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Research Summary

Information 
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Computing
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Methods and 
Applications

Improving Web search utility
[WWWJ’13, IEEE IC’2013, ACM CIKM’09, 
DMIN’09]
Clustering and pattern mining
[IEEE BDS’19, IEEE MC’19, StatsRef’17, SIP’14, 
CRC’13, IEEE CIKM’11, IEEE SIGIR’11, 
COLING’10]
Traffic analytics from video
[IEEE CVPR’23, IEEE CVPR’22, IEEE CVPR’21, 
BDAT’20, IEEE CVPR’20, IEEE CVPR’19, IEEE 
SOSE’19, IEEE MC’19, IEEE CVPR’18, IEEE 
SmartWorld’17]
Applications of machine learning and data mining
[AAAI’24, IEEE BigData’23, AAAI’23, 
Bioinformatics’23, DataBrief’23, GHTC’22, 
ECTEL’22, Microbio’22, KDD-UC’22, iDSC’19, 
IEEE CIKM’18, GHC’18, IEEE SCI’17, IEEE 
ICDE’15]
Fast nearest neighbors computation
[JPDC’17, JDSA’17, iDSC’17, IEEE DSAA’16, 
IA3’16, ACM CIKM’15, IA3’15, IEEE ICDE’14]
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Outline

• AI Research for the Greater Good
• Hydrologic Flow Prediction

• An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM 
Neural Networks

• SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting

• Chronic Kidney Disease
• On-Device Prediction for Chronic Kidney Disease
• Color Constancy for Accurate CKD Prediction

• References
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AI Research for the Greater Good

What drives your choice of projects?



Medical Analytics

Autism Prediction
w/ Megan C. Chang, SJSU
• Derive if subject is autistic using 

sensor data
• EKG and skin-conductance 

data collected during a 
sensory trial protocol.

• Multivariate time series 
analysis with very long series 
(~4M points per subject).

[iDSC’19] A Data-Driven Approach for Detecting Autism Spectrum Disorders

Kidney Health Screening
w/ Alessandro Bellofiore, SJSU
• Decide severity of kidney disease by 

taking a picture of a test strip
• Deep Learning localization 

models for capture quality.
• Machine Learning regression 

to translate picture to amount 
of creatinine.

• Classify based on regression 
output.

Antibiofilm and Antithrombotic Peptide 
Prediction
w/ Anand K. Ramasubramanian, SJSU
• Given a peptide’s amino acid sequence

• Determine its ability to prevent 
biofilm production or the clotting of 
the blood.

• Determine whether the compound 
that is derived from the peptide is 
likely to have unintended side 
effects for the patient.

Mass-Cytometry Screening
w/ Edgar A. Arriaga, University of Minnesota
• Analyze large multidimensional single-cell 

datasets
• Developed a graph-based clustering 

algorithm to identify related compounds
• CosTaL transforms high-dimensional 

cells into a weighted k-NN graph; 
weights refined via Tanimoto; community 
detection via Leiden’s algorithm

[FIM’22] Identification of Distinct Characteristics of Antibiofilm 
Peptides and Prospection of Diverse Sources for Efficacious 
Sequences

[GHTC'22] Alex Whelan, Soham Phadke & David C. Anastasiu. On-Device Prediction for Chronic Kidney 
Disease. In 2022 IEEE Global Humanitarian Technology Conference (GHTC) (GHTC 2022), 2022.

[Bioinformatics’23] Yijia Li, Jonathan Nguyen, David C. Anastasiu, Edgar A. 
Arriaga. CosTaL: an accurate and scalable graph-based clustering algorithm 
for high-dimensional single-cell data analysis. Briefings in Bioinformatics, 2023
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• Organizing member and Evaluation Chair for the AI City Challenge.
• Address challenges in traffic analysis from video, including: 

• Multi-camera vehicle tracking and multi-movement counting
• Speed estimation from video
• Anomaly detection
• Accident description
• Driver activity recognition

[IEEE CVPR’19] CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification
[IEEE CVPRW’23, ‘22, ‘21, ‘20, ‘19, IEEE SOSE’19, IEEE SOSE’19, IEEE MC’19, IEEE CVPRW’18, IEEE SmartWorld’17]

w/ NVIDIA, Toyota, Johns Hopkins, Iowa State, Boston Univ., Univ. of Albany – SUNY, IIT Kanpur, Australian National Univ.

