
1

ML-NIC: Accelerating Machine Learning
Inference using Smart Network Interface Cards
Raghav Kapoor 1, David C. Anastasiu 2 and Sean Choi 1∗

1Cloud Lab, Department of Computer Science and Engineering, Santa Clara
University, Santa Clara, CA, United States
2Anastasiu Lab, Department of Computer Science and Engineering, Santa Clara
University, Santa Clara, CA, United States
Correspondence*:
Sean Choi, David C. Anastasiu
sean.choi@scu.edu, danastasiu@scu.edu

ABSTRACT2

Low-latency inference for machine learning models is increasingly becoming a necessary3
requirement, as these models are used in mission-critical applications such as autonomous4
driving, military defense (e.g., target recognition), and network traffic analysis. A widely studied5
and used technique to overcome this challenge is to offload some or all parts of the inference6
tasks onto specialized hardware such as graphic processing units. More recently, offloading7
machine learning inference onto programmable network devices, such as programmable network8
interface cards or a programmable switch, is gaining interest from both industry and academia,9
especially due to the latency reduction and computational benefits of performing inference directly10
on the data plane where the network packets are processed. Yet, current approaches are relatively11
limited in scope, and there is a need to develop more general approaches for mapping offloading12
machine learning models onto programmable network devices.13

To fulfill such a need, this work introduces a novel framework, called ML-NIC, for deploying14
trained machine learning models onto programmable network devices’ data planes. ML-NIC15
deploys models directly into the computational cores of the devices to efficiently leverage the16
inherent parallelism capabilities of network devices, thus providing huge latency and throughput17
gains. Our experiments show that ML-NIC reduced inference latency by at least 6× on average18
and in the 99th percentile and increased throughput by at least 16x with little to no degradation in19
model effectiveness compared to the existing CPU solutions. In addition, ML-NIC can provide20
tighter guaranteed latency bounds in the presence of other network traffic with shorter tail21
latencies. Furthermore, ML-NIC reduces CPU and host server RAM utilization by 6.65% and22
320.80 MB. Finally, ML-NIC can handle machine learning models that are 2.25× larger than the23
current state-of-the-art network device offloading approaches.24

Keywords: Machine Learning, SmartNIC, Netronome, Data Plane, Inference25

1 INTRODUCTION

Machine learning (ML) permeates a vast amount of everyday life, from personalized recommendations26
to stock market analysis and novel drug synthesis. While the machine learning models created to solve27
problems in these various fields are proven to be highly effective, these models often need large amount28

1

Kapoor et al. ML-NIC

of time to make predictions (also referred to as model inference) on data instances. Often times, such29
limitation becomes a huge limiting factor for deploying ML models for latency critical applications. For30
example, applications such as high-frequency trading, military target recognition, pilots traveling at aircraft31
speeds (i.e., at least 621 mph) need to perform ML inference with the tight latency budget of at most 5032
ms. Making things worse, it is often not computationally and physically feasible to host large, effective33
ML models on directly on the devices like military aircraft. Thus, the ML model computations are often34
offloaded onto ground stations or edge devices, where data transmission can significantly add to the latency35
to execute model inference.36

While many different types of machine learning accelerators have been developed, such as Graphical37
Processing Units (GPU) (Choquette et al., 2018), Field Programmable Gate Arrays (FPGA) (Fowers38
et al., 2018; He et al., 2018; Tong et al., 2017), and specialized application-specific integrated circuits39
(ASIC) (Chen et al., 2014; Jouppi et al., 2017), their efficiency is lowered by the data transfer time40
over the PCIe bus from the host system’s network interface card (NIC). To overcome this challenge,41
we investigated methods to perform ML inference at the edge of the network to reduce the need and42
the overhead of transferring data from the edge to these accelerators. To achieve this, we note that the43
emergence of programmable data planes makes network devices (i.e., programmable switches and NICs)44
potential candidates for accelerating ML inference, especially given that programmable network devices45
have already been shown to be significantly power efficient while also providing high throughput and low46
latency in a variety of in-network computing tasks such as caching (Jin et al., 2017), consensus (Dang47
et al., 2020), and network monitoring (Kim et al., 2015). However, leveraging programmable data planes48
for machine learning inference still is an ongoing area of research with room for improvement.49

Much of the prior works in this area has shown that network devices with programmable data planes,50
primarily programmable switches, demonstrate superior latency performance with minor degradation in51
model effectiveness (Zhang et al., 2023). While the line rate performance of programmable switches is52
beneficial for model inference, their limitation to match+action logic, memory size, cost and the placement53
in the network restrict the feasibility and accuracy of models that can be mapped onto them. For example,54
since many modern machine learning algorithms rely on operations such as multiplication during inference,55
finite-sized match+action tables cannot support every possible combination of multiplied values. Even56
though prior methods have found ways around this, it was not without loss in model effectiveness. And57
as machine learning models continue to grow, additional losses in model effectiveness seem likely. In58
addition, prior methods focused on general models that may not be used in the real-world for low-latency59
applications.60

To compensate for this limitation, we propose the Smart Network Interface Cards (SmartNICs) as a61
viable alternative. SmartNICs possess additional computational resources and several packet processing62
accelerators that can be adapted to mimic essential machine learning inference operations, such as63
multiplication and logarithm functions, more accurately. Furthermore, SmartNICs are much more cost and64
power efficient, are more easier to deploy and test.65

Therefore, in this paper, we present ML-NIC, a framework for compiling and deploying trained machine66
learning models onto SmartNICs by providing intelligent model mapping methods. This current work67
mainly focuses on mapping tree-based models onto SmartNICs due to it’s wide usage of low-latency68
applications, but we have proposals for future work with proposed methods to support inference for other69
types machine learning models as well. Compared to many prior works that implement machine learning70
algorithms onto programmable network devices, ML-NIC implementation uses more device parallelism in71

Frontiers 2

Kapoor et al. ML-NIC

the inference process. Finally, our Python implementation of ML-NIC is made publicly available upon72
publication of the manuscript.73

Our contributions include:74

1. We present an algorithm to extract logic learned by a generic decision tree to facilitate parallelized75
feature analysis during inference.76

2. We present a method to map and compile trained decision trees onto a SmartNIC in a manner that77
leverages its parallelism capabilities.78

3. We demonstrate our framework’s potential for accelerating the inference of decision trees for different79
tasks compared to conventional CPU and current state-of-the-art SmartNIC model deployment80
strategies.81

4. We created an open-source project that contains all of ML-NIC’s implementation and experimentation 1.82

The rest of this paper is organized as follows. Section 2 presents some background information on83
SmartNICs relevant to our work. Section 3 explains our approach towards deploying machine learning84
models onto a SmartNIC. Sections 4, 5, and 6 describe our experimental setup and discuss our results.85
Section 7 presents an overview of recent work that utilizes programmable data planes to accelerate the86
inference time for various machine learning algorithms on different problems. Section 8 points out future87
directions, and Section 9 ends with concluding remarks.88

2 BACKGROUND

In this section, we provide the background for ML-NIC and some underlying motivations.89

2.1 SmartNIC90

Smart Network Interface Cards (SmartNICs) possess additional computational resources and memory91
storage compared to traditional network interface cards. These resources enable SmartNICs to perform92
deep packet inspection, network function virtualization, and zero-trust security (Netronome Systems, 2024).93
As a result, offloading such operations to the SmartNIC frees a host system’s CPU from conducting them.94
Compared to programmable switches, SmartNICs have more computational resources that can be leveraged.95
This motivates our choice to use SmartNICs for machine learning inference, since this process can be quite96
computationally intensive. For the rest of the section, we will focus on one particular type of SmartNIC:97
ASIC-Based Netronome SmartNICs supporting the NFP4000 architecture.98

2.1.1 ASIC-Based Netronome SmartNIC99

ASIC-based SmartNIC represents a type of SmartNIC where the ASIC is custom built to support100
programmability using a set of custom languages. One notable example of an ASIC-based SmartNIC is101
a Netromome SmartNIC that can be programmed using langauged called P4 and Micro-C. This project102
utilizes a specific subset of the Netromome SmartNICs, which support the NFP4000 architecture. To103
elaborate further, Netronome SmartNICs support the NFP4000 architecture feature 48 packet processing104
cores and 60 programmable flow processing cores (Corigine, 2020). In much of the literature and technical105
documentation, the flow-processing cores are referred to as microengines (ME), which we denote as purple106
squares in Figure 1. Each microengine acts as an independent 32-bit processor with its own code store and107
local memory to run different programs in parallel with the other microengines. The microengines can be108

1 The project can be found on https://github.com/The-Cloud-Lab/ML-NIC

Frontiers 3

Kapoor et al. ML-NIC

Figure 1. In this figure, we present a high-level overview of the NFP4000 architecture, focusing on the
components most pertinent to ML-NIC.

programmed using a low-level language like Micro-C, an extended subset of C89, or a high-level language109
like P4. A key difference between Micro-C and P4 is that Micro-C provides the flexibility to program each110
microengine differently, whereas P4 defaults to loading the same program onto all microengines. However,111
both languages lack floating-point number support. We provide a high-level illustration of the NFP4000112
architecture in Figure 1.113

Each microengine supports 8 threads, where each thread runs the same program and has its own block of114
memory/registers. The following memory in a microengine is evenly partitioned among the 8 threads in a115
microengine:116

• 256, 32-bit General-Purpose Registers - used for general per-packet computations117

• 256, 32-bit Transfer Registers - used for transferring data between memory regions118

• 128, 32-bit Next-Neighbor Registers - used for communicating between neighboring microengines in119
the same island120

• 4kB of Local Memory - used for additional data storage as needed121

• 120 Signal Registers - used to notify threads that a certain hardware event has occurred122

The partitioning of memory among the 8 threads facilitates fast context switching between them, so they123
can process different packets efficiently (Siracusano et al., 2022).124

The microengines are organized into islands. While these islands can vary in number of microengines and125
specialized functionality, standard islands, shown in Figure 1, contain 12 microengines with two regions of126
memory shared between all the microengines in the island: Cluster Local Scratch (CLS) and Cluster Target127
Memory (CTM). CLS, denoted in green in Figure 1, commonly stores small forwarding tables shared128
between the microengines (Wray, 2014). CTM, denoted in cyan in Figure 1, holds packet headers and129
coordinates between the microengines and other subsystems on the card (Wray, 2014). As CTM is larger130
than CLS, more clock cycles are required to read/write to CTM.131

Frontiers 4

Kapoor et al. ML-NIC

Outside of the islands, the Netronome SmartNICs have three additional memory units, as shown in132
Figure 1, shared with all microengines: one Internal Memory Unit (IMEM) and two External Memory133
Units (EMEM) (Langlet, 2019). IMEM is used for storing packet payloads and medium-sized match-action134
tables (Wray, 2014). EMEM is used to store larger match-action tables and other flow statistics (Wray,135
2014). As these three memory units are the largest of those mentioned prior, with EMEM being larger than136
IMEM, they require a greater number of clock cycles to read/write to them. Microengines can access data137
in all these memory regions using the Command Push Pull (CPP) bus, denoted in turquoise in Figure 1.138

Based on our knowledge of data access times for the different memory regions, hardware signals, and139
transfer registers, we design ML-NIC to efficiently leverage these resources to ensure a high degree of140
performance from a SmartNIC.141

3 ML-NIC ARCHITECTURE

ML-NIC comprises three components: machine learning model training, model mapping, and model142
deployment, as shown in Figure 2. We explain the details of each component below.143

Figure 2. This figure shows the big picture of the ML-NIC architecture.

