

AI for the Greater Good

David C. Anastasiu

davidanastasiu.net

Research Summary

Information Retrieval Machine Learning Data Mining High Performance Computing Data Analysis Methods and Applications Improving Web search utility [WWWJ'13, IEEE IC'2013, ACM CIKM'09, DMIN'09] Clustering and pattern mining [IEEE BDS'19, IEEE MC'19, StatsRef'17, SIP'14, CRC'13, IEEE CIKM'11, IEEE SIGIR'11, COLING'10] Traffic analytics from video [IEEE CVPR'23, IEEE CVPR'22, IEEE CVPR'21, BDAT'20, IEEE CVPR'20, IEEE CVPR'19, IEEE SOSE'19, IEEE MC'19, IEEE CVPR'18, IEEE SmartWorld'17] Applications of machine learning and data mining [AAAI'24, IEEE BigData'23, AAAI'23, Bioinformatics'23, DataBrief'23, GHTC'22, ECTEL'22, Microbio'22, KDD-UC'22, iDSC'19, IEEE CIKM'18, GHC'18, IEEE SCI'17, IEEE ICDE'15] Fast nearest neighbors computation [JPDC'17, JDSA'17, iDSC'17, IEEE DSAA'16, IA3'16, ACM CIKM'15, IA3'15, IEEE ICDE'14] 2

Outline

- AI Research for the Greater Good
- Hydrologic Flow Prediction
	- An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks
	- SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting
- Chronic Kidney Disease
	- On-Device Prediction for Chronic Kidney Disease
	- Color Constancy for Accurate CKD Prediction
- References

AI Research for the Greater Good

What drives your choice of projects?

Medical Analytics

SANTA CLARA UNIVERSITY

[iDSC'19] A Data-Driven Approach for Detecting Autism Spectrum Disorders

Autism Prediction *w/ Megan C. Chang, SJSU*

- EKG and skin-conductance data collected during a sensory trial protocol.
- Multivariate time series analysis with very long series (~4M points per subject).

[FIM'22] Identification of Distinct Characteristics of Antibiofilm Peptides and Prospection of Diverse Sources for Efficacious

Sequences

Antibiofilm and Antithrombotic Peptide Prediction

w/ Anand K. Ramasubramanian, SJSU

- Given a peptide's amino acid sequence
	- Determine its ability to prevent biofilm production or the clotting of the blood.
	- Determine whether the compound that is derived from the peptide is likely to have unintended side effects for the patient.

[GHTC'22] Alex Whelan, Soham Phadke & David C. Anastasiu. On-Device Prediction for Chronic Kidney Disease. In 2022 IEEE Global Humanitarian Technology Conference (GHTC) (GHTC 2022), 2022.

Kidney Health Screening *w/ Alessandro Bellofiore, SJSU*

 T I S M

- Decide severity of kidney disease by taking a picture of a test strip
	- Deep Learning localization models for capture quality.
	- Machine Learning regression to translate picture to amount of creatinine.
	- Classify based on regression output.

Åra. Dilas orașul Bitael Dilas isi nagari Bilatel Birâlâl naman nânsas **Annual BRAD BRAD Reparat BRAD** 00 113 8181 - a second 13 8181 de ges- de second 13 8181

Mass-Cytometry Screening

w/ Edgar A. Arriaga, University of Minnesota

- Analyze large multidimensional single-cell datasets
	- Developed a graph-based clustering algorithm to identify related compounds
	- CosTaL transforms high-dimensional cells into a weighted k-NN graph; weights refined via Tanimoto; community detection via Leiden's algorithm

[Bioinformatics'23] Yijia Li, Jonathan Nguyen, David C. Anastasiu, Edgar A. Arriaga. CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis. Briefings in Bioinformatics, 2023

NVIDIA Traffic Analytics

SANTA CLARA UNIVERSITY

[IEEE CVPR'19] CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification [IEEE CVPRW'23, '22, '21, '20, '19, IEEE SOSE'19, IEEE SOSE'19, IEEE MC'19, IEEE CVPRW'18, IEEE SmartWorld'17]

w/ NVIDIA, Toyota, Johns Hopkins, Iowa State, Boston Univ., Univ. of Albany – SUNY, IIT Kanpur, Australian National Univ.

