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Problem: predicting long-term streamflow values with rain off data

X4 to xg : the input sequence

[;]'313 L2yeuny .’I?T] - H.T — [;]'31"_,_13 “ e :;TiT_|_H] - RH,I X141 t0 X4y : the output sequence
In our research: H = 3 * 24 * 4 = 288, with majority of normal values and

much fewer extreme values which cause the data skewness to one side.

| Challenges:

* Long-range dependencies.

* Rare but important extreme values; very imbalanced data.
Goal:

* An end-to-end extreme-adaptive model;

» Long sequence forecasting (predicted length = 288);

Dataset:

* Four groups of hydrologic datasets from Santa Clara County, CA.

. Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations.
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Dataset with high skewness and kurtosis scores:
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High skewness and kurtosis scores indicate that there is significant

deviation from a normal distribution in our data!

May

Hydro year: from September to May.

Four streams: Ross, Saratoga, UpperPen, and SFC.

Statistic / Stream Ross Saratoga UpperPen SFEC
mean 291 5.77 6.66 20.25

max 1440.00  2210.00 830.00  7200.00

min 0.00 0.00 0.00 0.00
median 0.17 1.00 3.20 1.20
variance 597.22 711.09 452.90 12108.14
skewness 19.84 19.50 13.42 18.05
kurtosis 523.16  697.78 262.18 555.18




Motivation: achieving the best overall prediction performance, without sacrificing either the quality
of normal or of extreme predictions.

Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)

Proposed Methods:
Framework: Segment-Expandable Encoder-Decoder (SEED) model, which is the first to integrate segment
representation learning with a multi-tiered encoder-decoder framework.

Importance-enhanced sampling strategy: embedded within the SEED model, allowing it to skillfully identify key features and trends in

datasets.
Representation Learning: A unique regularization strategy that incorporates a Kullback-Leibler divergence regularization loss term across

multiple stacked layers, thereby increasing the model’s robustness against anomalous events with divergent distributions.



Background: Piecewise Linear Representation (PLR)
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> PLR splits a series into several segments such that the maximum error of each segment does not exceed a threshold;
> Prior work: PLR describes the linear relationship of the multi-segment representation, mainly works as a preprocessing
step to reduce both the space and computational cost of storing and transmitting time series.

» Our work: inspired by PLR, SEED learns nonlinear segment representations for heavily skewed long term time series.



SEED framework :

Embedding Encoder Decoder
o i h,c
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Output
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Comprises three core components: embedding, encoder, and decoder.
The encoder generates a unique hidden state and a cell state which serve as the initial values for the corresponding layers in the decoder.
Each decoder layer is assigned a distinct task, as they represent the mean value distribution of different lengths of subsegments in the

predicted sequence.



Convolutional Embedding Layers:

Embedding Encoder
CONV-1 | Tanh LSTM-1536 |
CONV-2 | Tanh LSTM-1536 |
CONV-3 | Tanh LSTM-1024 |
CONV-3 | Tanh LSTM-1024 |
CONV-5 | Tanh LSTM-512

CNN Layers :

different kernel sizes to extract features at different spatial scales.
subsequent tanh activation function;

lower level: larger kernel sizes, capturing broader patterns and
global context.

higher level: smaller kernel sizes, capturing local patterns and

fine grained details.



Decoder Architecture:
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First level: the output length is 4, which is meant to predict the mean values of 4 segments, each of which contains
288/4 = 72 points in the forecasted series.

Second level: the 4 outputs are expanded to16, each represents the mean value of 288/16 = 18 points.

Expansion: (a, b, ¢, d) becomes (a, a, a, a, b, b, b, b, ,c,c,c,c,d,d,d,d), inthe high-dimensional hidden space.
By predicting the mean value of different length sub-segments, extreme values are represented and spread across

multiple levels in the hierarchy, leading to higher mean values in the segments containing them.



Multiple-Objective Loss Functions:

KLy | 0) = Yot log (23 ).

q(x

L; = KL (softmax(p_m,), softmax(g_m;)) ,

L._:
L=RMSE@,y) +Ax [ Y L

i—1

Motivations:

» Kullback-Leibler divergence loss acts as a
regularization term that encourages the model to match
the target distribution while balancing the sequence

generation loss.
> p_m; represents the predicted segment mean values

in the ith layer, while g_Mm; is the vector of computed

ground truth mean values for the segments in the ith

layer. .



