Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting

Yanhong Li, Jack Xu, David C. Anastasiu

Santa Clara University

Problem: predicting long-term streamflow values with rain off data

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,t} \\ x_{2,1} & \cdots & x_{2,t} \\ \vdots & \ddots & \vdots \\ x_{m,1} & \cdots & x_{m,t} \end{bmatrix} \in \mathbb{R}^{m \times t} \to [x_{1,t+1}, \dots, x_{1,t+h}] \in \mathbb{R}^{h}$$

 x_1 : the ordinary series

 x_2 to x_m : extraordinary indicators.

(x_2 can also be the Gaussian Mixture Model (GMM) indicator based on x_1 . In such cases, the problem can be reduced to that of univariate time series forecasting.)

Challenges:

- Long-range dependencies.
- Rare but important extreme values.

Goal:

- An end-to-end model concurrently learns extreme and normal prediction functions.
- Long sequence forecasting (predicted length = 288).

Dataset:

- Four groups of hydrologic datasets from Santa Clara County, CA. Over 31 years of sensor data, 1,104,904 values.
- Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations.
- Each group included a streamflow dataset and an associated rainfall dataset.

Dataset with high skewness and kurtosis score:

	Ross	Saratoga	UpperPen	SFC
min	0.00	0.00	0.00	0.00
max	1440.00	2210.00	830.00	7200.00
mean	2.91	5.77	6.66	20.25
skewness	19.84	19.50	13.42	18.05
kurtosis	523.16	697.78	262.18	555.18

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!

Motivation: achieving the best overall prediction performance, without sacrificing either the quality of normal or of extreme predictions.

Root Mean Square Error *(RMSE)* Mean Absolute Percentage Error *(MAPE)*

Proposed Methods:

Framework: We propose a Distance-weighted Auto-regularized Neural network (DAN), which uses

expandable blocks to dynamically facilitate long-term prediction.

Kruskal-Wallis Test in Time Series: We introduce a Kruskal-Wallis sampling policy to handle imbalanced extreme data and gate control vectors to boost the discriminatory capacity of indicator to accommodate imbalanced data.

Representation Learning: To improve the model's robustness to severe events, DAN innovatively uses a distance-weighted multi-loss method to extract the polar representations from time series simultaneously.

DAN framework :

DAN's end-to-end extendable framework consists of two stages, named RepGen and RepMerg:

- RepGen contains three parallel encoder-decoder blocks, resulting in polar representations of ordinary series inputs and refined indicators.
- > These elements are further merged in the RepMerg stack.

Kruskal-Wallis Test:

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1).$$

- \succ Examines k groups of sub series based on their medians.
- The data are first ranked, and the sum of ranks is calculated for each group. The H value is then calculated to determine if there are significant differences between the groups.
- ➤ A distribution-free test , not assume a particular distribution.
- Over-sampling regions with extreme events in our training set.

Architecture Items:

RepGen stack:

• "f-ED": representation learning of those points that are far

away from the mean of the series \hat{y}_f .

- "n-ED": representation of near points \hat{y}_n .
- "i -ED": learn the indicator \hat{y}_{i} .

CONV-LSTM layers :

- Shorten the input sequence.
- Alleviate potential exploding or vanishing gradient.

Indicator Refine Layer :

• Made of 2×CNN.

٠

Assist in refining the expected indicator representation.

Gate control vector:

Another way to hone predicted indicator:

- M_{far} is equal to sigmoid($\alpha * \hat{y}_i$), where $\alpha = 4$ in our experiments, $m_{near} = 1 m_{far}$.
- Doing the component-wise multiplication with predicted far values \hat{y}_f and near values \hat{y}_n .
- Let to \hat{y}_w to approach | tanh(y) | * y.