3.1 Model Training144

In the machine learning model training component, we consider a labeled dataset (X , y), where145
X ∈ Rmxn represents our data matrix (m data points, n features) and y ∈ {1 . . . q}m represents our146
class labels (q possible classes). We make no assumptions on whether X consists of only continuous147
features, only categorical features, or a mix. We assume the continuous features are normalized within the148
range [0, 1]. We do so to simplify the range of numerical representation that the first iteration of ML-NIC149
needs to account for. We find that this assumption is reasonable, since data normalization is a common150
technique in machine learning to prevent certain features from dominating over other features due to151
differences in scaling. For the categorical features, we assume that they are one-hot encoded (Liu, 2017)152
(i.e., a feature with three categories is expanded to three features with values 0 or 1). This dataset is used to153
learn the parameters of a particular machine learning model.154

Frontiers 5

Kapoor et al. ML-NIC

In this first iteration of ML-NIC, we choose to focus on decision trees for three reasons. First, we cite155
the relative computational simplicity of tree traversal compared to floating-point operations in hardware156
without a Floating-Point Unit (FPU) like a SmartNIC that was designed for fast computations at network157
line rates.158

Second, in comparison to other classical supervised machine learning models, such as Naive Bayes,159
k-nearest neighbor, and support vector machine, we find that the decision tree is the more suitable choice160
for offloading. With Naive Bayes, it is known that the algorithm perform poorly when the features used for161
training are not conditionally independent. However, in practice, decision trees can perform well even if the162
features are correlated. For k-nearest neighbor, we find that the required storage of every training instance163
to be an obstacle for offloading onto network devices, especially given the size of modern datasets. Even if164
only a selection of the training set was used to make offloading feasible, this could result in more significant165
performance degradation in certain machine learning problems. With respect to support vector machines166
for multiclass classification, the model may not be optimal for offloading with a large number of features167
and number of classes. For this explanation, we temporarily denote m to be the number of features, q as168
the number of classes (greater than 2 for multiclass classification), and z as the number of support vectors.169
First, assume the support vectors for the support vector machine can be stored and there exists suitable170
means of multiplication and a kernel on an off-the-shelf programmable network device that are at least as171
expensive as a comparison operation. Since off-the-shelf programmable network device are optimized for172
match + action, we expect the device architecture to have an efficient compare operation. Then, we see173
that the support vector machine requires at least m× z × q multiplications, whereas a decision tree would174
require at most m compare operations for a single inference. Therefore, based on instruction count, the175
decision tree model has a better chance of yielding inference latency reduction when offloaded onto an176
off-the-shelf programmable network device.177

Third, we note that tree-like machine learning models, such as XGBoost (Chen and Guestrin, 2016),178
are commonly used to learn tasks from structured tabular data over neural networks given faster training179
time, potential performance gain, and model transparency. We use the decision tree model to show that180
our framework can be used in real-world applications and offloading a machine learning model onto a181
SmartNIC can reduce model inference latency significantly. While our focus is currently on decision tree182
inference, we provide a discussion on how our framework can be augmented to account for additional183
machine learning models in Section 6.184

To train a decision tree, we consider the high-level algorithm outlined in Algorithm 1. Since finding the185
globally-optimal tree structure for a learning task is computationally challenging, locally-optimal heuristic186
algorithms are used such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1986), and CART (Leo Breiman and187
Olshen, 1984). In practice, metric M is commonly Information Gain in the case of ID3 and C4.5 or Gini188
Impurity for CART. Formulations for these metrics are provided in Equations 1 and 2. In Equations 1 and189
2, we further define C as the number of classes, P as the number of splits, Sc as the number of examples190
in the training dataset subset with class label c, and Sp,c as the number of examples in the pth split of the191
training dataset subset with class label c.192

Gini(S) =
C∑
c=1

|Sc|
|S|

(
1− |Sc|

|S|

)
(1)

Frontiers 6

Kapoor et al. ML-NIC

Algorithm 1 Decision Tree Training Algorithm
Require: S is a valid subset of the training dataset D, R is a set of stopping criteria for the algorithm, M

is a valid impurity metric to locally optimize, split node is a valid function for a splitting S at a node

1: function TRAIN TREE(S,R, split node)
2: c = majority label(S)
3: tree node = Node(label = c)
4: if not satisfied(R) then
5: ms = list()
6: splits = split node(S)
7: for each split ∈ splits do
8: ms.append(M(split))
9: end for

10: best split = splits[arg optimal(ms,M)]
11: for each s ∈ best split do
12: tree node.insert branch(TRAIN TREE(s, R, split node))
13: end for
14: end if
15: return tree node
16: end function

Info(S) =
C∑
c=1

(
−|Sc|

|S|
log2

(
|Sc|
|S|

))
−

P∑
p=1

|Sp|
|S|

C∑
c=1

(
−
|Sp,c|
|Sp|

log2

(
|Sp,c|
|Sp|

))
(2)

3.2 Model Mapping193

Before discussing the technical details of decision tree mapping onto a SmartNIC, we discuss our mapping194
approach at a high-level. To run inference, we find the disjunctive normal form (Roth, 2016) of a decision195
tree. In the disjunctive normal form, the logic for assigning a class label to a data instance is expressed as a196
disjunction of conjunctions (i.e., (condition 1 and condition 2 and ...) or (condition3 and condition1 and ...)197
or ...). Each conjunction in the disjunction (i.e., condition 1 and condition 2 and ...) represents a path from198
the root node to a leaf node in a decision tree. We prefer the disjunctive norm form over the typical tree199
structure of a decision tree for inference, since it makes executing inference in a parallelized manner more200
convenient. To parallelize the inference process from the disjunctive normal form, we take the conditions201
from all the conjunctions that correspond to a particular feature, noting which path in the decision tree the202
condition corresponds to. To run inference on a data instance then, the conditions for each feature can be203
evaluated in parallel, where the result of each feature evaluation yields a set of paths in the decision tree204
that are possible for the data instance to take. Then, by aggregating the all possible paths and taking the205
intersection among them, a single path can be found. By matching the path to its corresponding class label,206
the decision tree inference process is complete.207

To map a decision tree onto a SmartNIC, we take the output of the machine learning model training208
process (i.e., a pickle file) and proceed to generate an implementation of the SmartNIC data plane. Currently,209
we support SmartNICs that are programmable in Micro-C, primarily SoC-based Netronome SmartNICs. In210
the current iteration of our framework, we consider a trained decision tree classifier C with l leaf nodes,211
where l is at most 256. We make no additional assumptions on the number of splits per non-leaf node or212
the training algorithm used. Based on the number of leaf nodes l in model C and number of features n in213
X , there are three possible scenarios for mapping C onto the SmartNIC:214

Frontiers 7

Kapoor et al. ML-NIC

• The model can fit on one island of the SmartNIC. Each island is then programmed with its own set of215
feature computation, result aggregation, and packet collection microengines (i.e., inference for model216
C is run on all the islands)217

• The model can fit on the entire SmartNIC with one feature assigned per feature microengine and one218
packet collection microengine.219

• The model can fit on the entire SmartNIC with multiple features assigned per feature microengine and220
one packet collection microengine.221

After selecting one of the three above mapping schemes, the next step is to extract the logic (i.e., find222
disjunctive normal form and extract the conditions that match to a particular feature) learned by model C.223
To do so, we iterate through all the n features in X and perform a depth-first search through the decision224
tree. We record the operation for those nodes that run a comparison operation on our feature of interest and225
continue the depth-first search until all the leaf nodes have been reached. Formally, Algorithm 2 illustrates226
our logic extraction approach.

Algorithm 2 Decision Tree Logic Extraction Algorithm
Require: node points to valid node in decision tree, ftre is feature seen by decision tree during training,

clt has enough space to store decision tree logic for ftre

1: function GET LOGIC(node, ftre, clt)
2: if is leaf(node) then
3: clt.insert(node.prediction)
4: else
5: if node.ftre = ftre then
6: clt.insert(node.logic)
7: end if
8: for each child ∈ node.children do
9: clt.insert(GET LOGIC(child, ftre, clt))

10: end for
11: end if
12: return clt
13: end function

227

We also assign the each of microengines on the SmartNIC as one of three types: packet collection, feature228
computation, and result aggregation. The packet collection microengine(s) are programmed to signal the229
CTM packet engine that they are ready to receive packets. Once a packet is received, the packet collection230
microengine(s) will verify that packet is a model input packet, extract the features from the packet payload,231
and asynchronously signal all the feature computation microengines of the inference request and transmit232
the corresponding feature to each via transfer registers.233

The feature computation microengines are responsible for evaluating the conditions on a feature for234
a given data instance and determine which paths in the decision tree are possible. Since each feature235
computation microengine is responsible for different features and run simulatenously, all the features can236
be evaluated and all the possible paths in the decision tree can be determined in parallel. To implement the237
conditions and determine the possible paths per feature on the SmartNIC, we use Micro-C if-statements238
to evaluate the conditions and update an array of integers to reflect which paths are possible. For the239
update, we treat the array of integers as a single bit string, where most significant bit in the integer at the240
last index in the array corresponds to path 1. We assign paths based on the order in which the nodes are241

Frontiers 8

Kapoor et al. ML-NIC

encountered by Algorithm 2. Since the values for comparison in the conditions for evaluating each feature242
in the decision tree and the features themselves can be floating-point, and the SmartNIC does have an243
FPU, we consider an alternative floating-point representation. We represent floating-point numbers on the244
SmartNIC using a fixed-point representation that consists of 16 bits, where the last 13 bits represent the245
non-integer portion of a floating-point number. As each feature computation microengine completes its246
evaluation of its correponding feature, they notify the result aggregation microengine(s) of the decision247
tree paths that are possible based on the feature they each evaluation.248

Once all the feature computation microengines finish their evaluation, the result aggregation249
microengine(s) finds the intersecting path the decision tree between all the possible paths, matches the path250
to the corresponding class label, and sends an asynchronous signal to the packet collection microengine(s)251
along with the class label via transfer register(s). Once the packet collection microengine(s) receives the252
signal from the result aggregation microengine(s), it edits the original packet payload with the class label253
for the data instance and notified the CTM packet engine that the packet needs to be transmitted. Also254
note that during the time the feature computation and result aggregation microengines are completing their255
tasks, the packet collection microengine(s) are editing the model input packet’s header in preparation for256
transmission as a model output packet.257

To program all the packet collection, feature computation, and result aggregation microengines, separate258
Micro-C code is written to program each microengine to complete their specific task for model inference,259
whereas prior methods often program all the microengines with one piece of P4 code to perform the same260
tasks for the model inference and do not fully leverage the parallel operating capacity of the SmartNIC.261
Example Micro-C code for packet collection, feature computation, and result aggregation can be found262
below in Listings 1, 2, and 3.263

3.3 Model Deployment264

Once all the Micro-C code files are created, they are all compiled and linked to generate the device265
firmware to run on the data plane in the model deployment component. Then, the firmware file output266
is loaded onto the SmartNIC. An example of the full process is shown in Listing 4. Each microengine267
assumes a specified behavior based on one of the three microengine assignments specified above. The268
SmartNIC can now ingress packets with features in the packet payload, run machine learning inference in a269
parallelized manner, and egress packets with the classification result as the packet payload.270

4 EXPERIMENTAL SETUP

4.1 Testbed271

Our testbed consists of two Dell PowerEdge Rack Servers. Server 1 hosts an NVIDIA Mellanox Bluefield-272
2 DPU 25 GbE SmartNIC for packet transmission and data collection. Server 2 hosts a Netronome273
AgilioCX 2× 25 GbE SmartNIC, on which our decision tree models are deployed. Both systems are274
directly connected via qsfp cable between the Mellanox and Netronome SmartNICs. We illustrate our setup275
in Figure 3.276

4.2 Datasets and Models277

Our evaluation considers four tasks: land mine detection, satellite image pixel classification, gas sensor278
drift compensation, and network traffic classification. The main characteristics of the datasets used for279
each task can be found in Table 1. We train a decision tree model for each task using the scikit-learn280

Frontiers 9

Kapoor et al. ML-NIC

Figure 3. The testbed setup used for evaluation. The left server hosts the Netronome AgilioCX 2× 25
GbE. The right server hosts the NVIDIA Mellanox Bluefield-2 DPU 25 GbE.

library (Pedregosa et al., 2011). We summarize the hyperparameters used for each tree in Table 2. For281
hyperparameters not explicitly mentioned in the table that can be tuned for the decision tree models (i.e.,282
criterion, splitter, max features, etc.), we resort to the default values provided by scikit-learn.283

Table 1. Summary of Datasets Used (refer to dataset subsections for class label abbreviations)

Attribute Mine Landsat Gas CICIDS
of features 3 36 128 7
of data instances 338 6435 13910 22887218
of classes 5 6 6 7
of training data 270 4435 11128 500000
of test data 68 2000 2782 6957375

Table 2. Summary of decision tree Models Created

Parameter Mine Landsat Gas CICIDS
of leaves 114 256 256 89
depth 17 15 24 15
of nodes 227 511 511 177
min samples leaf 1 1 1 2
min samples split 2 2 2 2
min impurity decrease 0 0 0 0.00001
max leaf nodes None 256 256 None

4.2.1 Dataset Preprocessing284

As mentioned in Section 3, we assume the continuous features are in the range [0, 1] and categorical285
features are one-hot-encoded. To achieve this, we apply min-max normalization to scale the continuous286
features of each dataset to range between 0 and 1 using the training set. Test features that lie outside the287
range [0, 1] after min-max normalization has been applied are clipped to the closest endpoint. We also288
one-hot-encode the categorical features for each dataset based on the values observed from the training set.289
If the categorical features in the test set take on values not observed in the training set, the one-hot-encoded290
feature is represented as a bit string of zeros.291