- Organizing member and Evaluation Chair for the **AI City Challenge**.
- Address challenges in traffic analysis from video, including:
	- Multi-camera vehicle tracking and multi-movement counting
	- Speed estimation from video
	- Anomaly detection
	- Accident description
	- Driver activity recognition

AI Models for Hydrologic Flow Prediction

SANTA CLARA UNIVERSITY

[AAAI 2024: Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting [IEEE BigData'23: SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting] [AAAI 2023: An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks]

- Data have extreme events that are hard to distinguish from base levels
- Proposed several models for reservoir level and stream flow prediction

KDD Undergraduate Consortium

SANTA CLARA UNIVERSITY

- Expand and enhance the participation of undergraduate students of diverse backgrounds in research pertaining to knowledge discovery from data.
- What to expect
	- Feedback on current research
	- Paper/poster presentations
	- Academic and industry mentors
	- Keynote talks about research careers and funding
	- Student panel on life as a researcher
	- Free conference attendance
- How to apply
	- QR code to the right or
	- https://kdd.org/kdd2023/call-for-undergraduateconsortium/

An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks

Yanhong Li, Jack Xu, David C. Anastasiu

AAAI 2023

Problem: Univariate Time Series with Extreme Events Forecasting

 $[X_1, X_2, \ldots, X_T] \in R^T \to [X_{T+1}, \ldots, X_{T+H}], \in R^H$

Challenges:

- A majority of normal values that significantly contribute to the overall prediction performance.
- A minority of extreme values that must be precisely forecasted to avoid disastrous events.

Goal:

- A model concurrently learns extreme and normal prediction functions.
- Long sequence forecasting.
- Good generalization.

Dataset:

• We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California.

Extreme Events

GEV (Generalized Extreme Value) distribution provides a better fit, showing the presence of extreme values in our data,

$$
F(x; \mu, \sigma, \xi) = \exp\left\{-\left[1 + \xi \left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}, \quad (1)
$$

where $μ ∈ R$, $σ > 0$, and ξ are the location, scale, and shape parameters, respectively, conditioned on 1+ξ(x-μ)/σ > 0.

Motivation: achieving the best overall prediction performance, without sacrificing either the quality of normal or of extreme predictions.

Root Mean Square Error *(RMSE)*

Mean Absolute Percentage Error *(MAPE)*

Proposed Methods:

GMM Indicator: an unsupervised clustering approach to dynamically produce distribution indicators, which improves the model's robustness to the occurrence of severe events.

NEC framework: a framework to account for the distribution shift between normal and extreme values in the time series.

Selected Backpropagation: to help the models learn the positions and values of appropriate normal or extreme data better.

Parameterized Loss Function: a model concurrently learns extreme and normal prediction functions.

A Gaussian mixture model (GMM) is a weighted sum of M component Gaussian densities,

 $p(x|\lambda) = \sum_{i=1}^{M} w_i g(x|\mu_i, \sum i)$,

where x is a D-dimensional continuous-valued vector, w_i $\forall i = 1, \ldots, M$ are the mixture weights, and

 $g(x|\mu_i, \Sigma i)$ are the component Gaussian densities.

We compute an indicator feature as the weighted sum of all component probabilities, given the weights learned when fitting the GMM model.

SANTA CLARA UNIVERSITY

NEC is composed of three separate models, which can be trained in parallel:

- \triangleright The Normal (N) model is trained to best fit normal values in the time series.
- \triangleright The Extreme (E) model is trained to best fit extreme time series values.
- \triangleright The Classifier (C) model is trained to detect when a certain value may be categorized as normal or extreme.

Two-stage sampling policy:

1. Randomly sample subsections of length h + f from the series as samples to use in training our models. 2. Perform stratified sampling of regions with and without extreme values, allowing the E and C models to oversample up to OS% samples with at least 1 extreme value in the prediction zone.

Selected Backpropagation:

N model: only normal values add to the loss.

E model: only extreme values add to the loss.

Parameterized Loss Function

$$
BCE(t, p) = -(t \times log (p) + (1 - t) \times log (1 - p))
$$

 $L = \beta \times BCE(t, p^{\alpha}) + (1 - \beta) \times RMSE(t, p)$

where α and β are parameters that can be tuned. Values α > 1 cause the model to predict p values that are higher in general in order to minimize the distance between t and p^{α} *.*

Problem: for datasets with a high imbalance between the two classes, BCE will favor the prominent class.

