Learning from Polar Representation: An Extreme-Adaptive Model

for Long-Term Time Series Forecasting

Yanhong Li, Jack Xu, David C. Anastasiu

Santa Clara University




Problem: predicting long-term streamflow values with rain off data
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(x, can also be the Gaussian Mixture Model (GMM) indicator based on x; .
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forecasting.)

Challenges:

« Long-range dependencies.

* Rare but important extreme values.

Goal:

* An end-to-end model concurrently learns extreme and normal prediction functions.

* Long sequence forecasting (predicted length = 288).

Dataset:

» Four groups of hydrologic datasets from Santa Clara County, CA. Over 31 years of sensor data, 1,104,904 values.
« Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations.

« Each group included a streamflow dataset and an associated rainfall dataset.




Dataset with high skewness and kurtosis score:
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mean 291 5.77 6.66 20.25
skewness 19.84 19.50 13.42 18.05

kurtosis 523.16 697.78 262.18  555.18

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!



Motivation: achieving the best overall prediction performance, without sacrificing either the
quality of normal or of extreme predictions.

Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)

Proposed Methods:

Framework: We propose a Distance-weighted Auto-regularized Neural network (DAN), which uses
expandable blocks to dynamically facilitate long-term prediction.

Kruskal-Wallis Test in Time Series: We introduce a Kruskal-Wallis sampling policy to handle imbalanced
extreme data and gate control vectors to boost the discriminatory capacity of indicator to accommodate

Imbalanced data.
Representation Learning: To improve the model’'s robustness to severe events, DAN innovatively uses a

distance-weighted multi-loss method to extract the polar representations from time series simultaneously.



DAN framework :
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DAN’s end-to-end extendable framework consists of two stages, named RepGen and RepMerg:
» RepGen contains three parallel encoder-decoder blocks, resulting in polar representations of
ordinary series inputs and refined indicators.

» These elements are further merged in the RepMerg stack.



Kruskal-Wallis Test:
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» Examines k groups of sub series based on their medians.

» The data are first ranked, and the sum of ranks is calculated for each group. The H value is then calculated to
determine if there are significant differences between the groups.

» Adistribution-free test , not assume a particular distribution.

» Over-sampling regions with extreme events in our training set.



Architecture ltems:

RepGen stack:
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» Made of 2xCNN.

» Assistin refining the expected indicator representation.



Gate control vector:

Another way to hone predicted indicator:
Mg, is equal to sigmoid(a  J; ), where a = 4 in our experiments, My 4 = 1 = Mgq,.
* Doing the component-wise multiplication with predicted far values yr and near values j,.

« Let to j, to approach | tanh(y) | *.



Auto-regularized Loss Function:

L1 =RMSE((§r © wy), (y ©wy)),

Lo = RMSE((Q’R © wn)n (y © wn)):
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where £, and L, are used to regulate the bipolar representa-
tion learning and £3 and L, force the predicted indicator to
reflect the change of predicted values by setting y; equal to
the first order of y. Then, the overall loss 1s composed as,

L= RMSE(Q,y) + A\ X ([:1 + Lo+ L3 —|—£,4),

epoch

where A is a multiplier (A = max(—1-e~ 45 +2,0.2) in our
experiments) applied on those regulation items, decreasing
with each epoch.

Motivations:

» Multiple distance-weighted loss
functions with the objective of
compelling the model to learn more

informative representations.

» Serve as an effective regularizer for
preventing overfitting in the long-term

time series prediction task.



Research Questions:
1. How does DAN compare against state-of-the-art baselines?
2. What is the effect of DAN'’s extensible framework?
3. What is the effect of the Kruskal-Wallis oversampling policy?

4. How do the critical design elements of the framework affect performance?

Baselines:

* DNN-U: univariate LSTM-based encoder-decoder hydrologic model.

* Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.

* N-BEATS: outperformed all competitors on the standard M3, M4 and TOURISM datasets.
* FEDFormer

* InFormer

* NLinear

* DLinear



1. How does DAN compare against state-of-the-art baselines?

Methods Metric Ross Saratoga UpperPen SFC

Multi  Single Multi Single Multi Single Multi Single

FEDformer RMSE 6.01 649 601 685 305 238 2354 24.10
MAPE 210 249 155 226 187 1.02 235 2817

Informer RMSE  7.84 9.14 5.04 4.89  5.88 5.33 39839  19.00
MAPE  4.05 545 143 0.73  4.10 4.21 8.64 0.54

Nlinear RMSE 6.0 584 523 498 157 174 1847 1843
MAPE 199 1.62 083 075 045 057 092  0.87

Dlinear RMSE  7.16 690 4.33 406  3.53 325 21.62 23.64
MAPE  3.10 279 140 1.31  2.35 204 274 4.02

NEC+ RMSE 944 933 188 195 222 194 17.00 1639
MAPE 480 453 0.7 021 095 080 107 055

LSTM-Atten/ RMSE 735 516 649 360 635 123 3417 3147
NBeats MAPE 374 125 180 070 476 025 990 324

DAN RMSE  4.25 424 1.80 1.84 1.10 1.31 1523 15.20
MAPE  0.07 0.09 0.14 0.16 0.15 032  0.26 0.21

« Multivariate/Univariate Long-Term (h = 288) Series Forecasting Results.
« Over 1600 test points in the test set were inferenced on all datasets.

* The best results are in bold and the second best results are underlined.




Research Questions:

2. What is the effect of DAN’s extensible framework?

3. What is the effect of the Kruskal-Wallis oversampling policy?
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« Maintain the p value and increase the ¢ value, the training set will contain more samples
with H values exceeding «.

» We experimented with various combinations and identified the best results as “EDEDRR?,
‘EDR”, “EDEDRR”, and “EDEDR” for Ross, Saratoga, UpperPen, and SFC, respectively.
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4. How do the critical design elements of the framework affect performance?
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Vanilala_Ind: remove key architecture items.
LCNN_Ind: add CNN-CNN back, refines the
indicator information.

Un-regulated: add Gate control vector back,
increases the discrimination of predicted values.
DAN: add polar representation back, enhances
the accuracy of data at corners of each fluctuation,

as denoted in the blue circles in the figure.
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Rolling inferencing:
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« Sampled multivariate inference for the Ross sensor.

* DAN performed better than other models on areas with extreme events
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