Frontiers 10

Kapoor et al. ML-NIC

4.2.2 Land Mine Detection292

We use the Land Mines dataset (Yilmaz et al., 2018) for the land mine detection task. The authors293
propose three features to classify a mine into five types, Null, Anti-Tank, Anti-Personnel, Booby-Trapped294
Anti-Personnel, and M14 Anti-Personnel, with 65− 71 samples per class. Our motivation for choosing295
this dataset is based on the number of features (8 after data preprocessing), where we can evaluate the first296
SmartNIC mapping scenario (fitting on one island) as described in Section 3. In later sections, we will297
refer to this dataset as Mine.298

4.2.3 Satellite Image Pixel Classification299

We use the Statlog (Landsat Satellite) dataset (Srinivasan, 1993) for the satellite image pixel classification300
task. The goal of this task is to examine multispectral values from a 3x3 neighborhood of a satellite image301
and classify the central pixel as one of five classes: Red Soil, Cotton Crop, Grey Soil, Damp Grey Soil,302
Soil with Vegetation Stubble, Mixture, or Very Damp Grey Soil. There are 626− 1533 samples per class.303
Our motivation for choosing this dataset is based on the number of features (36), where we can evaluate304
the second mapping scenario (fitting on whole SmartNIC, one feature per microengine) as described in305
Section 3. In later sections, we will refer to this dataset as Landsat.306

4.2.4 Gas Sensor Drift Compensation307

We use the Gas Sensor Array Drift dataset (Rodrı́guez-Luján et al., 2014) for the gas sensor drift308
compensation tasks. This dataset consists of measurements from 16 chemical sensors to identify six gases,309
Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and Toluene, with 1508− 3009 samples per class.310
Our motivation for choosing this dataset is based on the number of features (128), where we can evaluate311
the third mapping scenario (fitting on whole SmartNIC, multiple features per microengine) as described in312
Section 3. In later sections, we will refer to this dataset as Gas.313

4.2.5 Network Traffic Classification314

We use the CICIDS2017 dataset (Sharafaldin et al., 2018) for the network traffic classification use case.315
This use case’s purpose is to identify network flows as benign or malicious (brute force attack, heartbleed316
attack, botnet, DoS attack, DDoS attack, web attack, infiltration attack). However, we follow the approach317
used by Xavier et al. (2021) to generate the dataset for classifying individual network packets rather318
than network flows and the training and tests sets based on the network flows instead of the conventional319
stratified 80/20 split used for the above datasets above. In the dataset, the packets were labeled as benign,320
DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS Slowloris, Web Brute Force, or Port Scan. Each class321
has 30059− 20121944 samples. Our motivation for choosing this dataset is based on its use in the work by322
Xavier et al. (2021), which is similar to our approach. Our evaluation on this dataset clearly compares our323
approach and Xavier et al. (2021)’s approach. In later sections, we will refer to this dataset as CICIDS.324

4.3 Baselines325

We compare our approach against the following two baselines. First, we implement a traditional CPU326
baseline, which uses socket programming to receive incoming packets, extract the payload, run inference327
with the trained scikit-learn decision tree, and build and send a model output packet with the model328
prediction in the packet payload.329

Second, we implement the approach developed by Xavier et al. (2021) using P4-16. Like our approach,330
Xavier et al. (2021)’s approach traverses through the scikit-learn decision tree structure, extracts the model’s331

Frontiers 11

Kapoor et al. ML-NIC

logic, and rebuilds the tree in P4 using Python. Note that the original implementation was solely created332
for the CICIDS dataset, and the authors did not provide a method to handle floating-point features. In333
evaluating this method on the other datasets, we modified it slightly to use our fixed-point representation of334
floating-point numbers. Also, due to limitations with Xavier et al. (2021)’s approach, we could not evaluate335
it on larger decision trees, such as those generated with the Landsat and Gas Datasets.336

4.4 Evaluation Metrics337

In our experiments, we measure the effectiveness, (average and tail) latency, throughput, and hardware338
utilization of ML-NIC against the baselines.339

For effectiveness, we measured the accuracy, F1 score, recall, and precision metrics on each dataset’s340
test set. Given that our datasets are for multiclass classification tasks, we take the macro-average (i.e.,341
unweighted mean) of the per-class scores for the F1 score, recall, and precision measurements.342

For latency, we collected the time between model input packet transmission and model output packet343
reception on server 1 in microseconds for 1000 packets. In addition to our vanilla latency experiments344
(i.e., no CPU load or network link utilization), we conduct latency experiments with background traffic on345
the network link and CPU load. We generate random network traffic at different speeds using Tcpreplay346
for latency experiments with background traffic to achieve 25%, 50%, and 99% network link utilization.347
We use stress-ng for latency experiments with CPU load and generate CPU loads of 25%, 50%, and 99%.348
To ensure an apples-to-apples comparison with the CPU baseline, we append zero padding to the model349
input packets for our approach and the P4 baseline. Hence, they are the same size as the CPU model input350
packets. Note that, when collecting the data for the CPU baseline, we remove the time taken to decode the351
data features and encode the model’s prediction.352

For throughput, we use Tcpreplay to loop through the PCAP files containing the test set packets for each353
dataset at top speed. Simultaneously, we also run Tshark to filter and collect the model prediction packets354
for 60 seconds.355

Lastly, for hardware utilization, we run Tcpreplay for 60 seconds like we did for the throughput experiment356
and measure CPU, server host RAM, and SmartNIC memory utilization. We also measure CPU, server host357
RAM, and SmartNIC memory utilization 30 seconds before and after running Tcpreplay for reference. We358
do not explicitly measure SmartNIC microengine utilization in this experiment. Instead, we use the results359
from our network link utilization and CPU load latency experiments as a proxy for SmartNIC microengine360
utilization.361

5 RESULTS

From our experimental results, we demonstrate the following:362

1. Our approach achieves effectiveness scores similar to those of the CPU baseline and identical to the P4363
baseline.364

2. Our approach has better a latency guarantee than the CPU and P4 baselines in various network link365
utilization and CPU load scenarios.366

3. The throughput of our approach is significantly greater compared to the CPU baseline and on par with367
the P4 baseline.368

4. Our approach uses fewer server host resources (i.e., CPU and server RAM) compared to the CPU and369
P4 baselines.370

Frontiers 12

Kapoor et al. ML-NIC

5.1 Effectiveness Scores371

As shown in Table 3 2, the effectiveness scores between our approach and the CPU baselines are similar372
with minor degradation. For conciseness, we only show the plots of accuracy and F1 score of the models,373
since the precision and recall results follow a similar pattern.374

Table 3. Effectiveness Measurements On All Datasets

Dataset Measure CPU Xavier et al. (2021) ML-NIC
Mine Accuracy (%) 58.82 57.35 57.35

F1 Score (%) 58.22 56.92 56.92
Landsat Accuracy 85.65 N/A 85.55

F1 Score (%) 83.93 N/A 83.76
Gas Accuracy (%) 97.41 N/A 95.15

F1 Score (%) 97.26 N/A 94.78
CICIDS Accuracy (%) 95.12 95.12 95.12

F1 Score (%) 47.04 47.04 47.04

For the Mine dataset, we note differences of 1.47%, 1.30%, 1.35%, and 1.54% across the accuracy,375
F1 score, precision, and recall metrics. For the Landsat dataset, we note differences of 0.100%, 0.17%,376
0.14%, and 0.20% across the accuracy, F1 score, precision, and recall metrics. For the Gas dataset, we377
note differences of 2.26%, 2.49%, 2.00%, and 2.66% across the accuracy, F1 score, precision, and recall378
metrics. For the CICIDS dataset, our approach and the CPU baseline do not differ in accuracy, F1 score,379
precision, or recall. This is because all the features used to train the scikit-learn decision tree are integers,380
so no quantized representation of features is needed as with the previous three datasets. Our approach381
achieves identical effectiveness scores as the P4 baseline on the Mine and CICIDS datasets.382

5.2 Latency383

From the latency data we collected, we provide zoomed-in empirical cumulative distribution functions384
(eCDF) for each dataset, network link utilization, and CPU load in Figure 4. We also provide more concrete385
numbers on the 50th, 99th, and 99.9th percentiles across each dataset, link utilization, and CPU load in386
Tables 4 and 5. From our experiments, we make the following observations. We generally see a significant387
gap in the latency measurements between ML-NIC and the CPU baseline and a very small gap between388
ML-NIC and Xavier et al. (2021)’s approach. Specifically, we found that ML-NIC’s latency can be at least389
132.62 µs faster than the CPU baseline and 1.35 µs faster than Xavier et al. (2021)’s approach in the 50th390
percentile. However, there is a significant difference in the tails between ML-NIC and Xavier et al. (2021)’s391
approach, suggesting that ML-NIC has a stronger latency guarantee. Based on the 99.9th percentiles, we392
see that the tail latency of Xavier et al. (2021)’s approach can be at least 1.53× larger than ML-NIC’s tail.393

Looking at impact of high network link utilization and CPU load, we observe very minimal fluctuation in394
the eCDFs of the ML-NIC and Xavier et al. (2021)’s approach. This suggests that both approaches are395
robust against high network link utilization and CPU load on these datasets. But, there is a more noticeable396
impact of high network link utilization and CPU load on the CPU baseline. As the network link utilization397
increases, we tend to see more probability mass shift towards the higher latency in the eCDF. With respect398
to the 99.9th latency percentile, we see an increase of at least 1.82× from 0% link utilization to 99% link399
utilization. Concerning the increases in CPU load, there is a more significant shift in the eCDF curves400

2 Bold values indicate best values found for a given metric during experiments

Frontiers 13

Kapoor et al. ML-NIC

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Xavier et al.(2021) (0% Link Util/CPU Load)
Xavier et al.(2021) (25% Link Util/CPU Load)
Xavier et al.(2021) (50% Link Util/CPU Load)
Xavier et al.(2021) (99% Link Util/CPU Load)

CPU (0% Link Util/CPU Load)
CPU (25% Link Util/CPU Load)
CPU (50% Link Util/CPU Load)
CPU (99% Link Util/CPU Load)

ML-NIC (0% Link Util/CPU Load)
ML-NIC (25% Link Util/CPU Load)
ML-NIC (50% Link Util/CPU Load)
ML-NIC (99% Link Util/CPU Load)

Figure 4a. Mine Tcpreplay

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4b. Mine Stress-Ng

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4c. Landsat Tcpreplay

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Figure 4d. Landsat Stress-Ng

towards higher latencies. Referring to the 99.9th percentile, there is a latency increase of at least 20.27×401
from 0% CPU load to 99% CPU load.402

Table 4. Latency Measurements Using Tcpreplay (µs)

Dataset Link Util (%) Percentile CPU Xavier et al. (2021) ML-NIC

Mine 0 50 184.77 21.55 18.00
99 197.39 25.41 23.60

99.9 202.94 71.26 35.54
25 50 156.93 21.30 17.73

99 243.95 27.35 23.63
99.9 285.89 65.31 36.11

50 50 156.96 20.41 18.15
99 267.83 27.33 21.53

99.9 364.59 60.37 31.05
99 50 152.32 21.55 17.24

99 230.96 31.10 24.45
99.9 454.20 70.65 36.48

Landsat 0 50 185.61 N/A 19.99
99 200.27 N/A 24.88

Frontiers 14

Kapoor et al. ML-NIC

99.9 260.64 N/A 39.63
25 50 162.39 N/A 18.27

99 247.78 N/A 22.70
99.9 365.45 N/A 36.65

50 50 191.58 N/A 19.82
99 258.51 N/A 23.87

99.9 458.64 N/A 42.08
99 50 209.91 N/A 20.63

99 247.88 N/A 24.96
99.9 503.92 N/A 37.40

Gas 0 50 185.99 N/A 18.91
99 198.86 N/A 26.57

99.9 287.77 N/A 48.31
25 50 153.22 N/A 20.60

99 255.51 N/A 27.00
99.9 367.69 N/A 41.65

50 50 159.18 N/A 20.13
99 251.86 N/A 28.91

99.9 410.64 N/A 45.20
99 50 161.33 N/A 22.11

99 244.74 N/A 25.35
99.9 523.63 N/A 43.98

CICIDS 0 50 179.30 19.58 17.21
99 189.71 23.86 21.66

99.9 198.83 54.91 31.70
25 50 154.72 20.00 15.97

99 224.22 26.66 19.76
99.9 277.53 55.06 29.29

50 50 155.85 18.94 17.55
99 225.52 23.11 20.68

99.9 442.80 55.48 33.41
99 50 154.81 21.91 15.99

99 226.99 28.21 20.39
99.9 483.02 51.85 33.80

Table 5. Latency Measurements Using Stress-Ng (µs)