- \triangleright The BCE part: can be thought of as a blunt instrument that grossly exaggerates all miss-classifications in order to more accurately predict the obscure class.
- \triangleright The RMSE part: allows for a more gentle penalty based on the distance between t and p.

1. What is the effect of adding the GMM indicator to a model?

2. What is the effect of introducing exogenous features?

3. How do the loss function parameters affect performance?

4. How does NEC+ compare against state-of-the-art baselines?

Baselines:

- ARIMA
- Prophet
- LSTM
- DNN-U: univariate LSTM-based encoder-decoder hydrologic model.
- Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.

• N-BEATS: a state-of-the-art time series prediction method that outperformed all competitors on the standard M3, M4 and TOURISM datasets.

Research Questions:

- 1. What is the effect of adding the GMM indicator to a model?
- 2. What is the effect of introducing exogenous features?

Research Questions:

3. How do the loss function parameters affect performance?

Research Questions:

4. How does NEC+ compare against state-of-the-art baselines?

Overall Evaluation:

Effectiveness Comparison (RMSE) of NEC+ Against Baselines for 9 Reservoirs

MAPE of NEC+ vs. Baselines for 9 Reservoirs

SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting

Yanhong Li, Jack Xu, David C. Anastasiu

IEEE BigData 2023

Problem: predicting long-term streamflow values with rain off data

$$
[x_1, x_2, \dots, x_T] \in \mathbb{R}^T \to [x_{T+1}, \dots, x_{T+H}] \in \mathbb{R}^H,
$$

 x_1 to x_T : the input sequence

 x_{T+1} to x_{T+H} : the output sequence

*In our research: H = 3 * 24 * 4 = 288, with majority of normal values and much fewer extreme values which cause the data skewness to one side.*

Challenges:

- Long-range dependencies.
- Rare but important extreme values; very imbalanced data.

Goal:

- An end-to-end extreme-adaptive model.
- Long sequence forecasting *(predicted length = 288)*.

Dataset:

- Four groups of hydrologic datasets from Santa Clara County, CA.
- Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations.

Dataset with high skewness and kurtosis scores:

Four streams: Ross, Saratoga, UpperPen, and SFC. Hydro year: from September to May.

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!

Motivation: achieving the best overall prediction performance, without sacrificing either the quality of normal or of extreme predictions.

> Root Mean Square Error *(RMSE)* Mean Absolute Percentage Error *(MAPE)*

Proposed Methods:

Framework: Segment-Expandable Encoder-Decoder (SEED) model, which is the first to integrate segment

representation learning with a multi-tiered encoder-decoder framework.

Importance-enhanced sampling strategy: embedded within the SEED model, allowing it to skillfully identify key features and trends in datasets.

Representation Learning: A unique regularization strategy that incorporates a Kullback-Leibler divergence regularization loss term across multiple stacked layers, thereby increasing the model's robustness against anomalous events with divergent distributions.

Background: Piecewise Linear Representation (PLR)

- \triangleright PLR splits a series into several segments such that the maximum error of each segment does not exceed a threshold.
- **Prior work**: PLR describes the **linear** relationship of the multi-segment representation, mainly works as a preprocessing step to reduce both the space and computational cost of storing and transmitting time series.
- **Our work**: inspired by PLR, SEED learns **nonlinear segment representations** for heavily skewed long term time series.

SEED framework

- \triangleright Comprises three core components: embedding, encoder, and decoder.
- \triangleright The encoder generates a unique hidden state and a cell state which serve as the initial values for the corresponding layers in the decoder.
- \triangleright Each decoder layer is assigned a distinct task, as they represent the mean value distribution of different lengths of subsegments in the predicted sequence.

Convolutional Embedding Layers

CNN Layers :

- different kernel sizes to extract features at different spatial scales.
- subsequent tanh activation function.
- lower level: larger kernel sizes, capturing broader patterns and global context.
- higher level: smaller kernel sizes, capturing local patterns and fine grained details.