Auto-regularized Loss Function:

 $\mathcal{L}_{1} = RMSE((\hat{y}_{f} \odot w_{f}), (y \odot w_{f})),$ $\mathcal{L}_{2} = RMSE((\hat{y}_{n} \odot w_{n}), (y \odot w_{n})),$ $\mathcal{L}_{3} = RMSE(\hat{y}_{w} \odot w_{p}, y \odot w_{p}),$ $\mathcal{L}_{4} = RMSE(\hat{y}_{i} \odot w_{p}, y_{i} \odot w_{p}),$

where \mathcal{L}_1 and \mathcal{L}_2 are used to regulate the bipolar representation learning and \mathcal{L}_3 and \mathcal{L}_4 force the predicted indicator to reflect the change of predicted values by setting y_i equal to the first order of y. Then, the overall loss is composed as,

 $\mathcal{L} = RMSE(\hat{y}, y) + \lambda \times (\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4),$

where λ is a multiplier ($\lambda = max(-1 \cdot e^{\frac{epoch}{45}} + 2, 0.2)$) in our experiments) applied on those regulation items, decreasing with each epoch.

Motivations:

- Multiple distance-weighted loss functions with the objective of compelling the model to learn more informative representations.
- Serve as an effective regularizer for preventing overfitting in the long-term time series prediction task.

Research Questions:

1. How does DAN compare against state-of-the-art baselines?

2. What is the effect of DAN's extensible framework?

3. What is the effect of the Kruskal-Wallis oversampling policy?

4. How do the critical design elements of the framework affect performance?

Baselines:

- DNN-U: univariate LSTM-based encoder-decoder hydrologic model.
- Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.
- N-BEATS: outperformed all competitors on the standard M3, M4 and TOURISM datasets.
- FEDFormer
- InFormer
- NLinear
- DLinear

Methods	Metric	Ross		Saratoga		UpperPen		SFC	
		Multi	Single	Multi	Single	Multi	Single	Multi	Single
FEDformer	RMSE	6.01	6.49	6.01	6.85	3.05	2.38	23.54	24.10
	MAPE	2.10	2.49	1.55	2.26	1.87	1.02	2.35	2.817
Informer	RMSE	7.84	9.14	5.04	4.89	5.88	5.33	39.89	19.00
	MAPE	4.05	5.45	1.43	0.73	4.10	4.21	8.64	<u>0.54</u>
Nlinear	RMSE	6.10	5.84	5.23	4.98	1.57	1.74	18.47	18.43
	MAPE	<u>1.99</u>	1.62	0.83	0.75	<u>0.45</u>	0.57	0.92	0.87
Dlinear	RMSE	7.16	6.90	4.33	4.06	3.53	3.25	21.62	23.64
	MAPE	3.10	2.79	1.40	1.31	2.35	2.04	2.74	4.02
NEC+	RMSE	9.44	9.33	1.88	<u>1.95</u>	2.22	1.94	17.00	16.39
	MAPE	4.80	4.53	0.17	<u>0.21</u>	0.95	0.80	1.07	0.55
LSTM-Atten /	RMSE	7.35	<u>5.16</u>	6.49	3.60	6.35	1.23	34.17	31.47
NBeats	MAPE	3.74	<u>1.25</u>	1.80	0.70	4.76	0.25	9.90	3.24
DAN	RMSE	4.25	4.24	1.80	1.84	1.10	<u>1.31</u>	15.23	15.20
	MAPE	0.07	0.09	0.14	0.16	0.15	0.32	0.26	0.21

1. How does DAN compare against state-of-the-art baselines?

• Multivariate/Univariate Long-Term (h = 288) Series Forecasting Results.

- Over 1600 test points in the test set were inferenced on all datasets.
- The **best results** are in bold and the <u>second best results</u> are underlined.

Research Questions:

2. What is the effect of DAN's extensible framework?

3. What is the effect of the Kruskal-Wallis oversampling policy?

- Maintain the p value and increase the ε value, the training set will contain more samples with H values exceeding ε.
- We experimented with various combinations and identified the best results as "EDEDRR", "EDR", "EDEDRR", and "EDEDR" for Ross, Saratoga, UpperPen, and SFC, respectively.

4. How do the critical design elements of the framework affect performance?

- Vanilala_Ind: remove key architecture items.
- LCNN_Ind: add CNN-CNN back, refines the indicator information.
- Un-regulated: add Gate control vector back,
 - increases the discrimination of predicted values.
- DAN: add polar representation back, enhances the accuracy of data at corners of each fluctuation, as denoted in the blue circles in the figure.

Rolling inferencing:

time index of sampled test points

- Sampled multivariate inference for the Ross sensor.
- DAN performed better than other models on areas with extreme events