Dataset CPU Load (%) Percentile CPU Xavier et al. (2021) ML-NIC

Mine 25 50 186.16 20.16 16.45
99 221.97 31.82 20.43

99.9 343.53 74.56 32.35
50 50 200.85 20.12 17.69

99 222.64 31.16 20.96
99.9 535.06 67.87 34.50

99 50 213.40 22.12 18.84

Frontiers 15

Kapoor et al. ML-NIC

99 332.46 27.96 22.66
99.9 7979.24 76.50 36.86

Landsat 25 50 192.30 N/A 20.69
99 295.65 N/A 24.48

99.9 405.26 N/A 41.19
50 50 202.55 N/A 20.23

99 215.20 N/A 24.12
99.9 7582.86 N/A 38.09

99 50 214.34 N/A 21.54
99 260.63 N/A 25.80

99.9 9008.55 N/A 40.27
Gas 25 50 183.90 N/A 19.17

99 201.89 N/A 27.42
99.9 469.44 N/A 45.69

50 50 203.31 N/A 23.01
99 238.13 N/A 26.94

99.9 8852.89 N/A 46.95
99 50 218.32 N/A 19.40

99 251.67 N/A 25.54
99.9 16182.94 N/A 46.74

CICIDS 25 50 155.58 20.13 18.17
99 201.23 23.99 21.31

99.9 357.74 51.48 31.69
50 50 167.66 19.88 18.18

99 184.74 24.39 22.68
99.9 481.76 50.01 30.33

99 50 175.56 20.15 17.16
99 198.38 24.00 21.83

99.9 4030.55 59.39 32.74

5.3 Throughput403

As seen in Figure 5, there is a significant improvement in throughput with our approach compared to the404
CPU baseline. In our approach, we note 24.80×, 19.30×, 16.95×, and 20.11× more packets per minute405
compared to the CPU baseline across the Mine, Landsat, Gas, and CICIDS datasets. Furthermore, our406
approach yields moderately higher throughput than the P4 baseline in the Mine and CICIDS dataset. In our407
approach, we observe 1.26× and 1.11× more packets per minute compared to the P4 baseline for the Mine408
and CICIDS datasets.409

5.4 Hardware Utilization410

From our hardware utilization experiment, we report the minimum, maximum, and average CPU and411
server host RAM utilization in Table 6. We also report the SmartNIC memory utilization as a constant, since412
dynamic memory allocation is not available on the AgilioCX 2× 25 GbE SmartNIC. Since we are not able413
to directly measure the SmartNIC RAM used for the CPU baselines, we approximate it. Our approximation414
takes an unweighted average of the ratio of size of SmartNIC firmware for the CPU baselines over the size415

Frontiers 16

Kapoor et al. ML-NIC

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4e. Gas Tcpreplay

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4f. Gas Stress-Ng

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4g. CICIDS Tcpreplay

0 50 100 150 200 250 300
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4h. CICIDS Stress-Ng

Figure 4. Figures 4a, 4c, 4e, and 4g depict the eCDFs for the latency experiments conducted using
Tcpreplay to saturate the network link on all the datasets. Figures 4a, 4c, 4e, and 4g depict the eCDFs for
the latency experiments conducted using Stress-Ng to generate a CPU load on all the datasets.

Mine Landsat Gas CICIDS
0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (p

kt
s/

m
in

)

1e7
CPU Xavier et al.(2021) ML-NIC

Figure 5. This figure provides a bar graph of the throughputs observed with our approach and two
baselines.

of the SmartNIC firmware for the P4 baselines and our approach multiplied by the SmartNIC RAM used416
by those models for each of the datasets.417

Frontiers 17

Kapoor et al. ML-NIC

Table 6. Hardware Utilization Measurements

Dataset Measure CPU Xavier et al. (2021) ML-NIC

Mine Min CPU (%) 0.25 0.25 0.25
Avg CPU (%) 3.82 0.77 0.52
Max CPU (%) 7.56 7.75 0.94
Min Host RAM (MB) 2226.76 2147.76 1908.97
Avg Host RAM (MB) 2228.43 2150.75 1910.71
Max Host RAM (MB) 2230.56 2153.44 1911.81
SmartNIC RAM (MB) 96.15 973.00 21.13

Landsat Min CPU (%) 0.25 N/A 0.25
Avg CPU (%) 3.81 N/A 0.51
Max CPU (%) 7.53 N/A 0.88
Min Host RAM (MB) 2226.50 N/A 1909.86
Avg Host RAM (MB) 2229.00 N/A 1910.69
Max Host RAM (MB) 2231.77 N/A 1911.70
SmartNIC RAM (MB) 96.15 N/A 21.12

Gas Min CPU (%) 0.25 N/A 0.19
Avg CPU (%) 3.78 N/A 0.51
Max CPU (%) 7.46 N/A 0.88
Min Host RAM (MB) 2223.59 N/A 1908.86
Avg Host RAM (MB) 2226.08 N/A 1909.83
Max Host RAM (MB) 2228.07 N/A 1910.98
SmartNIC RAM (MB) 96.15 N/A 21.122

CICIDS Min CPU (%) 0.19 0.25 0.25
Avg CPU (%) 3.68 0.80 0.52
Max CPU (%) 7.20 9.09 0.81
Min Host RAM (MB) 2225.02 2077.43 1907.22
Avg Host RAM (MB) 2227.38 2078.88 1908.36
Max Host RAM (MB) 2230.01 2080.04 1909.21
SmartNIC RAM (MB) 96.15 973.00 21.12

From Table 6, we see that ML-NIC consistently uses lower resources for average and maximum host418
system’s CPU, host system’s RAM, and SmartNIC’s RAM usage compared to the CPU baseline and419
Xavier et al. (2021)’s method. In the case where there the CPU baseline has slightly lower minimum CPU420
usage than the ML-NIC on the CICIDS dataset, this measurement likely corresponds to some degree of421
randomness in the measurement, since ML-NIC also achieved the same minimum CPU usage on the Gas422
dataset. In addition to the CPU baseline having a higher maximum CPU usage than ML-NIC by at least423
7.91×, we also observe that Xavier et al. (2021)’s method can achieve similar or higher levels of maximum424
CPU usage. We attribute this to the runtime environment (RTE) server that is running on our host system,425
which is needed to run P4 code. We believe this also accounts for slightly higher host system RAM usage.426
For the SmartNIC’s RAM usage, we observe our proxy for the CPU baseline to be lower than Xavier et al.427
(2021)’s method. Since the firmware running on the SmartNIC for the CPU baseline runs as a regular NIC,428
the SmartNIC would not require additional memory beyond storing extracting packet headers into local429
memory or general purpose registers. Furthermore, the larger SmartNIC RAM usage from Xavier et al.430

Frontiers 18

Kapoor et al. ML-NIC

(2021)’s method likely occurs because their approach involves running packet collect, feature computation,431
and result aggregation on every microengine. Since ML-NIC distributes these operations across multiple432
microengines, the resulting SmartNIC RAM usage would be lower by at least 46.05×.433

6 DISCUSSION

6.1 Generalization434

The work focuses on converting trained scikit-learn decision trees into Micro-C for deployment onto a435
SmartNIC. We focused on the Netronome AgilioCX 2× 25 GbE. Deployment across different SmartNICs436
(assuming Micro-C support) may require significant code changes to accommodate the resources available437
on the card compared to the baselines.438

6.2 Benefits439

Despite their resource constraints compared to a host system’s CPU, SmartNICs show potential as440
alternative hardware for deploying appropriately sized decision tree models. Deploying the decision tree441
model onto the SmartNIC, which brings it closer to the network edge, saves latency time by removing the442
need to transfer data over the PCIe bus from the NIC to the CPU without additional hardware. Furthermore,443
the lower-level programming used in our approach compared to the P4 baseline allows us to leverage444
device parallelism to deploy larger decision trees.445

6.3 Scope446

Our work only considers deploying decision tree models trained for various tasks onto a SmartNIC.447
Improvements in any specific use case are beyond the scope of our work.448

6.4 Limitations449

Our method’s limitations depend on the SmartNIC’s memory, computational, asynchronous I/O, and450
data rate constraints. Within the Netronome AgilioCX 2× 25 GbE, the primary limits are the number451
of microengines (60), data rate (25 GbE), and number of hardware signals (15 per thread). While the452
constraint on microengines can be mitigated by assigning multiple features to a microengine, the memory453
(i.e., number of transfer registers) and asynchronous I/O (i.e., number of hardware signals) constraints limit454
the depth of the trained decision tree to 480 leaf nodes. Our current implementation is limited to decision455
trees with 256 leaf nodes, since more complex firmware is required to assign a hardware signal to a greater456
number of transfer registers.457

6.5 Offloading More Models458

6.5.1 Decision Tree459

In addition to the decision tree models we have deployed in this work, we provide some more insights460
on other decision trees that our current work can offload onto a SmartNIC via an ablation study. In our461
ablation study, we use the CICIDS datasets to construct 10 decision trees with a constraint on the maximum462
number of leaf nodes between 16 and 256, based on the leaf node limit we mentioned in Section 3. For463
each decision tree, we look at the depth, number of nodes, number of leaf nodes, size of the pickle file,464
size of the firmware file, and SmartNIC RAM usage. We present our findings in Figure 6 below. Note465
that we scaled some of the measurements by a factor of 10, so the trends in the some of the decision tree466
parameters would be more clear.467

Frontiers 19

Kapoor et al. ML-NIC

1 2 3 4 5 6 7 8 9 10
Model #

0

10

20

30

40

50

60 tree depth
of nodes (x10)
of leaf nodes (x10)
pickle file size (kB)
firmware size (x10 kB)
SmartNIC RAM (MB)

Figure 6. This figures shows how ML-NIC scales with respect to different decision tree parameters.

From Figure 6, we observe the following. First, we note the slow inclination, followed by a brief468
declination, then continued inclination in the usage of SmartNIC RAM. We also observe a similar pattern of469
inclination, declination, then inclination again in the trend for the model firmware size. We attribute this to470
how we compiled two instances of the model 1 and 2 per island to maximize our usage of the computation471
resources on the SmartNIC. For the remaining models, we only compiled one instance per island. Since472
models 1 and 2 have two instances compiled per island, more RAM and instruction memory would be473
needed to store the labels for the leaf nodes and decision tree logic. Based on the rate of inclination between474
firmware size and SmartNIC RAM usage, we see that a primary concern for offloading larger models is the475
amount of instruction memory available per microengine. After model 2, we see that the (scaled) trend for476
firmware size grows slower than that of the size of model pickle file and number of nodes by 1.64 and 1.53477
and grows faster than the trend for decision tree depth by 4.07 and number of leaf nodes by 1.30.478

6.5.2 Other Machine Learning Models479

Besides decision trees, we also consider approaches for executing inference with other machine learning480
models. Since inference for many popular machine learning models relies heavily on the matrix-vector481
multiplication operation, we look into techniques for efficient and effective matrix-vector multiplication482
that can be performed by a SmartNIC. In addition to conducting inference on models such as neural483
network and support vector machines for supervised tasks, we find an implementing a suitable matrix-484
vector multiplication method necessary for unsupervised learning, such as with implementing k-means485
using cosine similarity as the similarity measure instead of Euclidean distance. First, a naive approach486
that we consider is creating a lookup table per weight to match a feature value with the multiplication487
of that feature with the specific weight. In this approach, the feature computation microengines would488
be responsible for doing the multiplication lookup based on the weight and feature value, and the result489
aggregation microengines would sum up the multiplied weight-feature values to obtain the final result.490
However, this approach may not be feasible for problems that require a large number of weights due to491
memory constraints on the SmartNIC.492

An alternative approach would be to consider using natural logarithm and the exponent function (i.e., ex).493
Instead of storing a lookup table per feature, two lookup tables can be stored to approximately compute494

Frontiers 20

Kapoor et al. ML-NIC

the natural logarithm and exponent of the feature values based on their fixed range (i.e., we assume each495
feature is in the range [0, 1] in Section 3). Then, each feature computation microengine would be operate496
on a specific feature by conducting a lookup for the natural logarithm of the feature, taking the sum of the497
natural logarithms of the weights and the feature value, and conduct a lookup of the exponent of the sum of498
the natural logarithm values. While this approach may resolve issues with the memory constraint, a large499
number of features requires multiple lookups to the memory region holding the tables (i.e., CLS or IMEM)500
that can congest the CPP bus. So, to avoid this issue, the lookup tables could be replaced with first-order501
taylor approximations of the natural logarithm and exponent functions for a specific number of reference502
points in the range [0, 1], where the taylor approximations can be represented using additions and bit shifts.503
At the same time though, the use of first-order taylor approximations can result in more erroneous model504
predictions.505

More recently though, work by Blalock and Guttag (2021) proposed a novel technique for matrix-matrix506
multiplication that used locality-sensitive hashing to determine suitable functions (denote as g(A)) that507
can be executed efficiently using balanced binary regression trees. Based on their findings and our current508
implementation for decision tree inference, we believe their approach to be a more promising direction for509
executing matrix-vector multiplication on a SmartNIC.510

