, and converting
the images from RGB to grayscale. These images are then
fed into the self-driving model.

3.2 Self-Driving Model
The end-to-end driving model used in this work was devel-
oped by Bojarski et al. [2] called NetHVF. This model was
initially designed as a means of validating the VisualBack-
Prop approach of extracting feature maps that accurately
represent the concepts learned by a vision-based neural net-
work. However, in this project, the application of this model
is extended beyond its original scope and evaluated for its
driving capabilities. The composition of this model is pro-
vided in Table 1.

Table 1. Architecture of NetHVF

NetHVF
Layers Layer Output Size Filter Size Stride Size
conv 32 x 123 x 349 3 x 3 1 x 1
conv 32 x 61 x 173 3 x 3 2 x 2
conv 48 x 59 x 171 3 x 3 1 x 1
conv 48 x 29 x 85 3 x 3 2 x 2
conv 64 x 27 x 83 3 x 3 1 x 1
conv 64 x 13 x 41 3 x 3 2 x 2
conv 96 x 11 x 39 3 x 3 1 x 1
conv 96 x 5 x 19 3 x 3 2 x 2
conv 128 x 3 x 17 3 x 3 1 x 1
conv 128 x 1 x 8 3 x 3 2 x 2
FC 1024 - -
FC 512 - -
FC 1 - -
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Note the following details about the design of the NetHVF
model. Each layer except for the last feedforward (FC) layer
in Table 1 is followed by ReLU activation. Each convolutional
(conv) layer is preceded by a batch normalization layer. Let n
be the number of feature maps, h be the height and w be the
width. For conv layers, layer output size is n × h ×w. Filter
size and stride are given as h ×w.

3.2.1 Regularization. To make this model more inter-
pretable, our proposedmethod involves applying activemodel
interpretability in the form of the penalty function on the
model’s optimization function, also known as regularization.
Specifically, L1 Norm Regularization was applied mainly to
the convolutional layers of the NetHVF model. The purpose
of this is to induce sparsity in the features learned by the
network, such that the reduction in parameters would allow
the model to be more selective in the features that it learns
during training. Through this process of selecting the fea-
tures learned in each of the convolutional layers, the model
may be able to filter out some unnecessary noise that may
be irrelevant to autonomous driving and learn identifiable
patterns. This in turn may make the features learned by the
model more interpretable for humans.
However, from a theoretical point of view, the applica-

tion of L0 Norm Regularization would be more ideal, since
it can guarantee sparsity. As shown by the graphical depic-
tions of L0 and L1 Norm Regularization in Figure 2, L0 Norm
Regularization is axis-aligned, which means that this regu-
larization will constrain optimal solutions of the model to be
axis-aligned. However, since solving a constrained optimiza-
tion problem with L0 Norm Regularization is NP-hard, L1
Norm Regularization is used instead where optimal sparse
solutions are located at the vertices of its graphical represen-
tation.

5 5

5

5

5 5

5

5

(a) (b)

Figure 2. Figures (a) and (b) represent the graphical repre-
sentation of L1 Norm Regularization and L0 Norm Regular-
ization respectively.

3.3 Test Environment
For model evaluation, we decided to use the open-source
driving simulator CARLA [5]. This simulator has a diverse
set of driving environments with a flexible API for greater
ease in adding different vehicle sensors. In addition, CARLA

has a comprehensive driving benchmark, Corl2017, to evalu-
ate autonomous driving models in two towns, Town01 and
Town02, with 24 different experiments run in both towns.
Within these experiments, autonomous driving models are
evaluated for being able to drive straight, make a single turn,
go to an arbitrary position, and go to an arbitrary position
with random moving objects in the environment. For each
of these tasks, the weather conditions of the simulation en-
vironment are changed to the following: clear noon, heavy
rain noon, clear sunset, after rain noon, cloudy after rain, and
soft rain sunset. In this work, only the Town02 simulations
are run, since Town01 is used in the training dataset that
CARLA provides and not utilized to train the baseline and
regularized NetHVF models.

3.4 Data Collection
During the benchmark test, the number of human interven-
tions, autonomous driving time, and images viewed by the
models are collected. For the number of human interven-
tions, this quantity is incremented based on observations
made when the simulated car with the loaded model drifted
out of a lane or crashed into a building/pole during each of
the simulation episodes. The autonomous driving time is
measured by taking the total time during which the simu-
lated car with the loaded model drives continuously until
the car is no longer able to navigate after crashing or for the
duration of the simulation. Lastly, the images viewed by the
models, these images are collected every 50 frames.

4 Experiment Results
4.1 Trained Models
In search of the optimal baseline and the L1-Regularizedmod-
els, various model configurations were trained to optimize
the Mean Squared Error Cost Function (𝐽 (𝜃 )) between the
predicted steering wheel angle (ℎ𝜃 (𝑥 (𝑖) )) and ground-truth
steering wheel angle (𝑦 (𝑖) ), as shown below.

𝐽 (𝜃 ) = 1
2𝑚

𝑚∑︁
𝑖=1

(ℎ𝜃 (𝑥 (𝑖) ) − 𝑦 (𝑖) )2 (1)

A total of 10 model configurations were evaluated for
the baseline model and 30 model configurations for the L1-
Regularized model (InterpNet). After training these models
until convergence, the optimal solution for each configura-
tion was determined based on the epoch at which minimal
validation loss was achieved. For the baseline, the optimal
model was that trained for 52 epochs with a batch size of 32
and a learning rate of 5e-4. This model achieved a validation
loss of 0.00255298. For InterpNet, the optimal model was that
trained for 260 epochs with a batch size of 32, a learning rate
of 1e-4, and an L1 Norm regularization strength of 1e-3. This
model achieved a validation loss of 0.00200723. The training
plots for optimal baseline and InterpNet model are shown in
Figure 3.
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Figure 3. Figures (a) and (b) depict the training plots of the
optimal baseline and InterpNet models respectively.