Decoder Architecture

SANTA CLARA UNIVERSITY

- First level: the output length is 4, which is meant to predict the mean values of 4 segments, each of which contains 288/4 = 72 points in the forecasted series.
- Second level: the 4 outputs are expanded to16, each represents the mean value of 288/16 = 18 points.
- Expansion: ⟨a, b, c, d⟩ becomes ⟨a, a, a, a, b, b, b, b, c, c, c, c, d, d, d, d⟩, in the **high-dimensional hidden space**.
- By predicting the mean value of different length sub-segments, **extreme values** are represented and spread across

multiple levels in the hierarchy, leading to higher mean values in the segments containing them.

$$
KL(p || q) = \sum p(x) \log \left(\frac{p(x)}{q(x)}\right),
$$

 $\mathcal{L}_i = \text{KL}(\text{softmax}(p_m_i), \text{softmax}(g_m_i)),$

$$
\mathcal{L} = RMSE(\hat{y}, y) + \lambda \times \left(\sum_{i=1}^{k} \mathcal{L}_i\right),
$$

Motivations:

- \triangleright Kullback-Leibler divergence loss acts as a regularization term that encourages the model to match the target distribution while balancing the sequence generation loss.
- \triangleright $p_{\perp}m_i$ represents the predicted segment mean values in the ith layer, while g_m_i is the vector of computed ground truth mean values for the segments in the i*th* layer.

Input: Dataset with training and inference sequences **Output:** Oversampled training set

Procedure Oversampling:

```
while training set size is not satisfied do
    Randomly sample a sequence including training and
     inference sections:
    if maximum value in inference section \geq T then
        Mark sequence as important;
        Move maximum value to the middle of the inference
         section of the sequence;
        foreach index I in the sequence with step size S do
            Sample starting at I;
            Add sampled sequence to oversampled training
             set:
       end
    end
    else
        Add sequence to oversampled training set;
    end
end
```


 \triangleright Multiple iterations of sampling from the beginning with a specified step size S.

Baselines:

- FEDFormer
- InFormer
- NLinear
- Dlinear
- NEC+
- EnDecoder, the common encoder-decoder model built with LSTM layers.

Main results

- Univariate Long-Term (h = 288) Series Forecasting Results.
- Over 1600 test points in the test set were inferenced on all datasets.
- The **best results** are in bold and the second best results are underlined.
- "All" represents the average RMSE of all test samples compared with the ground truth. "High" means larger than the mean value; "Low" includes test samples lower than the mean value.

In comparison to the three second-best models (NEC+, Nbeats and EnDecoder), SEED achieved, on average, relative RMSE reduction of 31.44%, 34.68%, and 29.67% across the datasets.

Example comparisons with the second best baselines

SANTA CLARA UNIVERSITY

Effect of the Importance-Enhanced Oversampling Policy

- To evaluate the impact of this policy, we increased the threshold T while simultaneously decreasing the step size S.
- Increasing the threshold T and decreasing the step size S had a positive impact on the results.
- There is an optimal threshold T value beyond which the policy's effectiveness plateaus.

Effect of the KL Regularization Terms & Segment Expanding

SANTA CLARA UNIVERSITY

We just use T=4, S=8 as an example:

- T4S8: 5-layer without regularization loss terms.
- T4S8-3L: 3-layer SEED with regularization loss terms.
- T4S8-Regu: 5-layer SEED with regularization loss terms, which gives the best result.

On-Device Prediction for Chronic Kidney Disease

Alex Whelan, Soham Phadke, David C. Anastasiu

IEEE GHTC 2022

Chronic Kidney Disease (CKD)

- Progressive decline of kidney function
- Approximately 15% of US population affected by CKD

Point of Care Testing (PoCT)

- Kidney Health Monitoring (KHM) System
	- Accessible
	- Fast & Reliable
	- Affordable
- Lateral Flow Assey Test Strip Design

- **Humanitarian assistance**
- Alternative to LAB testing

SANTA CLARA UNIVERSITY

Related Works

- SmartBioPhone [1]
- ChemTrainer [2]
- DeepLactate [3]

SmartBioPhone :

https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier. ManuscriptID=B902354M&imageInfo.ImageIdentifier.Year=2009

SmartBioPhone™

DeepLactate : https://ars.els-cdn.com/content/image/1-s2.0- S0925400522011315-gr3.jpg