6.6 Productionization and Scaling511

When deploying decision tree models in the real world, we consider factors such as model updates and512
scaling. Concerning model updates (i.e., models retrained on larger datasets), we still limit the number of513
leaf nodes to 256, which may or may not be helpful as a regularization technique to prevent decision tree514
overfitting. In order to deploy a new decision tree, the original decision tree (i.e., the model firmware file)515
needs to be unloaded from the SmartNIC, and then the firmware for the new decision tree can be loaded516
onto the SmartNIC. This means that SmartNIC would be inactive while unloading the old decision tree and517
loading the new decision tree. So, inference requests can not be handled by a SmartNIC during that time.518

For scaling, we primarily focus on the first model deployment scenario (model fits on an island). We519
do not believe much scaling of SmartNIC resources can be done as the entire card is required for one520
instantiation of the model. In the first deployment scenario, though, based on the amount of network traffic,521
firmware can be developed to set aside some islands for the decision tree model and others for other tasks.522
However, like the model update case, old firmware would need to be unloaded and new firmware loaded.523
So, inference requests can not be handled by a SmartNIC while unloading old and loading new firmware.524

6.7 Hardware Improvements525

Considering SmartNICs with Micro-C support that possess additional hardware capabilities, we first note526
SmartNICs with additional programmable flow-processing microengines. A SmartNIC can include more527
programmable microengines in two ways: additional islands or microengines per island. With additional528
microengines per island, we expect a further reduction in latency for all three model deployment scenarios.529
This would happen because more models would be able to fit on an island, which would remove the need530
for communication between the microengines on different islands. Communication between microengines531
on different islands is more expensive than between microengines on the same island. With additional532
islands, we expect a further increase in throughput for model deployment scenario one (the model can fit533
on one island). More islands mean more instances of the model that can be instantiated on the SmartNIC,534
which would allow it to meet more inference requests. In either scenario, we expect larger trees (with535

Frontiers 21

Kapoor et al. ML-NIC

respect to the number of features) to be more easily deployed, given that each microengine would be536
responsible for analyzing fewer features.537

Next, we consider a SmartNIC with additional transfer registers per microengine. More transfer registers538
means that fewer microengines would be needed to perform result aggregation based on the feature analysis539
conducted by the feature computation microengines. With greater availability of microengines, we could540
likely deploy larger trees on the SmartNIC.541

Lastly, another hardware improvement we consider is the addition of one or more FPUs. Adding FPUs542
resolves the issue with minor effectiveness degradation that we observe with the current iteration of our543
work while likely maintaining similar latency and throughput performance that we’ve observed in this544
work.545

7 RELATED WORK

Recently, several works have leveraged programmable data planes to make aspects of machine learning546
more efficient. These works can be split into two categories: model training and model inference. We547
focus on the latter. Within model inference, research efforts are focused on leveraging how entire or548
portions of the machine learning model inference process can be offloaded onto programmable data planes549
while maintaining adequate model performance. These implementations are most commonly conducted on550
programmable switches and SmartNICs.551

7.1 Programmable Switch552

For works that map machine learning models onto programmable switches, we generally observe a focus553
on specific models used to address certain tasks. We first note Net2Net (Siracusano and Bifulco, 2018)554
that proposed quantizing neural networks into binary neural networks, since they require operations that555
are readily available on modern switching chips. Rather than quantizing a trained neural network into a556
binary neural network, Qin et al. (2020) directly trained binary neural networks and mapped them onto the557
data planes of programmable switches using P4 to handle the network intrusion detection use case. As an558
alternative to binary neural network quantization, Dao et al. (2021) used neuron pruning to map neural559
networks onto programmable switches for the network intrusion use case. While the above neural network560
works solely considered a single programmable switch for deployment, Saquetti et al. (2021) implemented561
a neural network neuron distribution method across multiple programmable switches and coordinated562
inference of the model between the switches to optimize resource usage. Similarly, JointNIDS (Dao563
and Lee, 2022) also employed a distributed neural network inference approach. But, the neural network564
intrusion detection models were split into two sequential submodels with overlapping hidden units and565
mapped the submodels onto two programmable switches. The authors assigned one programmable switch566
to detect major network attacks, while the second handled the more subtle aspects of network traffic567
classification. Rather than staying within the constraints of off-the-shelf programmable network devices,568
Taurus (Swamy et al., 2022) extended the PISA architecture of programmable switches by adding custom569
hardware to support parallelism and additional operations (i.e., multiplication, nonlinear operations) needed570
to run neural network inference without any quantization.571

Regarding tree-based models, pForest (Busse-Grawitz et al., 2019) developed a optimization technique to572
map a random forest classifier to a programmable switch in P4 for network flow classification. Furthermore,573
this approach adaptively switches out the current classifier with others based on the network flows observed.574
In addition to mapping a random forest classifier, Planter (Zheng and Zilberman, 2021) mapped a xgboost575

Frontiers 22

Kapoor et al. ML-NIC

and isolation forest classifier to programmable switches using overlapping trees to overcome some of576
the inefficiencies observed in pForest (Busse-Grawitz et al., 2019). Similar to pForest (Busse-Grawitz577
et al., 2019), SMASH (Kamath and Sivalingam, 2021) also focused on the network flow classification task578
and used an improved hash-and-store algorithm with a decision tree model for early flow classification.579
Also working with decision trees, pHeavy (Zhang et al., 2021) implemented trained decision trees on the580
data plane to reduce the overhead involved with communicating to the control plane in Software-Defined581
Networking (SDN) when classifying highly-congested network flows. In contrast to the other tree-based582
model offloading approaches that focus on network-related use cases, NetPixel (Siddique et al., 2021)583
implemented decision trees on P4 programmable switches to handle image classification. To address some584
of the issues with deployment of decision trees and other machine learning algorithms onto programmable585
data planes, Mousika (Xie et al., 2022) introduced a teacher-student knowledge distillation approach to586
translate machine learning models to binary decision trees, which are more suitable for mapping onto the587
data plane.588

On top of supervised machine learning, the deployment of unsupervised learning algorithms onto589
programmable switches has also been explored. Clustreams (Friedman et al., 2021) used a combination590
of the quadtree data structure and a match+action table stored in Ternary Content Addressable Memory591
(TCAM) to cluster network traffic efficiently. In addition, ACC-Turbo (Alcoz et al., 2022) redesigned the592
original Aggregate-based Congestion Control (ACC) approach using online clustering and a scheduling593
algorithm to mitigate pulse-wave DDoS attacks.594

Unlike the works above that focus on a specific machine learning algorithm type (i.e., neural networks,595
tree-based models, clustering, etc.), IIsy (Xiong and Zilberman, 2019) introduced mapping schemes for596
several machine learning algorithms, such as decision trees, k-means, naive bayes, and support vector597
machines, to the data plane using the match-action pipeline in programmable switches. Also, Hong et al.598
(2024) developed a feature engineering and model deployment strategy for tree-based models (i.e., decision599
trees, random forests, xgboost), k-nearest neighbor, and k-means to handle the high-frequency stock market600
trading task.601

7.2 SmartNIC602

Similar to the works that address deployment of machine learning model inference onto programmable603
switches, we see works about model inference onto SmartNICs that also consider neural networks and604
decision trees used for particular applications. Using the approach proposed by Net2Net (Siracusano605
and Bifulco, 2018), BaNaNa split (Sanvito et al., 2018) accelerated the inference of neural networks by606
splitting a neural network at its fully-connected layers, sending all prior layers to the host system’s CPU607
for inference, and quantizing the fully-connected layers to run portion of the inference on the host system’s608
SmartNIC. Different from the other works that primarily look into P4 implementations, N3IC (Siracusano609
et al., 2022) used Micro-C and P4 to map binary neural networks onto a greater variety of targets (i.e.,610
SmartNICs) for traffic analysis use cases. Regarding tree-based models, Xavier et al. (2021) presented611
a framework for deploying decision tree models onto SmartNICs in P4. The authors demonstrated that612
their framework can achieve high accuracy (above 95%) in a network intrusion detection use case. While613
similar to our work, we note that ML-NIC works on a greater variety of use cases outside of network traffic614
analysis. Furthermore, ML-NIC’s Micro-C implementations can parallelize the model inference process,615
which is not possible with P4. While the works on machine learning inference offloading for SmartNICs616
do not cover unsupervised learning to our knowledge, they do address traditional reinforcement learning.617

Frontiers 23

Kapoor et al. ML-NIC

Opal (Simpson and Pezaros, 2022) implemented online reinforcement learning onto a SmartNIC data plane,618
relying on classical reinforcement algorithms such as Sarsa (Sutton, 2018) and avoiding neural networks.619

8 FUTURE DIRECTIONS

8.1 Implementing Additional Models620

As mentioned in Section 6, our next step is to expand our framework to other machine learning algorithms,621
such as support vector machines and neural networks. We find that implementing the approximate matrix-622
matrix multiplication approach developed by Blalock and Guttag (2021) to be means of achieving this goal.623
In addition to matrix-matrix multiplication, there are floating point operations that are often performed624
for various models such as neural networks. Thus, in order to implement such models, future work may625
involve, either adding hardware support for these operations or using quantized operations as a default. We626
discuss the potential future work in this area in Section 8.2.627

8.2 Improving the Floating-Point Representation628

While our current approach leverages fixed-point 16-bit features and produces comparable model629
effectiveness scores to the baselines, it is possible that the proposed float-representation scheme can630
be improved without adding more hardware. One potential future direction to be explored is to look into631
the posit representation Gustafson and Yonemoto (2017) as a potential alternative, since it resolves the632
issue of NaN quantities observed in the standard floating-point representation. Also, while implementing633
the standard floating-point representation on the SmartNIC may seem like a viable solutions, we believe634
that the float-pointing representation standard would introduce additional latency due to the additional635
computation spent managing mantissa bits, exponent bits, and NaN quantities. In addition, adding any636
additional hardware support may cause added cost and energy consumption of SmartNIC, which defeats637
the purpose of using the SmartNIC in the first place. Thus, a software / algorithmic based approaches for638
performing floating point operations will be a great direction for future work.639

8.3 Automating the Model Deployment640

Furthermore, despite automating the process of decision tree logic extraction, the process of building the641
model mapping still mostly requires the developer to manually allocate cores as one of packet collection,642
feature computation, or result aggregation. We think the model mapping component can be made more643
efficient with additional code that considers the computation constraints of the SmartNIC and presents644
a mapping scheme to remove some of the tedious work in deploying a model onto the SmartNIC. Thus,645
a direction for future work may involve building a more sophisticated system that can perform model646
compilation, optimization and deployment automatically to the SmartNIC. This work can be further647
strengthened by adding a notion of distributed deployment and model inference across multiple SmartNICs648
located on multiple server.649

8.4 Utilizing Different Types of SmartNICs650

While this work primarily utilizes ASIC-based SmartNIC, it is possible to implement similar work on651
other ASIC-based and other types of SmartNICs, such as FPGA-based SmartNICs. While the optimizations652
we performed in this paper is specific to Netronome SmartNIC, the overall idea of mapping memory into653
different SmartNIC region is quite generic. Thus, a potential valuable future work is to perform similar654

Frontiers 24

Kapoor et al. ML-NIC

optimization strategies across different types of hardware implementations to understand the similarities655
and differences in the effectiveness of the proposed optimization and compilation strategies.656

9 CONCLUSION

Low-latency model inference is a necessity for many time-sensitive machine learning applications. This657
paper demonstrates that ML-NIC is a suitable framework for performing machine learning model inference.658
Our evaluation of the first iteration of ML-NIC shows that it can deploy larger models than the state-of-the-659
art SmartNIC approach, can produce predictions at faster speeds with a minor loss in model effectiveness660
compared to the CPU solution, and is robust to high network utilization and CPU loads.661

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial662
relationships that could be construed as a potential conflict of interest.663

AUTHOR CONTRIBUTIONS

SC conceived the presented idea and provided computing resources. DCA and SC supervised the project,664
designed experiments, and validated the findings. RK conducted experiments, collected and analyzed665
data, and wrote the initial draft of the manuscript. All authors were involved in reviewing and revising the666
manuscript.667

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the University of California, Irvine Machine668
Learning Repository [https://archive.ics.uci.edu/] and University of New Brunswick Canadian Institute for669
Cybersecurity [https://www.unb.ca/cic/].670

REFERENCES

Alcoz, A. G., Strohmeier, M., Lenders, V., and Vanbever, L. (2022). Aggregate-based congestion control671
for pulse-wave ddos defense. In Proceedings of the ACM SIGCOMM 2022 Conference. 693–706672