Traffic Analytics
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AI Models for Hydrologic Flow Prediction

• Hydrologic flow prediction: methods for predicting flow volume of streams and rivers and water levels of reservoirs 
• Data have extreme events that are hard to distinguish from base levels
• Proposed several models for reservoir level and stream flow prediction

w/
[AAAI 2024: Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting]
[IEEE BigData’23: SEED: An Effective Model for Highly-Skewed Streamflow Time Series Data Forecasting]
[AAAI 2023: An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks]
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KDD Undergraduate Consortium

• Expand and enhance the participation of undergraduate 
students of diverse backgrounds in research pertaining to 
knowledge discovery from data.

• What to expect
• Feedback on current research
• Paper/poster presentations
• Academic and industry mentors
• Keynote talks about research careers and 

funding
• Student panel on life as a researcher
• Free conference attendance

• How to apply
• QR code to the right or
• https://kdd.org/kdd2023/call-for-undergraduate-

consortium/



An Extreme-Adaptive Time Series Prediction Model Based on 

Probability-Enhanced LSTM Neural Networks

Yanhong Li,  Jack Xu,  David C. Anastasiu 

AAAI 2023



Problem: Univariate Time Series with Extreme Events Forecasting

[𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑇𝑇] ∈ 𝑅𝑅𝑇𝑇 → [𝑋𝑋𝑇𝑇+1, . . . , 𝑋𝑋𝑇𝑇+𝐻𝐻 ], ∈ 𝑅𝑅𝐻𝐻

Challenges:

• A majority of normal values that significantly contribute to the overall prediction performance.

• A minority of extreme values that must be precisely forecasted to avoid disastrous events.

Goal:
• A model concurrently learns extreme and normal prediction functions.

• Long sequence forecasting.

• Good generalization.

Dataset:
• We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California.
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Extreme Events

GEV (Generalized Extreme Value) distribution provides a better fit, showing the presence of extreme values in our data,

where μ ∈ R, σ > 0, and ξ are the location, scale, and shape parameters, respectively, conditioned on 1+ξ(x−μ)/σ > 0.
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Motivation: achieving the best overall prediction performance, without sacrificing either the quality 
of normal or of extreme predictions.

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

Proposed Methods:
GMM Indicator: an unsupervised clustering approach to dynamically produce distribution indicators, which improves the model’s 

robustness to the occurrence of severe events.

NEC framework: a framework to account for the distribution shift between normal and extreme values in the time series.

Selected Backpropagation: to help the models learn the positions and values of appropriate normal or extreme data better.

Parameterized Loss Function: a model concurrently learns extreme and normal prediction functions.
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GMM Indicator

A Gaussian mixture model (GMM) is a weighted sum of M component Gaussian densities,
p(x|λ) = ∑𝑖𝑖=1𝑀𝑀 𝑤𝑤𝑖𝑖𝑔𝑔(𝑥𝑥|μ𝑖𝑖 ,∑ 𝑖𝑖) ,

where x is a D-dimensional continuous-valued vector, 𝑤𝑤𝑖𝑖 ∀i = 1, . . . , M are the mixture weights, and 

𝑔𝑔 𝑥𝑥 μ𝑖𝑖 ,∑ 𝑖𝑖 are the component Gaussian densities.

We compute an indicator feature as the weighted sum of all component probabilities, given the weights learned 

when fitting the GMM model.
13



NEC framework

NEC is composed of three separate models, which can be trained in parallel:

 The Normal (N) model is trained to best fit normal values in the time series.

 The Extreme (E) model is trained to best fit extreme time series values.

 The Classifier (C) model is trained to detect when a certain value may be categorized as normal or extreme. 
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Selected Backpropagation

Two-stage sampling policy:

1. Randomly sample subsections of length h + f

from the series as samples to use in training our models.

2. Perform stratified sampling of regions with and without extreme 

values, allowing the E and C models to oversample up to OS% 

samples with at least 1 extreme value in the prediction zone.

Selected Backpropagation:

N model: only normal values add to the loss.

E model: only extreme values add to the loss.
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Parameterized Loss Function

Problem: for datasets with a high imbalance between the two classes, BCE will favor the prominent class.
 The BCE part: can be thought of as a blunt instrument that grossly exaggerates all miss-classifications in order to more 

accurately predict the obscure class.

 The RMSE part: allows for a more gentle penalty based on the distance between t and p.