4.2 Autonomy
To measure model effectiveness, the autonomy of the models
was measured using the number of human interventions that
were recorded during the 10-hour benchmark test. The pre-
cise formulation of this metric, as stated by Bojarski et al. [3],
is provided below.

𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 = 1 −
(
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 × 6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

)
(2)

For further clarification, the autonomy of the model was
calculated indirectly by measuring how non-autonomous
the model is. This non-autonomy portion of the metric was
calculated by taking the number of human interventions
multiplied by 6 seconds over the total elapsed driving time.
The number of human interventions was multiplied by 6
seconds because it takes 6 seconds on average for a person
to correct a driving error.

Based on the data collected on the number of human inter-
ventions from the Corl2017 benchmark tests for the baseline
model and InterpNet, the autonomy results are shown in
Table 2.

As shown in Table 2, the baselinemodel drove autonomously
for a smaller amount of time compared to the InterpNet
model and required more human interventions as well. In

Table 2. CARLA Autonomy Measurement

baseline InterpNet
Number of Interventions 618 598
Autonomous Driving Time (seconds) 2870 3090
Autonomy 43% 46%

total, this equated to the InterpNet model being more au-
tonomous than the baseline model by 3%.

4.3 Interpretability
To measure model interpretability, the compressibility and
randomness of the features learned by both models. As indi-
cated by Samek et al. [9], feature maps that are more com-
pressible are more likely to align with an observable pattern,
which indicates interpretability. Feature map randomness
is measured as a second means of verifying model inter-
pretability, since less random feature maps are more likely to
align with a particular pattern. To extract these feature maps,
the VisualBackProp approach [2] was used with the images
collected during the benchmark test. Histograms were then
created to describe feature compressibility and feature ran-
domness of the models using Principal Component Analysis
(PCA) and entropy respectively.

4.3.1 Feature Compressibility. The histograms for mea-
suring the compressibility of the features learned by the
baseline model and InterpNet are shown below in Figure 4.

From these histograms, it is observed that the distribution
of the compressibility of the features learned by the base-
line model closely resembles a Gaussian distribution with
a greater amount of variation compared to the distribution
of the compressibility of the features learned by InterpNet.
Additionally, the peak compressibility of the learned features
of the baseline model requires 7 Principal Components com-
pared to the consistent 3 Principal Components for learned
features of InterpNet. This indicates that the features learned
by InterpNet are generally more compressible than those
learned by the baseline model.

4.3.2 Feature Randomness. The histograms for measur-
ing the randomness of the features learned by the baseline
model and InterpNet are shown below in Figure 5.

From these histograms, a similar trend is observed as from
the histograms of the features learned by bothmodels. Specif-
ically, the peak randomness of the learned features of the
baseline model falls within the range of 0.9 and 1.0 com-
pared to the 0.5 and 0.6 range for learned features of Interp-
Net. This indicates that the features learned by InterpNet
are generally less random than those learned by the base-
line model. However, the distribution for the randomness
of the features learned by the baseline model is skewed to
the right/maximum entropy instead of closely resembling a
Gaussian distribution. Nonetheless, this still indicates that
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Figure 4. Figures (a) and (b) depict the number of PCA com-
ponents required to compress the feature maps extracted
from the optimal baseline and InterpNet models respectively.
The PCA algorithm was configured to compress the learned
features while still capturing 90% of the variance within the
original features.

the features learned by InterpNet are generally less random
than those learned by the baseline model.

5 Ethical Concerns
As software continues to play a key role in modern-day
vehicles, machine learning engineers working in this domain
must ensure that their solutions address prevalent ethical
concerns. Even with the optimistic outlook on self-driving
cars, many bring up unsolvable decision making problems
like the trolley problem. The solution to the trolley problem
is extremely limited, and all answers can be perceived as
ethically wrong. A typical approach to solving this problem
is found by analyzing it through various ethical theories,
such as utilitarianism. This theory stresses the greater good
meaning that the ethically correct answer would be to choose
the least amount of casualties in order to maximize utility.
Depending on the ethical framework, different theories can
be used to justify a decision. However, these conclusions are
only drawn by humans. How do these systems come to their
conclusion?
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Figure 5. Figures (a) and (b) depict the entropy of the feature
maps extracted from the optimal baseline and InterpNet
models respectively. These entropy values range between 0
and 1 inclusive, in which 0 indicates no randomness and 1
indicates complete randomness.

6 Conclusion and Future Work
In this work, we have introduced InterpNet, an active in-
terpretability method to encourage an autonomous driving
neural network to learnmore interpretable features. Through
the use of an autonomous driving simulator, we have demon-
strated that our approach not only is more autonomous but
also more interpretable based on the general decrease in
required principal components and entropy of the extracted
feature maps compared to our baseline model. While we
have demonstrated improvements in model effectiveness
and interpretability through our method, future work could
continue towards examining the impact of additional regu-
larization terms. One such improvement would include the
use of regularizing for mutual information along with the L1
Norm in the convolutional layers. This would constrain the
model’s optimal parameters to be sparse and independent be-
tween neurons and across network layers. Furthermore, reg-
ularization can be applied to the feedforward layers to more
easily trace through the model’s decision-making process.
This could be done using tree regularization to produce an
accurate decision tree proxy, as described by Wu et. al. [11].
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