Blalock, D. and Guttag, J. (2021). Multiplying matrices without multiplying. In International Conference673
on Machine Learning (PMLR), 992–1004674

Busse-Grawitz, C., Meier, R., Dietmüller, A., Bühler, T., and Vanbever, L. (2019). pforest: In-network675
inference with random forests. arXiv preprint arXiv:1909.05680676

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd677
acm sigkdd international conference on knowledge discovery and data mining. 785–794678

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. (2014). Dadiannao: A machine-learning679
supercomputer. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture (IEEE),680
609–622681

Choquette, J., Giroux, O., and Foley, D. (2018). Volta: Performance and programmability. Ieee Micro 38,682
42–52683

Corigine (2020). Corigine NFP-4000 Flow Processor. Tech. rep., Corigine684
Dang, H. T., Bressana, P., Wang, H., Lee, K. S., Zilberman, N., Weatherspoon, H., et al. (2020). P4xos:685

Consensus as a network service. IEEE/ACM Transactions on Networking 28, 1726–1738686

Frontiers 25

Kapoor et al. ML-NIC

Dao, T.-N., Hoang, V.-P., Ta, C. H., et al. (2021). Development of lightweight and accurate intrusion687
detection on programmable data plane. In 2021 International Conference on Advanced Technologies for688
Communications (ATC) (IEEE), 99–103689

Dao, T.-N. and Lee, H. (2022). Jointnids: Efficient joint traffic management for on-device network intrusion690
detection. IEEE Transactions on Vehicular Technology 71, 13254–13265691

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., et al. (2018). A configurable692
cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE 45th Annual International Symposium on693
Computer Architecture (ISCA) (IEEE), 1–14694

Friedman, R., Goaz, O., and Rottenstreich, O. (2021). Clustreams: Data plane clustering. In Proceedings695
of the ACM SIGCOMM Symposium on SDN Research (SOSR). 101–107696

Gustafson, J. L. and Yonemoto, I. T. (2017). Beating floating point at its own game: Posit arithmetic.697
Supercomputing frontiers and innovations 4, 71–86698

He, Z., Sidler, D., István, Z., and Alonso, G. (2018). A flexible k-means operator for hybrid databases.699
In 2018 28th International Conference on Field Programmable Logic and Applications (FPL) (IEEE),700
368–3683701

Hong, X., Zheng, C., Zohren, S., and Zilberman, N. (2024). Accelerating machine learning for trading using702
programmable switches (IOS Press), Frontiers in Artificial Intelligence and Applications, 3429–3436703

Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., et al. (2017). Netcache: Balancing key-value stores704
with fast in-network caching. In Proceedings of the 26th Symposium on Operating Systems Principles.705
121–136706

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017). In-datacenter707
performance analysis of a tensor processing unit. In Proceedings of the 44th annual international708
symposium on computer architecture. 1–12709

Kamath, R. and Sivalingam, K. M. (2021). Machine learning based flow classification in dcns using p4710
switches. In 2021 International Conference on Computer Communications and Networks (ICCCN)711
(IEEE), 1–10712

Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., Wobker, L. J., et al. (2015). In-band network713
telemetry via programmable dataplanes. In ACM SIGCOMM. vol. 15, 1–2714

Langlet, J. (2019). Towards machine learning inference in the data plane715

Leo Breiman, C. J. S., Jerome Friedman and Olshen, R. (1984). Classification and Regression Trees716
(Chapman and Hall/CRC)717

Liu, Y. H. (2017). Python machine learning by example (Packt Publishing Ltd)718

Netronome Systems, I. (2024). Agilio CX 2x25GbE SmartNIC. Tech. rep., Netronome Systems, Inc.719

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:720
Machine learning in python. the Journal of machine Learning research 12, 2825–2830721

Qin, Q., Poularakis, K., Leung, K. K., and Tassiulas, L. (2020). Line-speed and scalable intrusion detection722
at the network edge via federated learning. In 2020 IFIP Networking Conference (Networking) (IEEE),723
352–360724

Quinlan, J. R. (1986). Induction of decision trees. Machine learning 1, 81–106725

Rodrı́guez-Luján, I., Fonollosa, J., Vergara, A., Homer, M. L., and Huerta, R. (2014). On the calibration726
of sensor arrays for pattern recognition using the minimal number of experiments. Chemometrics and727
Intelligent Laboratory Systems 130, 123–134728

[Dataset] Roth, D. (2016). Decision trees729

Sanvito, D., Siracusano, G., and Bifulco, R. (2018). Can the network be the ai accelerator? In Proceedings730
of the 2018 Morning Workshop on In-Network Computing. 20–25731

Frontiers 26

Kapoor et al. ML-NIC

Saquetti, M., Canofre, R., Lorenzon, A. F., Rossi, F. D., Azambuja, J. R., Cordeiro, W., et al. (2021).732
Toward in-network intelligence: Running distributed artificial neural networks in the data plane. IEEE733
Communications Letters 25, 3551–3555734

Sharafaldin, I., Lashkari, A. H., Ghorbani, A. A., et al. (2018). Toward generating a new intrusion detection735
dataset and intrusion traffic characterization. ICISSp 1, 108–116736

Siddique, H., Neves, M., Kuzniar, C., and Haque, I. (2021). Towards network-accelerated ml-based737
distributed computer vision systems. In 2021 IEEE 27th International Conference on Parallel and738
Distributed Systems (ICPADS) (IEEE), 122–129739

Simpson, K. A. and Pezaros, D. P. (2022). Revisiting the classics: Online rl in the programmable dataplane.740
In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium (IEEE), 1–10741

Siracusano, G. and Bifulco, R. (2018). In-network neural networks. arXiv preprint arXiv:1801.05731742
Siracusano, G., Galea, S., Sanvito, D., Malekzadeh, M., Antichi, G., Costa, P., et al. (2022). Re-architecting743

traffic analysis with neural network interface cards. In 19th USENIX Symposium on Networked Systems744
Design and Implementation (NSDI 22). 513–533745

[Dataset] Srinivasan, A. (1993). Statlog (Landsat Satellite). UCI Machine Learning Repository. DOI:746
https://doi.org/10.24432/C55887747

Sutton, R. S. (2018). Reinforcement learning: an introduction. A Bradford Book748
Swamy, T., Rucker, A., Shahbaz, M., Gaur, I., and Olukotun, K. (2022). Taurus: a data plane architecture749

for per-packet ml. In Proceedings of the 27th ACM International Conference on Architectural Support750
for Programming Languages and Operating Systems. 1099–1114751

Tong, D., Qu, Y. R., and Prasanna, V. K. (2017). Accelerating decision tree based traffic classification on752
fpga and multicore platforms. IEEE Transactions on Parallel and Distributed Systems 28, 3046–3059753

Wray, S. (2014). The Joy of Micro-C. Tech. rep., Netronome Systems, Inc.754
Xavier, B. M., Guimarães, R. S., Comarela, G., and Martinello, M. (2021). Programmable switches for755

in-networking classification. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications756
(IEEE), 1–10757

Xie, G., Li, Q., Dong, Y., Duan, G., Jiang, Y., and Duan, J. (2022). Mousika: Enable general in-network758
intelligence in programmable switches by knowledge distillation. In IEEE INFOCOM 2022-IEEE759
Conference on Computer Communications (IEEE), 1938–1947760

Xiong, Z. and Zilberman, N. (2019). Do switches dream of machine learning? toward in-network761
classification. In Proceedings of the 18th ACM workshop on hot topics in networks. 25–33762

Yilmaz, C., Kahraman, H. T., and Söyler, S. (2018). Passive mine detection and classification method763
based on hybrid model. IEEE Access 6, 47870–47888. doi:10.1109/ACCESS.2018.2866538764

Zhang, B., Kannan, R., Prasanna, V., and Busart, C. (2023). Accelerating gnn-based sar automatic target765
recognition on hbm-enabled fpga. In 2023 IEEE High Performance Extreme Computing Conference766
(HPEC) (IEEE), 1–7767

Zhang, X., Cui, L., Tso, F. P., and Jia, W. (2021). pheavy: Predicting heavy flows in the programmable768
data plane. IEEE Transactions on Network and Service Management 18, 4353–4364769

Zheng, C. and Zilberman, N. (2021). Planter: seeding trees within switches. In Proceedings of the770
SIGCOMM ’21 Poster and Demo Sessions (New York, NY, USA: Association for Computing Machinery),771
SIGCOMM ’21. 12–14. doi:10.1145/3472716.3472846772

Frontiers 27

Kapoor et al. ML-NIC

APPENDIX

A Packet Collection Implementation773

An example implementation for packet collection is provided below. At the start of the main function,774
the microengine signals the CTM packet engine that it is ready to receive a packet. Once the MAC775
block has received and preprocessed a packet, it is transferred to the microengine’s corresponding CTM776
buffer and an MU buffer (if needed). The remainder of the code then validates the packet as a model777
input packet, parses the features embedded in the packet payload, and transfers the features to various778
microengines. After transferring the packets, the result aggregation microengine waits to be signaled that779
the final classification is produced. Then, the original model input packet is modified with the classification780
result, some post-processing is performed, and the CTM packet engine is informed that the packet is ready781
to be sent out.782

Listing 1. Example Packet Collection Code
i n c l u d e <nfp . h>783
i n c l u d e <nfp / remote me . h>784
i n c l u d e <nfp / mem bulk . h>785
. . . / * Some more p a c k e t i m p o r t s * /786
i n c l u d e <n e t / h d r e x t . h>787
i n c l u d e ” c o n f i g . h ”788

789
/ *790
Read p a c k e t da ta from memory i n x f e r r e g i s t e r s as a two b y t e791
o f f s e t so t h a t t h e pay load g e t a l i g n e d t o a word boundary . T h i s792
makes t h e header e x t r a c t i o n code more e f f i c i e n t .793

* /794
d e f i n e PKT START OFF 2795

796
797

/ * A s t r u c t u r e used f o r e x t r a c t i n g , t h e d i f f e r e n t p r o t o c o l header * /798
s t r u c t p k t h d r {799

s t r u c t e t h h d r e t h ;800
s t r u c t i p 4 h d r i p 4 ;801

} ;802
803

/ / S i g n a l s f o r i n t e r a c t i n g w i t h o t h e r MEs804
SIGNAL l o c a l s i g n a l ;805

806
r e m o t e SIGNAL r e m o t e s i g n a l 1 ;807
r e m o t e x r e a d u i n t 3 2 t r e m o t e x f e r 1 ;808

809
r e m o t e SIGNAL r e m o t e s i g n a l 2 ;810
r e m o t e x r e a d u i n t 3 2 t r e m o t e x f e r 2 ;811

812
. . . / * Repea t s i m i l a r v a r i a b l e f o r each f e a t u r e * /813

814

Frontiers 28

Kapoor et al. ML-NIC

v i s i b l e SIGNAL c o m p l e t e s i g n a l ;815
v i s i b l e x r e a d u i n t 3 2 t c o m p l e t e x f e r ;816

817
i n t r i n s i c void p r o c p k t (mem40 char * b u f a d d r , g p r u i n t 3 2 t818
b u f o f f) {819

820
/ / E x t r a c t t h e h e a d e r s f i r s t b e f o r e t h e pay load821

x r e a d u i n t 3 2 t p k t b u f [1 7] ;822
x w r i t e u i n t 3 2 t d a t a o u t [1 5] ;823

lmem u i n t 3 2 t s r c b u f [1 3] ; / / j u s t s t o r e t h e h e a d e r s824
g p r s t r u c t p k t h d r eh ;825
g p r u i n t 3 2 t csum prepend ;826
g p r i n t s r c o f f = b u f o f f ;827
g p r i n t r e s ;828
g p r i n t l e n ;829

830
/ / E x t r a c t t h e p a c k e t831
mem read32 (p k t b u f , b u f a d d r + b u f o f f − PKT START OFF , s i z e o f (832

p k t b u f)) ;833
834

/ * Copy x f e r r e g i s t e r t o a Loca l Memory b u f f e r f o r e a s i e r835
e x t r a c t i o n * /836

r e g c p (s r c b u f , p k t b u f , s i z e o f (s r c b u f)) ;837
s r c o f f = PKT START OFF ;838

839
/ *840

* Handle t h e checksum prepend i f c o n f i g u r e d841

* /842
i f d e f CFG RX CSUM PREPEND843

/ * read t h e MAC p a r s i n g i n f o f o r CSUM (f i r s t 4B are t i m e s t a m p) * /844
csum prepend = p k t c s u m r e a d (p k t b u f , PKT START OFF + 4) ;845
s r c o f f += MAC PREPEND BYTES ;846