ChemTrainer : https://ars.els-cdn.com/content/image/1-s2.0- S0925400517316519-fx1.jpg

SANTA CLARA UNIVERSITY

Application Setup

● **[Sign up]**

- Modes of Operation
	- User
	- Researcher

Application Workflow

Localization

- Hough Circle Transform Method
- Decode Metadata

SANTA CLARA UNIVERSITY

Feature Extraction

- HSV Feature Vector Construction (bottom)
- **Randomized Crop (right)**
- **•** Dimensionality Reduction

Classification

- Predictions using estimated glomerular filtration rate **(eGFR)** and **metadata**
- New readings can be used to update models in the cloud database

SANTA CLARA UNIVERSITY

SANTA CLARA UNIVERSITY

Evaluation

- 10-Fold Cross-Validation
- F1 evaluation metric
- Gridsearch (right)

Model Effectiveness

RGB Features

HSV Features

Citations

[1] J. M. Ruano-Lopez, M. Agirregabiria, G. Olabarria, D. Verdoy, D. D. Bang, M. Bu, A. Wolff, A. Voigt, J. A. Dziuban, R. Walczak, and J. Berganzo, "The smartbiophone™, a point of care vision under development through two european projects: Optolabcard and labonfoil," Lab Chip, vol. 9, pp. 1495–1499, 2009.

[2] M. E. Solmaz, A. Y. Mutlu, G. Alankus, V. Kılıc a A. Bayram, and N. Horzum, "Quantifying colorimetric tests using a smartphone app based on machine learning classifiers," *Sensors and Actuators B: Chemical*, vol. 255, pp. 1967–1973, 2018. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0925400517316519>

[3] E. Y üzer, V. Do ğan, V. Kılıc, and M. S en, "Smartphone embedded deep learning approach for highly accurate and automated colorimetric lactate analysis in sweat," *Sensors and Actuators B: Chemical*, vol. 371, p. 132489, 2022. [Online]. Available: www.sciencedirect.com/science/article/pii/S0925400522011315

[4] O. Sidorov, "Conditional gans for multi-illuminant color constancy: Revolution or yet another approach?" in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, June 2019.

Selective Partitioned Regression for Accurate Kidney Health **Monitoring**

Alex Whelan, Ragwa Elsayed, Alessandro Bellofiore,

David C. Anastasiu

Under Submission

SANTA CLARA UNIVERSITY

Color Space Comparison

Phase Angle (degrees)

SANTA CLARA UNIVERSITY

Feature Type Comparison

Comparison Against Baselines

Baseline Methods:

DNN: VGG-inspired CNN-based deep neural network KNN: k-Nearest Neighbor classifier/regressor RF: Random Forest classifier/regressor HBT: Histogram Gradient Boosting Decision Tree classifier/regressor XGB: Extreme Gradient Boosting Tree classifier/regressor DT: Decision Tree classifier/regressor (*not shown in figure*) SVM: Support Vector Machines classifier/regressor (*not shown in figure*)

SANTA CLARA UNIVERSITY

Questions?