BCE(t, p) = −(t × log (p) + (1 − t) × log (1 − p)) 

L = β × BCE(t, 𝑝𝑝α) + (1 − β) × RMSE(t, p)

where α and β are parameters that can be tuned. Values α > 1 cause the model to predict p values 

that are higher in general in order to minimize the distance between t and 𝑝𝑝𝛼𝛼.
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Research Questions:
1. What is the effect of adding the GMM indicator to a model?

2. What is the effect of introducing exogenous features?

3. How do the loss function parameters affect performance?

4. How does NEC+ compare against state-of-the-art baselines?

Baselines:
• ARIMA 

• Prophet 

• LSTM

• DNN-U: univariate LSTM-based encoder-decoder hydrologic model.

• Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.

• N-BEATS: a state-of-the-art time series prediction method that outperformed all competitors on the standard M3, M4 

and TOURISM datasets.
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Research Questions:
1. What is the effect of adding the GMM indicator to a model?

2. What is the effect of introducing exogenous features?
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Research Questions:
3. How do the loss function parameters affect performance?
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Research Questions:
4. How does NEC+ compare against state-of-the-art baselines?
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Overall Evaluation:
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SEED: An Effective Model for Highly-Skewed

Streamflow Time Series Data Forecasting

Yanhong Li,  Jack Xu,  David C. Anastasiu 

IEEE BigData 2023



Problem: predicting long-term streamflow values with rain off data

Challenges:

• Long-range dependencies.

• Rare but important extreme values; very imbalanced data.

Goal:

• An end-to-end extreme-adaptive model.

• Long sequence forecasting (predicted length = 288).

Dataset:

• Four groups of hydrologic datasets from Santa Clara County, CA.

• Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations. 

𝑥𝑥1 to 𝑥𝑥𝑇𝑇 : the input sequence

𝑥𝑥𝑇𝑇+1 to 𝑥𝑥𝑇𝑇+𝐻𝐻 : the output sequence

In our research: H = 3 * 24 * 4 = 288, with majority of normal values and 

much fewer extreme values which cause the data skewness to one side.
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Dataset with high skewness and kurtosis scores:

High skewness and kurtosis scores indicate that there is significant 

deviation from a normal distribution in our data!

Four streams: Ross, Saratoga, UpperPen, and SFC. 

Hydro year: from September to May.
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Motivation: achieving the best overall prediction performance, without sacrificing either the quality 
of normal or of extreme predictions.

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

Proposed Methods:
Framework: Segment-Expandable Encoder-Decoder (SEED) model, which is the first to integrate segment

representation learning with a multi-tiered encoder-decoder framework.

Importance-enhanced sampling strategy: embedded within the SEED model, allowing it to skillfully identify key features and trends in 

datasets.

Representation Learning: A unique regularization strategy that incorporates a Kullback-Leibler divergence regularization loss term across 

multiple stacked layers, thereby increasing the model’s robustness against anomalous events with divergent distributions.
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Background: Piecewise Linear Representation (PLR) 

 PLR splits a series into several segments such that the maximum error of each segment does not exceed a threshold.

 Prior work: PLR describes the linear relationship of the multi-segment representation, mainly works as a preprocessing 

step to reduce both the space and computational cost of storing and transmitting time series.

 Our work: inspired by PLR, SEED learns nonlinear segment representations for heavily skewed long term time series.
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SEED framework

 Comprises three core components: embedding, encoder, and decoder.

 The encoder generates a unique hidden state and a cell state which serve as the initial values for the corresponding layers in the decoder.

 Each decoder layer is assigned a distinct task, as they represent the mean value distribution of different lengths of subsegments in the 

predicted sequence.
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Convolutional Embedding Layers

CNN Layers :

• different kernel sizes to extract features at different spatial scales.

• subsequent tanh activation function.

• lower level: larger kernel sizes, capturing broader patterns and 

global context. 

• higher level: smaller kernel sizes, capturing local patterns and 

fine grained details.

28



Decoder Architecture

• First level: the output length is 4, which is meant to predict the mean values of 4 segments, each of which contains 

288/4 = 72 points in the forecasted series.

• Second level: the 4 outputs are expanded to16, each represents the mean value of 288/16 = 18 points. 

• Expansion: ⟨a, b, c, d⟩ becomes ⟨a, a, a, a, b, b, b, b, c, c, c, c, d, d, d, d⟩, in the high-dimensional hidden space.

• By predicting the mean value of different length sub-segments, extreme values are represented and spread across 

multiple levels in the hierarchy, leading to higher mean values in the segments containing them.
29



Multiple-Objective Loss Functions

Motivations: 

 Kullback-Leibler divergence loss acts as a 

regularization term that encourages the model to 

match the target distribution while balancing the 

sequence generation loss.