847
i f (NFP MAC RX CSUM L3 SUM of (csum prepend) ==848

NFP MAC RX CSUM L3 IPV4 FAIL) {849
/ * L3 checksum i s wrong * /850
re turn ;851

}852
853

i f ((NFP MAC RX CSUM L4 SUM of (csum prepend) ==854
NFP MAC RX CSUM L4 TCP FAIL) | |855

(NFP MAC RX CSUM L4 SUM of (csum prepend) ==856
NFP MAC RX CSUM L4 UDP FAIL)) {857

/ * L4 checksum i s wrong * /858
re turn ;859

Frontiers 29

Kapoor et al. ML-NIC

}860
e n d i f861

862
/ / Layer 2 E x t r a c t i o n863
r e s = h e e t h (s r c b u f , s r c o f f , &eh . e t h) ;864
l e n = HE RES LEN of (r e s) ;865
s r c o f f += l e n ;866

867
/ / Check i f e t h e r n e t header i s c o r r e c t868
i f (((g p r u i n t 1 6 t *)&eh . e t h . d s t) [0] == 0 x0015869

&& ((g p r u i n t 1 6 t *)&eh . e t h . d s t) [1] == 0 x4d13870
&& ((g p r u i n t 1 6 t *)&eh . e t h . d s t) [2] == 0 x79ac871
&& n e t e t h i s u c a d d r (&eh . e t h . s r c)872
&& eh . e t h . t y p e == 0 x4d49) {873

874
/ / E d i t E t h e r n e t Header875
((lmem s t r u c t e t h h d r *) ((lmem char *) s r c b u f +10))−>d s t =876

eh . e t h . s r c ;877
((lmem s t r u c t e t h h d r *) ((lmem char *) s r c b u f +10))−> s r c =878

eh . e t h . d s t ;879
((lmem s t r u c t e t h h d r *) ((lmem char *) s r c b u f +10))−> t y p e880

= 0 x4d4f ;881
882

/ / E d i t IP Header883
r e s = h e i p 4 (s r c b u f , s r c o f f , &eh . i p 4) ;884
((lmem s t r u c t i p 4 h d r *) (s r c b u f +6))−>d s t = eh . i p 4 . s r c ;885
((lmem s t r u c t i p 4 h d r *) (s r c b u f +6))−> s r c = eh . i p 4 . d s t ;886

887
/ / Copy header and pay load t o d a t a o u t888
r e g c p (d a t a o u t , s r c b u f +2 , 44) ;889
r e g c p (d a t a o u t +11 , p k t b u f +13 , 16) ;890

891
/ / I n fo rm ME 1 t h a t da ta i s ready892
r e m o t e m e r e g w r i t e s i g n a l r e m o t e (d a t a o u t +11 , 32 , 1 , 0 ,893

x f e r r e g n u m b e r (&894
r e m o t e x f e r 1 , n f p m e i d895
(3 2 , 1)) + (c t x () * 32)896
,897

s i z e o f (r e m o t e x f e r 1) , &898
l o c a l s i g n a l) ;899

900
/ / I n fo rm ME 2 t h a t da ta i s ready901
r e m o t e m e r e g w r i t e s i g n a l r e m o t e (d a t a o u t +11 , 32 , 2 , 0 ,902

Frontiers 30

Kapoor et al. ML-NIC

x f e r r e g n u m b e r (&903
r e m o t e x f e r 2 , n f p m e i d904
(3 2 , 2)) + (c t x () * 32)905
,906

s i z e o f (r e m o t e x f e r 2) , &907
l o c a l s i g n a l) ;908

909
. . . / * Repea t m i c r o e n g i n e da ta t r a n s f e r f o r each f e a t u r e * /910

911
/ / Wait f o r ME 9 t o f i n i s h912

w a i t f o r a l l (& c o m p l e t e s i g n a l) ;913
r e g c p (d a t a o u t +11 , &c o m p l e t e x f e r , s i z e o f (c o m p l e t e x f e r)) ;914
mem write64 (d a t a o u t , b u f a d d r + b u f o f f + 6 , 48) ;915

}916
}917

918
i n t main (void) {919

mem40 char * pbuf ;920
x r e a d s t r u c t n b i m e t a c a t a m a r a n n b i m e t a ;921
x r e a d s t r u c t n b i m e t a p k t i n f o * p i = &n b i m e t a . p k t i n f o ;922
g p r i n t i n p o r t , p k t o f f ;923
g p r s t r u c t p k t m s i n f o msi ;924

925
a s s i g n r e l a t i v e r e g i s t e r (& l o c a l s i g n a l , 1) ;926
a s s i g n r e l a t i v e r e g i s t e r (& c o m p l e t e s i g n a l , 10) ;927
i m p l i c i t w r i t e (& c o m p l e t e s i g n a l , s i z e o f (c o m p l e t e s i g n a l)) ;928
i m p l i c i t w r i t e (& c o m p l e t e x f e r , s i z e o f (c o m p l e t e x f e r)) ;929

930
f o r (; ;) {931

/ * R e c e i v e p a c k e t * /932
p k t n b i r e c v (& nb i me ta , s i z e o f (n b i m e t a)) ;933
i n p o r t = MAC TO PORT(n b i m e t a . p o r t) ;934
pbuf = p k t c t m p t r 4 0 (pi −> i s l , p i −>pnum , 0) ;935

936
/ * C o l l e c t f e a t u r e s from p k t * /937
p k t o f f = PKT NBI OFFSET ;938
p r o c p k t (pbuf , p k t o f f) ;939

940
/ * Send p a c k e t * /941
/ / W r i t e t h e MAC e g r e s s CMD and a d j u s t o f f s e t and l e n as942

needed943
p k t o f f += MAC PREPEND BYTES ;944
p k t m a c e g r e s s c m d w r i t e (pbuf , p k t o f f , 1 , 1) ;945

946
p k t o f f −= 4 ;947

Frontiers 31

Kapoor et al. ML-NIC

msi = p k t m s d w r i t e (pbuf , p k t o f f) ;948
p k t n b i s e n d (pi −> i s l , p i −>pnum , &msi ,949

pi −> l e n − MAC PREPEND BYTES + 4 ,950
NBI , PORT TO TMQ(i n p o r t) ,951
n b i m e t a . s eq r , n b i m e t a . seq , PKT CTM SIZE 256) ;952

}953
954

re turn 0 ;955
}956

B Feature Computation Implementation957

The code listing below exemplifies how we program a microengine for feature computation. Once the958
packet collection microengine signals the microengine and receives a feature to analyze, it executes the959
logic learned by the trained decision for that specific feature as a series of if-else statements to determine960
which leaf nodes can be reached based on the value taken on by the feature in question. Once the possible961
leaf nodes are calculated, the feature computation microengine transmits the possible leaf nodes to the962
result aggregation microengine.963

Listing 2. Example Feature Computation Code
i n c l u d e <nfp . h>964
i n c l u d e < s t d i n t . h>965
i n c l u d e <s t d / r e g u t i l s . h>966
i n c l u d e <nfp / me . h>967
i n c l u d e <nfp / remote me . h>968
i n c l u d e <nfp / c l s . h>969

970
v i s i b l e SIGNAL r e m o t e s i g n a l 2 ;971
v i s i b l e x r e a d u i n t 3 2 t r e m o t e x f e r 2 ;972

973
r e m o t e SIGNAL r e s u l t s i g n a l 2 ;974
r e m o t e x r e a d u i n t 3 2 t r e s u l t x f e r 2 [4] ;975

976
SIGNAL l o c a l s i g n a l ;977

978
i n t main (void) {979

g p r u i n t 3 2 t f e a t u r e ;980
g p r u i n t 3 2 t r e s u l t g p r [4] ;981
x w r i t e u i n t 3 2 t r e s u l t w r i t e [4] ;982

983
a s s i g n r e l a t i v e r e g i s t e r (& r e m o t e s i g n a l 2 , 1) ;984
a s s i g n r e l a t i v e r e g i s t e r (& l o c a l s i g n a l , 3) ;985
i m p l i c i t w r i t e (& r e m o t e s i g n a l 2 , s i z e o f (r e m o t e s i g n a l 2)) ;986
i m p l i c i t w r i t e (& r e m o t e x f e r 2 , s i z e o f (r e m o t e x f e r 2)) ;987

988
f o r (; ;) {989

Frontiers 32

Kapoor et al. ML-NIC

r e g s e t (r e s u l t g p r , 0 x 3 f f f f , s i z e o f (u i n t 3 2 t)) ;990
r e g s e t (r e s u l t g p r +1 , 0 x f f f f f f f f , s i z e o f (u i n t 3 2 t)) ;991
r e g s e t (r e s u l t g p r +2 , 0 x f f f f f f f f , s i z e o f (u i n t 3 2 t)) ;992
r e g s e t (r e s u l t g p r +3 , 0 x f f f f f f f f , s i z e o f (u i n t 3 2 t)) ;993

994
w a i t f o r a l l (& r e m o t e s i g n a l 2) ;995

r e g c p (& f e a t u r e , &r e m o t e x f e r 2 , s i z e o f (f e a t u r e)) ;996
f e a t u r e &= 0 x f f f f ;997

998
/ / D e c i s i o n Tree l o g i c999
i f (! (f e a t u r e <= 5585))1000

r e s u l t g p r [3] &= ˜ (1 << 3) ;1001
1002

i f (! (f e a t u r e <= 5585))1003
r e s u l t g p r [3] &= ˜ (1 << 4) ;1004

1005
i f (! (f e a t u r e <= 5585))1006

r e s u l t g p r [3] &= ˜ (1 << 5) ;1007
1008

i f (! (f e a t u r e <= 5585))1009
r e s u l t g p r [3] &= ˜ (1 << 6) ;1010

1011
i f (! (f e a t u r e <= 5585 && f e a t u r e <= 4841))1012

r e s u l t g p r [3] &= ˜ (1 << 7) ;1013
1014

i f (! (f e a t u r e <= 5585 && f e a t u r e > 4841))1015
r e s u l t g p r [3] &= ˜ (1 << 8) ;1016

1017
i f (! (f e a t u r e <= 5585 && f e a t u r e <= 3351 && f e a t u r e <= 1117))1018

r e s u l t g p r [3] &= ˜ (1 << 9) ;1019
1020

. . . / * Remaining d e c i s i o n t r e e f e a t u r e l o g i c * /1021
1022

/ / T r a n s f e r r e s u l t t o r e s u l t a g g r e g a t i o n m i c r o e n g i n e1023
r e g c p (& r e s u l t w r i t e , &r e s u l t g p r , s i z e o f (r e s u l t w r i t e)) ;1024
r e m o t e m e r e g w r i t e s i g n a l r e m o t e (& r e s u l t w r i t e , 32 , 9 , 0 ,1025

x f e r r e g n u m b e r (&1026
r e s u l t x f e r 2 , n f p m e i d1027
(3 2 , 9)) + (c t x () * 32)1028
,1029

s i z e o f (r e s u l t x f e r 2) , &1030
l o c a l s i g n a l) ;1031

}1032
1033

re turn 0 ;1034

Frontiers 33

Kapoor et al. ML-NIC

}1035

C Result Aggregation Implementation1036

Below, we provide an example implementation for result aggregation. Once the microengine receives all1037
possible leaf nodes based on the values taken on by each feature from the feature computation microengines,1038
it takes the single possible leaf node predicted by all the feature computation microengines and searches1039
for the corresponding class label. The result aggregation microengine transmits the label to the packet1040
collection microengine to complete the inference process.1041

Listing 3. Example Result Aggregation Code
i n c l u d e <nfp . h>1042
i n c l u d e < s t d i n t . h>1043
i n c l u d e <s t d / r e g u t i l s . h>1044
i n c l u d e <nfp / me . h>1045
i n c l u d e <nfp / remote me . h>1046
i n c l u d e <nfp / c l s . h>1047

1048
v i s i b l e SIGNAL r e s u l t s i g n a l 1 ;1049
v i s i b l e x r e a d u i n t 3 2 t r e s u l t x f e r 1 [4] ;1050

1051
. . . / * Repea t s i m i l a r v a r i a b l e s f o r each f e a t u r e * /1052

1053
/ / For t r a n s f e r back t o p a c k e t c o l l e c t i o n m i c r o e n g i n e1054

r e m o t e SIGNAL c o m p l e t e s i g n a l ;1055
r e m o t e x r e a d u i n t 3 2 t c o m p l e t e x f e r ;1056

1057
SIGNAL l o c a l s i g n a l ;1058

1059
i n t main (void) {1060

g p r u i n t 3 2 t r e s u l t s g p r 1 [4] ;1061
g p r u i n t 3 2 t r e s u l t s g p r 2 [4] ;1062

. . . / * Repea t s i m i l a r v a r i a b l e s f o r each f e a t u r e * /1063
x w r i t e u i n t 3 2 t f i n a l r e s u l t w r i t e ;1064