References

- [BigData'23] Yanhong Li, Jack Xi & David C. Anastasiu. SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting. In the 2023 IEEE International Conference on
Big Data (IEEE BigData 2023), Dec 15-1
- [DataBrief 23] Mohammed Shaiqur Rahman, Archana Venkatachalapathy, Anuj Sharma, Jiyang Wang, Senem Velipasalar Gursoy, David Anastasiu, Shuo Wang. Synthetic distracted driving
(SynDD1) dataset for analyzing distracted beha
- [Bioinformatics'23] Yijia Li, Jonathan Nguyen, David C. Anastasiu, Edgar A. Arriaga. CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis. Briefings in Bioinformatics, 2023.
- [AAAI'23] Yanhong Li, Jack Xi & David C. Anastasiu. An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks. In Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI
- [CVPRW'23] Arpita Vats, David C. Anastasiu. Enhancing Retail Checkout through Video Inpainting, YOLOv8 Detection, and DeepSort Tracking. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW),
- [GHTC'22] Alex Whelan, Soham Phadke & David C. Anastasiu. On-Device Prediction for Chronic Kidney Disease. In 2022 IEEE Global Humanitarian Technology Conference (GHTC) (GHTC
2022), 2022.
- [ECTEL'22] Arpita Vats, Gheorghi Guzun & David C. Anastasiu. CLP: A Platform for Competitive Learning. In Educating for a New Future: Making Sense of Technology-Enhanced Learning
Adoption (EC-TEL 2022), pages 615-622, Spri
- [Microbio'22] Bipasa Bose, Taylor Downey, Anand K. Ramasubramanian & David C. Anastasiu. Identification of Distinct Characteristics of Antibiofilm Peptides and Prospection of Diverse
Sources for Efficacious Sequences. Fron
- [CVPRW'22] Arpita Vats & David C. Anastasiu. Key Point-Based Driver Activity Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 3274-3281, 2022.
- [AIC'21] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng Tang, Ming Ching Chang, Xiaodong Yang, Yue Yao, Liang Zheng, Pranamesh Chakraborty, Christian E. Lopez, Anuj Sharma,
Qi Feng, Vitaly Ablavsky & Stan Sclaroff
- [AIC'20] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng Tang, Ming Ching Chang, Xiaodong Yang, Liang Zheng, Anuj Sharma, Rama Chellappa & Pranamesh Chakraborty. The 4th
AI City Challenge. In The IEEE Conference on Co
- [BDAT'20] David C. Anastasiu, Jack Gaul, Maria Vazhaeparambil, Meha Gaba & Prajval Sharma. Efficient City-Wide Multi-Class Multi-Movement Vehicle Counting: A Survey. Journal of Big
Data Analytics in Transportation. 2(3)
- CVPR'19] Zheng Tang, Milind Naphade, Ming Yu Liu, Xiaodong Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David C. Anastasiu & Jeng Neng Hwang. CityFlow: A city-scale
benchmark for multi-target multi-camera vehicle track

References

- [AIC'19] Milind Naphade, Zheng Tang, Ming Ching Chang, David C. Anastasiu, Anuj Sharma, Rama Chellappa, Shuo Wang, Pranamesh Chakraborty, Tingting Huang, Jenq Neng Hwang & Siwei Lyu. The 2019 AI City Challenge. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (CVPRW'19), 1:452-460, 2019.
- [iDSC'19] Manika Kapoor & David C. Anastasiu. A Data-Driven Approach for Detecting Autism Spectrum Disorders. In Data Science -- Analytics and Applications (iDSC 2019), Springer Fachmedien Wiesbaden, 2019.
- [MC'19] Anupama Upadhayula, Avinash Ravilla, Ishwarya Varadarajan, Sowmya Viswanathan & David C. Anastasiu. Study Area Recommendation via Network Log Analytics. In The Seventh IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, IEEE, 2019.
- [SOSE'19] Shuai Hua & David C. Anastasiu. Effective Vehicle Tracking Algorithm for Smart Traffic Networks. In Thirteenth IEEE International Conference on Service-Oriented System Engineering (SOSE), IEEE, 2019.
- ICIKM '181 Swapnil Gaikwad, Melody Moh & David C. Anastasiu. Data Structure for Efficient Line of Sight Queries. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM '18), ACM, 2018.
- [AIC'18] Milind Naphade, Ming Ching Chang, Anuj Sharma, David C. Anastasiu, Vamsi Jagarlamudi, Pranamesh Chakraborty, Tingting Huang, Shuo Wang, Ming Yu Liu, Rama Chellappa, Jenq Neng Hwang & Siwei Lyu. The 2018 NVIDIA AI City Challenge. In 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'18), 1:53-
60, 2018.
- [CVPRW'18] Shuai Hua, Manika Kapoor & David C. Anastasiu. Vehicle Tracking and Speed Estimation from Traffic Videos. In 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'18), IEEE, 2018.
- [JDSA'17] David C. Anastasiu & George Karypis. Efficient identification of Tanimoto nearest neighbors; All Pairs Similarity Search Using the Extended Jaccard Coefficient. Springer International Journal of Data Science and Analytics, 4(3):153-172, 2017.
- [StatsRef'17]David C. Anastasiu & Andrea Tagarelli. Document Clustering. Wiley StatsRef: Statistics Reference Online, pages 1-11, American Cancer Society, 2017.
- [JPDC'17] David C. Anastasiu & George Karypis. Parallel cosine nearest neighbor graph construction. Elsevier Journal of Parallel and Distributed Computing, 2017.
- [SCI'17] Swapnil Gaikwad & David C. Anastasiu. Optimal Constrained Wireless Emergency Network Antenna Placement. In Proceedings of the IEEE Smart City Innovations 2017 Conference (IEEE SCI 2017), 2017.
- [iDSC'17] David C. Anastasiu. Cosine Approximate Nearest Neighbors. In Data Science -- Analytics and Applications (iDSC 2017), pages 45-50, Springer Fachmedien Wiesbaden, 2017.
- [SmartWorld'17] Niveditha Bhandary, Charles MacKay, Alex Richards, Ji Tong & David C. Anastasiu. Robust Classification of City Roadway Objects for Traffic Related Applications. In 2017 IEEE Smart World NVIDIA AI City Challenge (SmartWorld'17), IEEE, 2017.