Importance-Enhanced Oversampling Policy:

Input : Dataset with training and inference sequences
Output: Oversampled training set Steps:
Procedure Oversampling; °ps.
while fraining set size is not satisfied do
Randomly sample a sequence including training and
inference sections;
if maximum value in inference section > 1" then inference section of the series exceed a threshold
Mark sequence as important; T
Move maximum value to the middle of the inference ’
section of the sequence;
foreach index I in the sequence with step size S do

» important sequences: maximum values in the

Sample starting at I; » moving the maximum value to the middle of the
Add sampled sequence to oversampled training inference section:
set;
end
end > multiple iterations of sampling from the beginning
else . with a specified step size S.
| Add sequence to oversampled training set;
end

end



Baselines:
* FEDFormer

* |nFormer

* NLinear
* Dlinear
« NEC+

» EnDecoder, the common encoder-decoder model built with LSTM layers.



Main results:

Methods  Metric Ross Saratoga Upperpen SFC
All  High Low All High Low All High Low All  High Low
FEDformer RMSE 649 30.82 251 685 1195 459 238 17.68 1.07 2415 9428 6.68
MAPE 249 527 204 226 150 260 1.02 237 05 281 170 3.09
Informer RMSE 9.14 31.00 556 489 1364 1.01 533 1626 440 19.00 8540 246
MAPE 545 580 539 073 140 043 421 270 434 054 071 049
Nlinear RMSE 5.84 32112 1.54 498 1461 070 1.74 1507 0.61 1843 8331 226
MAPE 1.62 489 1.09 075 174 031 057 169 047 087 103 083
Dlinear RMSE 690 3056 297 406 7.63 248 325 1401 233 2364 7976 9.65
MAPE 279 4.03 258 131 085 151 204 168 207 402 104 476
NEC+ RMSE 96.33 3834 458 195 555 035 194 1392 092 1639 76.63 1.38
MAPE 453 833 391 021 030 0.17 080 084 080 055 061 054
NBeats RMSE 5.16 30.09 1.08 360 944 101 1.23 1320 021 3147 9533 15.55
MAPE 125 3.17 094 070 121 047 025 0.8 020 324 088 383
EnDecoder RMSE 5.58 30.81 145 193 569 026 295 1633 1.80 1746 79.04 2.11
MAPE 1.62 372 128 016 029 0.11 181 234 176 084 096 0.80
SEED RMSE 4.23 29.74 0.05 1l.67 514 012 1.07 1283 0.07 1444 70.04 0.59
MAPE 0.11 053 0.04 009 019 005 010 057 006 020 042 0.14

Univariate Long-Term (h = 288) Series
Forecasting Results.

Over 1600 test points in the test set were
inferenced on all datasets.

The best results are in bold and the

second best results are underlined.

“All” represents the average RMSE of all
test samples compared with the ground

truth. “High” means larger than the mean
value; “Low” includes test samples lower

than the mean value.

In comparison to the three second-best models (NEC+, Nbeats and EnDecoder), SEED achieved, on average, relative
RMSE reduction of 31.44%, 34.68%, and 29.67% across the datasets.




Example comparisons with the second best baselines:
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Effect of the Importance-Enhanced Oversampling Policy:

3.0
2.7
2.51
2'0- . . .
« To evaluate the impact of this policy, we
1.51
26 . .
Lol i 1.09 1.01 e increased the threshold T while
0.5 I simultaneously decreasing the step size S.
0.0
T=8 T=12 T=16 T=20
S=6 5=4 §=2 5=2 . .
* Increasing the threshold T and decreasing
(a) RMSE of UpperPen _ »
3.0 the step size S had a positive impact on the
2.53
2.51 results.
2.01 1.79 1.78 1.76 182
1.5
« There is an optimal threshold T value beyond
1.0
o5 ) which the policy’s effectiveness plateaus.
0.0- -
T=4 T=8 T=12 T=16 T=20
5=3 5=h S5=4 5=2 5=2

(b) RMSE of Saratoga
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Effect of the KL Regularization Terms & Segment Expanding:
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We just use T=4, S=8 as an example:

T4S8: 5-layer without regularization
loss terms.

T4S8-3L: 3-layer SEED with
regularization loss terms.

T4S8-Regu: 5-layer SEED with
regularization loss terms, which gives
the best result.
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