1065
lmem u i n t 8 t p a t h c l a s s [] = {1 , 4 , 4 , 1 , 4 , 1 , 1 , 4 , 5 , 1 , 5 ,1066

1 , 5 , 5 , 3 , 3 , 4 , 1 , 3 , . . . } ;1067
1068

a s s i g n r e l a t i v e r e g i s t e r (& r e s u l t s i g n a l 1 , 2) ;1069
. . . / * Repea t s i m i l a r f u n c t i o n c a l l f o r each f e a t u r e * /1070

a s s i g n r e l a t i v e r e g i s t e r (& l o c a l s i g n a l , 10) ;1071
1072

i m p l i c i t w r i t e (& r e s u l t s i g n a l 1 , s i z e o f (r e s u l t s i g n a l 1)) ;1073
i m p l i c i t w r i t e (r e s u l t x f e r 1 , s i z e o f (r e s u l t x f e r 1)) ;1074

. . . / * Repea t s i m i l a r f u n c t i o n c a l l s f o r each f e a t u r e * /1075
1076

Frontiers 34

Kapoor et al. ML-NIC

f o r (; ;) {1077
w a i t f o r a l l (& r e s u l t s i g n a l 1 , &r e s u l t s i g n a l 2 , . . .) ;1078

1079
/ / C o l l e c t a l l t h e p o s s i b l e p a t h s1080
r e g c p (r e s u l t s g p r 1 , r e s u l t x f e r 1 , s i z e o f (r e s u l t s g p r 1)) ;1081
. . . / * Repea t s i m i l a r f u n c t i o n c a l l f o r each f e a t u r e * /1082

1083
/ / Compute f i n a l pa th1084
r e s u l t s g p r 8 [0] = r e s u l t s g p r 1 [0] & . . . ;1085
. . . / * Repea t s i m i l a r c o m p u t a t i o n f o r each 32− b i t word * /1086

1087
/ / C a l c u l a t e l e a f node i n d e x1088
i f (r e s u l t s g p r 8 [0] != 0)1089

r e s u l t s g p r 8 [0] = f f s (r e s u l t s g p r 8 [0]) + 9 6 ;1090
e l s e i f (r e s u l t s g p r 8 [1] != 0)1091

r e s u l t s g p r 8 [0] = f f s (r e s u l t s g p r 8 [1]) + 6 4 ;1092
. . . / * Repea t s i m i l a r c o m p u t a t i o n f o r each 32− b i t word * /1093
e l s e1094

r e s u l t s g p r 8 [0] = f f s (r e s u l t s g p r 8 [3]) ;1095
1096

/ / Get c l a s s p r e d i c t i o n1097
r e s u l t s g p r 8 [0] = (u i n t 3 2 t) (p a t h c l a s s [r e s u l t s g p r 8 [0]]) ;1098
r e g c p (& f i n a l r e s u l t w r i t e , r e s u l t s g p r 8 , s i z e o f (1099

f i n a l r e s u l t w r i t e)) ;1100
1101

/ / Send f i n a l r e s u l t t o p a c k e t c o l l e c t i o n core1102
r e m o t e m e r e g w r i t e s i g n a l r e m o t e (& f i n a l r e s u l t w r i t e , 32 , 0 ,1103

0 ,1104
x f e r r e g n u m b e r (&1105

c o m p l e t e x f e r , n f p m e i d1106
(3 2 , 0)) + (c t x () * 32)1107
,1108

s i z e o f (c o m p l e t e x f e r) , &1109
l o c a l s i g n a l) ;1110

}1111
1112

re turn 0 ;1113
}1114

D Model Deployment Implementation1115

Once all the Micro-C code files have been created, the following provides an example of deploying the1116
mapped decision tree onto the SmartNIC. Each nfcc command processes a Micro-C code file and builds1117
the corresponding .list file. This process is repeated for each microengine intended for use. Then the code1118
is linked, where we explicitly specify which microengine will run which code file to get the final firmware1119
file. Lastly, we load the firmware onto the SmartNIC and start running the firmware.1120

Frontiers 35

Kapoor et al. ML-NIC

Listing 4. Micro-C Code Compilation onto SmartNIC example
−−− B u i l d i n g blm . l i s t1121
n f a s − t −W3 −R −lm 0 −C − c h i p nfp −4xxx −b0 −DBLM CUSTOM CONFIG −1122

DNFP LIB ANY NFAS VERSION − I . − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s −1123
I / c p a c k e t p r o c e s s i n g / mic roc / i n c l u d e − I / c p a c k e t p r o c e s s i n g / mic roc /1124
l i b − I / components / s t a n d a r d l i b r a r y / i n c l u d e − I / components /1125
s t a n d a r d l i b r a r y / mic rocode / i n c l u d e − I / components / s t a n d a r d l i b r a r y /1126
microcode / s r c −DBLM CUSTOM CONFIG −DSINGLE NBI −DPKT NBI OFFSET= −1127
DBLM BLQ EMEM TYPE=emem −DNBII=8 −DBLM INSTANCE ID=0 −1128
DBLM INIT EMU RINGS − I . − I / d t r e e / mine / m i c r o c − I / c p a c k e t p r o c e s s i n g1129
/ mic roc / b l o c k s / blm / − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / h − I /1130
c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / uc −o blm . l i s t /1131
c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / blm main . uc1132

1133
I s l a n d 32 ####1134
−−− B u i l d i n g p k t c o l l e c t . l i s t1135
n f c c −W3 − c h i p nfp −4xxx −b0 − Q s p i l l =7 −Qnn mode=1 − Q n o d e c l v o l a t i l e −1136

s i n g l e d r a m s i g n a l −Qnctx mode =8 −FI c o n f i g . h −DBLM CUSTOM CONFIG1137
− I . − I / d t r e e / mine / m i c r o c − I / c p a c k e t p r o c e s s i n g / mic roc / i n c l u d e − I /1138
c p a c k e t p r o c e s s i n g / mic roc / l i b − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s /1139
blm − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / h − I / components /1140
s t a n d a r d l i b r a r y / i n c l u d e − I / components / s t a n d a r d l i b r a r y / mic rocode /1141
i n c l u d e − F e p k t c o l l e c t 3 2 . l i s t / d t r e e / mine / m i c r o c / i s l a n d 3 2 /1142
p k t c o l l e c t 3 2 . c / c p a c k e t p r o c e s s i n g / mic roc / l i b / n fp / l i b n f p . c /1143
c p a c k e t p r o c e s s i n g / mic roc / l i b / s t d / l i b s t d . c / c p a c k e t p r o c e s s i n g /1144
microc / l i b / p k t / l i b p k t . c / c p a c k e t p r o c e s s i n g / mic roc / l i b / n e t / l i b n e t . c1145

/ components / s t a n d a r d l i b r a r y / mic roc / s r c / r t l . c1146
1147

−−− B u i l d f e a t u r e 1 . l i s t1148
n f c c −W3 − c h i p nfp −4xxx −b0 − Q s p i l l =7 −Qnn mode=1 − Q n o d e c l v o l a t i l e −1149

s i n g l e d r a m s i g n a l −Qnctx mode =8 −FI c o n f i g . h −DBLM CUSTOM CONFIG1150
− I . − I / d t r e e / mine / m i c r o c − I / c p a c k e t p r o c e s s i n g / mic roc / i n c l u d e − I /1151
c p a c k e t p r o c e s s i n g / mic roc / l i b − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s /1152
blm − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / h − I / components /1153
s t a n d a r d l i b r a r y / i n c l u d e − I / components / s t a n d a r d l i b r a r y / mic rocode /1154
i n c l u d e − F e f e a t u r e 1 3 2 . l i s t / d t r e e / mine / m i c r o c / i s l a n d 3 2 /1155
f e a t u r e 1 3 2 . c / c p a c k e t p r o c e s s i n g / mic roc / l i b / n fp / l i b n f p . c /1156
c p a c k e t p r o c e s s i n g / mic roc / l i b / s t d / l i b s t d . c / components /1157
s t a n d a r d l i b r a r y / mic roc / s r c / r t l . c1158

1159
−−− B u i l d f e a t u r e 2 . l i s t1160

Frontiers 36

Kapoor et al. ML-NIC

n f c c −W3 − c h i p nfp −4xxx −b0 − Q s p i l l =7 −Qnn mode=1 − Q n o d e c l v o l a t i l e −1161
s i n g l e d r a m s i g n a l −Qnctx mode =8 −FI c o n f i g . h −DBLM CUSTOM CONFIG1162
− I . − I / d t r e e / mine / m i c r o c − I / c p a c k e t p r o c e s s i n g / mic roc / i n c l u d e − I /1163
c p a c k e t p r o c e s s i n g / mic roc / l i b − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s /1164
blm − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / h − I / components /1165
s t a n d a r d l i b r a r y / i n c l u d e − I / components / s t a n d a r d l i b r a r y / mic rocode /1166
i n c l u d e − F e f e a t u r e 2 3 2 . l i s t / d t r e e / mine / m i c r o c / i s l a n d 3 2 /1167
f e a t u r e 2 3 2 . c / c p a c k e t p r o c e s s i n g / mic roc / l i b / n fp / l i b n f p . c /1168
c p a c k e t p r o c e s s i n g / mic roc / l i b / s t d / l i b s t d . c / components /1169
s t a n d a r d l i b r a r y / mic roc / s r c / r t l . c1170

1171
. . . ### Repea t s i m i l a r commands f o r r e m a i n i n g f e a t u r e s ###1172

1173
−−− B u i l d r e s u l t c o l l e c t . l i s t1174
n f c c −W3 − c h i p nfp −4xxx −b0 − Q s p i l l =7 −Qnn mode=1 − Q n o d e c l v o l a t i l e −1175

s i n g l e d r a m s i g n a l −Qnctx mode =8 −FI c o n f i g . h −DBLM CUSTOM CONFIG1176
− I . − I / d t r e e / mine / m i c r o c − I / c p a c k e t p r o c e s s i n g / mic roc / i n c l u d e − I /1177
c p a c k e t p r o c e s s i n g / mic roc / l i b − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s /1178
blm − I / c p a c k e t p r o c e s s i n g / mic roc / b l o c k s / blm / h − I / components /1179
s t a n d a r d l i b r a r y / i n c l u d e − I / components / s t a n d a r d l i b r a r y / mic rocode /1180
i n c l u d e − F e r e s u l t c o l l e c t 3 2 . l i s t / d t r e e / mine / m i c r o c / i s l a n d 3 2 /1181
r e s u l t c o l l e c t 3 2 . c / c p a c k e t p r o c e s s i n g / mic roc / l i b / n fp / l i b n f p . c /1182
c p a c k e t p r o c e s s i n g / mic roc / l i b / s t d / l i b s t d . c / components /1183
s t a n d a r d l i b r a r y / mic roc / s r c / r t l . c1184

1185
. . . ### Repea t s i m i l a r commands f o r I s l a n d s 33−36 ###1186

1187
−−− Link code1188
n f l d − c h i p nfp −4xxx −b0 −mip − r t s y m s −o model . fw −map model . map −u i 3 21189

. me0 − l p k t c o l l e c t 3 2 . l i s t −u i 3 2 . me1 − l f e a t u r e 1 3 2 . l i s t −u i 3 2 .1190
me2 − l f e a t u r e 2 3 2 . l i s t . . . −u i l a 0 . me0 − l blm . l i s t − i i 8 −e /1191
components / s t a n d a r d l i b r a r y / p i c o c o d e / nfp6000 / c a t a m a r a n / c a t a m a r a n .1192
npfw1193

1194
Load Firmware on to SmartNIC ###1195
nfp −nffw l o a d −−no− s t a r t model . fw1196
nfp −nffw s t a r t1197

Frontiers 37

	Introduction
	Background
	SmartNIC
	ASIC-Based Netronome SmartNIC

	ML-NIC Architecture
	Model Training
	Model Mapping
	Model Deployment

	Experimental Setup
	Testbed
	Datasets and Models
	Dataset Preprocessing
	Land Mine Detection
	Satellite Image Pixel Classification
	Gas Sensor Drift Compensation
	Network Traffic Classification

	Baselines
	Evaluation Metrics

	Results
	Effectiveness Scores
	Latency
	Throughput
	Hardware Utilization

	Discussion
	Generalization
	Benefits
	Scope
	Limitations
	Offloading More Models
	Decision Tree
	Other Machine Learning Models

	Productionization and Scaling
	Hardware Improvements

	Related Work
	Programmable Switch
	SmartNIC

	Future Directions
	Implementing Additional Models
	Improving the Floating-Point Representation
	Automating the Model Deployment
	Utilizing Different Types of SmartNICs

	Conclusion
	Packet Collection Implementation
	Feature Computation Implementation
	Result Aggregation Implementation
	Model Deployment Implementation