References

- [DSAA'16] David C. Anastasiu & George Karypis. Efficient Identification of Tanimoto Nearest Neighbors. In 2016 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016, pages 156-165, 2016.
- [IA3'16] David C. Anastasiu & George Karypis. Fast Parallel Cosine K-Nearest Neighbor Graph Construction. In 2016 6th Workshop on Irregular Applications: Architecture and Algorithms (IA3) (IA3 2016), pages 50-53, 2016.
- [IA3'15] David C. Anastasiu and George Karypis. Pl2ap: Fast parallel cosine similarity search. IA3 2015. In conjunction with SC'15, IA3 2015, 2015.
- [CIKM'15] David C. Anastasiu and George Karypis. L2knng: Fast exact k-nearest neighbor graph construction with l2-norm pruning. CIKM '15, pages 791-800, New York, NY, USA, 2015. ACM.
- [ICDE'15] David C. Anastasiu, Al M. Rashid, Andrea Tagarelli, and George Karypis. Understanding computer usage evolution. ICDE 2015, pages 1549-1560, 2015.
- [ICDE'14] David C. Anastasiu and George Karypis. L2ap: Fast cosine similarity search with prefix l-2 norm bounds. ICDE 2014, pages 784-795, 2014.
- [SI'14] David C. Anastasiu, Jeremy Iverson, Shaden Smith, and George Karypis. Big data frequent pattern mining. In Frequent Pattern Mining, pages 225-260. Springer International Publishing, Switzerland, 2014.
- [CRC'13] David C. Anastasiu, Andrea Tagarelli, and George Karypis. Document clustering: The next frontier. In Data Clustering: Algorithms and Applications, pages 305-338. CRC Press, Boca Raton, FL, USA, 2013.
- [WWW'13] David C. Anastasiu, Byron J. Gao, Xing Jiang, and George Karypis. A novel two-box search paradigm for query disambiguation. World Wide Web, 16(1):1-29, 2013.
- [IC'13] Byron J. Gao, David Buttler, David C. Anastasiu, Shuaiqiang Wang, Peng Zhang, and Joey Jan. User-centric organization of search results. IEEE Internet Computing, 17(3):52-59, May 2013.
- [CIKM'11] David C. Anastasiu, Byron J. Gao, and David Buttler. A framework for personalized and collaborative clustering of search results. CIKM '11, pages 573-582, New York, NY, USA, 2011. ACM.
- [SIGIR'11] David C. Anastasiu, Byron J. Gao, and David Buttler. Clusteringwiki: personalized and collaborative clustering of search results. SIGIR 2011, pages 1263-1264, 2011.
- [COLING'10] Byron J. Gao, David C. Anastasiu, and Xing Jiang. Utilizing user-input contextual terms for query disambiguation. COLING '10, pages 329-337, Stroudsburg, PA, USA, 2010.
- [CIKM'09] Byron J. Gao, Mingji Xia, Walter Cai, and David C. Anastasiu. The gardener's problem for web information monitoring. CIKM '09, pages 1525-1528, New York, NY, USA, 2009. ACM.
- [DMIN'09] Walter Cai, David C. Anastasiu, Mingji Xia, and Byron J. Gao. Olap for multicriteria maintenance scheduling. DMIN '09, pages 35-41. CSREA Press, 2009.
57