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Problem: predicting long-term streamflow values with rain off data

Challenges:

• Long-range dependencies.

• Rare but important extreme values.

Goal:

• An end-to-end model concurrently learns extreme and normal prediction functions.

• Long sequence forecasting (predicted length = 288).

Dataset:

• Four groups of hydrologic datasets from Santa Clara County, CA. Over 31 years of sensor data, 1,104,904 values.

• Namely Ross, Saratoga, UpperPen, and SFC, named after their respective locations. 

• Each group included a streamflow dataset and an associated rainfall dataset.

𝑥1: the ordinary series 

𝑥2 to 𝑥𝑚 : extraordinary indicators.

(𝑥2 can also be the Gaussian Mixture Model (GMM) indicator based on 𝑥1. 

In such cases, the problem can be reduced to that of univariate time series 

forecasting.)
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Dataset with high skewness and kurtosis score:

High skewness and kurtosis scores indicate that there is significant deviation from a normal distribution in our data!
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Motivation: achieving the best overall prediction performance, without sacrificing either the 

quality of normal or of extreme predictions.

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

Proposed Methods:

Framework: We propose a Distance-weighted Auto-regularized Neural network (DAN), which uses 

expandable blocks to dynamically facilitate long-term prediction.

Kruskal-Wallis Test in Time Series: We introduce a Kruskal-Wallis sampling policy to handle imbalanced 

extreme data and gate control vectors to boost the discriminatory capacity of indicator to accommodate 

imbalanced data.

Representation Learning: To improve the model’s robustness to severe events, DAN innovatively uses a 

distance-weighted multi-loss method to extract the polar representations from time series simultaneously.
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DAN framework :

DAN’s end-to-end extendable framework consists of two stages, named RepGen and RepMerg:

➢ RepGen contains three parallel encoder-decoder blocks, resulting in polar representations of 

ordinary series inputs and refined indicators.

➢ These elements are further merged in the RepMerg stack.
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Kruskal-Wallis Test:

➢ Examines 𝒌 groups of sub series based on their medians.

➢ The data are first ranked, and the sum of ranks is calculated for each group. The H value is then calculated to 

determine if there are significant differences between the groups.

➢ A distribution-free test , not assume a particular distribution.

➢ Over-sampling regions with extreme events in our training set.
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Architecture Items:

RepGen stack:

• “f-ED”: representation learning of those points that are far 

away from the mean of the series ො𝑦𝑓.

• “n-ED”:  representation of near points ො𝑦𝑛.

• “i -ED”: learn the indicator ො𝑦𝑖 .

CONV-LSTM layers :

• Shorten the input sequence.

• Alleviate potential exploding or vanishing gradient.

Indicator Refine Layer :

• Made of 2×CNN.

• Assist in refining the expected indicator representation.
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Gate control vector:

Another way to hone predicted indicator:

• 𝑀𝑓𝑎𝑟 is equal to sigmoid(α ∗ ො𝑦𝑖 ), where α = 4 in our experiments, 𝑚𝑛𝑒𝑎𝑟 = 1 − 𝑚𝑓𝑎𝑟.

• Doing the component-wise multiplication with predicted far values ො𝑦𝑓 and near values ො𝑦𝑛. 

• Let  to ො𝑦𝑤 to approach | tanh(y) | * y.
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Auto-regularized Loss Function:

Motivations: 

➢ Multiple distance-weighted loss 

functions with the objective of 

compelling the model to learn more 

informative representations.

➢ Serve as an effective regularizer for 

preventing overfitting in the long-term 

time series prediction task.
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Research Questions:

1. How does DAN compare against state-of-the-art baselines? 

2. What is the effect of DAN’s extensible framework?

3. What is the effect of the Kruskal-Wallis oversampling policy?

4. How do the critical design elements of the framework affect performance?

Baselines:

• DNN-U: univariate LSTM-based encoder-decoder hydrologic model.

• Attention-LSTM: a state-of-the-art hydrologic model used to predict stream-flow.

• N-BEATS: outperformed all competitors on the standard M3, M4 and TOURISM datasets.

• FEDFormer

• InFormer

• NLinear

• DLinear
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1. How does DAN compare against state-of-the-art baselines?

• Multivariate/Univariate Long-Term (h = 288) Series Forecasting Results.

• Over 1600 test points in the test set were inferenced on all datasets. 

• The best results are in bold and the second best results are underlined. 11



Research Questions:

2. What is the effect of DAN’s extensible framework?

3. What is the effect of the Kruskal-Wallis oversampling policy?

• Maintain the p value and increase the ε value, the training set will contain more samples 

with H values exceeding ε.

• We experimented with various combinations and identified the best results as “EDEDRR”, 

“EDR”, “EDEDRR”, and “EDEDR” for Ross, Saratoga, UpperPen, and SFC, respectively.
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4. How do the critical design elements of the framework affect performance?

• Vanilala_Ind: remove key architecture items.

• LCNN_Ind: add CNN-CNN back, refines the 

indicator information.

• Un-regulated: add Gate control vector back,  

increases the discrimination of predicted values. 

• DAN: add polar representation back, enhances 

the accuracy of data at corners of each fluctuation, 

as denoted in the blue circles in the figure.

13



Rolling inferencing:

• Sampled multivariate inference for the Ross sensor. 

• DAN performed better than other models on areas with extreme events
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Q   &   A 
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