 𝑝𝑝_𝑚𝑚𝑖𝑖 represents the predicted segment mean 

values in the ith layer, while 𝑔𝑔_𝑚𝑚𝑖𝑖 is the vector of 

computed ground truth mean values for the segments 

in the ith layer.
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Importance-Enhanced Oversampling Policy

Steps: 

 Important sequences: maximum values in the 

inference section of the series exceed a 

threshold T.

 Move the maximum value to the middle of the 

inference section.

 Multiple iterations of sampling from the beginning 

with a specified step size S.
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Baselines:
• FEDFormer

• InFormer

• NLinear

• Dlinear

• NEC+

• EnDecoder, the common encoder-decoder model built with LSTM layers.
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• Univariate Long-Term (h = 288) Series 

Forecasting Results.

• Over 1600 test points in the test set were 

inferenced on all datasets. 

• The best results are in bold and the 

second best results are underlined.

• “All” represents the average RMSE of all 

test samples compared with the ground 

truth. “High” means larger than the mean 

value; “Low” includes test samples lower 

than the mean value. 

Main results

In comparison to the three second-best models (NEC+, Nbeats and EnDecoder), SEED achieved, on average, relative 
RMSE reduction of 31.44%, 34.68%, and 29.67% across the datasets.
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Example comparisons with the second best baselines
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• To evaluate the impact of this policy, we 

increased the threshold T while 

simultaneously decreasing the step size S.

• Increasing the threshold T and decreasing 

the step size S had a positive impact on the 

results.

• There is an optimal threshold T value 

beyond which the policy’s effectiveness 

plateaus.

Effect of the Importance-Enhanced Oversampling Policy
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Effect of the KL Regularization Terms & Segment Expanding

We just use T=4, S=8 as an example:

• T4S8: 5-layer without regularization 
loss terms.

• T4S8-3L: 3-layer SEED with 
regularization loss terms.

• T4S8-Regu: 5-layer SEED with 
regularization loss terms, which 
gives the best result.
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On-Device Prediction for Chronic Kidney Disease

Alex Whelan,  Soham Phadke,  David C. Anastasiu 

IEEE GHTC 2022



Chronic Kidney Disease (CKD)
● Progressive decline of kidney function
● Approximately 15% of US population affected by CKD

https://www.ckdandt2d.com/managing-chronic-kidney-disease
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Point of Care Testing (PoCT)
● Kidney Health Monitoring (KHM) System 

○ Accessible
○ Fast & Reliable
○ Affordable

● Lateral Flow Assey Test Strip Design

● Humanitarian assistance
● Alternative to LAB testing
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Related Works

● SmartBioPhone [1]

● ChemTrainer [2]

● DeepLactate [3]

SmartBioPhone : 
https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.
ManuscriptID=B902354M&imageInfo.ImageIdentifier.Year=2009

ChemTrainer : https://ars.els-cdn.com/content/image/1-s2.0-
S0925400517316519-fx1.jpg

DeepLactate : https://ars.els-cdn.com/content/image/1-s2.0-
S0925400522011315-gr3.jpg
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● [Sign up]
● Modes of Operation

○ User
○ Researcher

Application Setup

41



Application Workflow
42



● Hough Circle Transform Method

● Decode Metadata

Localization
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● HSV Feature Vector Construction (bottom)
● Randomized Crop (right)
● Dimensionality Reduction

Feature Extraction
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● Predictions using estimated glomerular filtration 
rate (eGFR) and metadata 

● New readings can be used to update models in 
the cloud database

Classification
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● 10-Fold Cross-Validation
● F1 evaluation metric
● Gridsearch (right)

Evaluation
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Model Effectiveness
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Selective Partitioned Regression for Accurate Kidney Health 

Monitoring

Alex Whelan, Ragwa Elsayed, Alessandro Bellofiore, 

David C. Anastasiu 

Under Submission



SPR Model
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Color Space Comparison
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Feature Type Comparison
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Comparison Against Baselines

Baseline Methods:
DNN: VGG-inspired CNN-based deep neural network
KNN: k-Nearest Neighbor classifier/regressor
RF: Random Forest classifier/regressor
HBT: Histogram Gradient Boosting Decision Tree classifier/regressor
XGB: Extreme Gradient Boosting Tree classifier/regressor
DT: Decision Tree classifier/regressor (not shown in figure)
SVM: Support Vector Machines classifier/regressor (not shown in figure)
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