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ABSTRACT We present the Multivariate Segment-Expandable Encoder Decoder (MSEED), an advanced
framework designed to solve the problem of extreme-adaptive multivariate time series forecasting. MSEED
contains a hierarchical encoder-decoder architecture, a short-term-enhanced subnet, and a feature assembling
layer that effectively integrates spatial and temporal information across the multivariate time series. The
model’s architecture is designed to capture quantile distributions across segmented subsequences layer
by layer, enabling the detection of complex patterns at various scales, which enhances both the accuracy
and robustness of forecasts. Moreover, MSEED incorporates a simple vanilla encoder-decoder model to
strengthen practical short-term rolling predictions. The framework has been rigorously tested across four
challenging datasets, focusing on two critical forecasting scenarios: long-term predictions for three days
ahead and rolling predictions every four hours, simulating real-time decision-making in water resource
management. In our experiments, MSEED consistently outperformed state-of-the-art models, showing
improvements in forecasting accuracy from 18% to 74%.

INDEX TERMS Deep learning, representation learning, oversampling policy, streamflow prediction,
hydrologic prediction, LSTM, time series.

I. INTRODUCTION

Time series forecasting is critical in a wide range of do-
mains, including meteorology [1], energy management [2],
and financial markets [3]. Yet, the task becomes hard when
faced with datasets having pronounced skewness, complicat-
ing accurate long-term predictions. Taking hydrology as an
example, streamflow predictions are convoluted due to mul-
tifaceted and unpredictable variables like weather patterns,
geographical features, and human activities. Such intricacies
make it harder to obtain accurate forecasts in this field. One
of the main issues is capturing long-range dependencies,
which can be understood as the longest signal path between
any two positions in the time series. As the length of this
path increases, the dependencies become more complex and
difficult to model, so the models need a longer historical input
to effectively learn these long-term patterns.

Forecasting from highly-skewed [4] and heavy-tailed
datasets presents a myriad of challenges. Datasets with ex-
treme events often suffer from an imbalance in training sam-
ples, with a majority of data points clustered at lower values
and only a few at higher extremes. This skewed distribution

can hinder traditional prediction algorithms from effectively
capturing the underlying patterns of these anomalies. These
rare events typically follow distributions that differ signifi-
cantly from the bulk of the data, requiring specialized ap-
proaches to manage their non-Gaussian characteristics.

The challenge becomes even more significant when deal-
ing with long-term multivariate time series forecasting that
includes extreme values. The Transformer model, originally
recognized for its achievements in language processing and
computer vision [5], has recently extended its influence to
time series forecasting, demonstrating robust capabilities in
capturing intricate dependencies within sequences [6]–[8].
Nevertheless, a typical approach in these models is to com-
press many variables from the same timestamp into a single
token, which can obscure important multivariate connections.
Furthermore, the limited receptive field associated with sin-
gle timestamp embeddings might fail to effectively capture
useful information, particularly for events that are temporally
misaligned. Current methods [9], [10] excel in forecasting
normally distributed data; however, their accuracy decreases
considerably with highly-skewed time series.
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In our previous work, we introduced the Segment-
Expandable Encoder-Decoder (SEED) model [11], tailored
for univariate time series with high skewness and a heavy tail
distribution. However, SEED is not suitable for multivariate
time series as it cannot capture complex relationships among
multiple time series inputs and has not been previously tested
in a rolling prediction scenario, which holds significant prac-
tical value. Building on this foundation, we present the Mul-
tivariate Segment-Expandable Encoder-Decoder (MSEED)
model in this study, tailored to fill this gap.

• Segment Representation Integration: MSEED inte-
grates multivariate segment representation learning with
a novel multi-tiered encoder-decoder framework.

• Feature Assembling: MSEED employs a method that
merges spatial and temporal data, tailored to manage
the intricate dynamics of multivariate time series, which
enables the detection of complex patterns at various
scales.

• Short-Term-Enhanced SubNet: MSEED contains a
simplified component specifically designed to improve
efficient short-term rolling predictions.

• GMM-Based Oversampling Strategy: MSEED inte-
grates a Gaussian Mixture Model (GMM)-based sam-
pling strategy to identify critical samples from im-
balanced datasets, enhancing forecasting precision for
heavily skewed time series.

Our comprehensive experiments highlight MSEED’s sig-
nificant potential for practical applications in multivariate,
skewed, long-term time series predictions. MSEED consis-
tently outperformed state-of-the-art models, improving fore-
casting accuracy by 18% to 74%.

II. RELATED WORK
A. TRADITIONAL METHODS
Time series prediction has been investigated for many years.
Traditional methods for accurately predicting future values in
time series include the univariate Autoregressive (AR), Mov-
ing Average (MA), Simple Exponential Smoothing (SES),
and Extreme Learning Machine (ELM) algorithms, and most
famously the Autoregressive Integrated Moving Average
(ARIMA) [12] method and its several variants. Gaussian
Process Regression (GPR) [13] and Quantile Regression
(QR) [14] were used in some studies to not only predict but
also quantify forecast uncertainty. Tree-based models, such
as classification and regression trees (CARTs) and random
forest (RF), have been employed due to their computational
efficiency and ability to handle predictors without assuming
any specific distribution. Additionally, Prophet [15] uses an
additive model that captures nonlinear trends in the data,
incorporating seasonal and holiday effects at various time
scales, including annual, weekly, and daily patterns.

B. MULTIVARIATE TIME SERIES FORECASTING
In the realm of multivariate time series forecasting, studies
have employed a variety of techniques ranging from tradi-

tional models like vector autoregression (VAR) andmultivari-
ate exponential smoothing to more contemporary deep learn-
ing approaches. VARmodels, as described by Lütkepohl [16],
statistically capture linear relationships across multiple di-
mensions and over time. Moreover, graph neural networks
(GNNs) [17], [18] are employed to effectively address cross-
dimensional dependencies by merging temporal and graph
convolutional layers. Deep neural networks (DNNs) have
demonstrated significant strengths across various domains.
While traditional feed-forward deep learning models often
struggle with time series data due to varying lengths and
temporal dependencies, WaveNet [19] excels in generating
high-quality audio and has proven effective for time series
prediction tasks as well [20]. Similarly, DeepAR [21], a
probabilistic forecasting model based on a Recurrent Neural
Network (RNN) encoder-decoder architecture, leverages the
autoregressive property of time series to generate probabilis-
tic forecasts, allowing for uncertainty estimation.

C. TRANFORMER-BASED METHODS
Recent research has demonstrated the Transformer model’s
ability to boost prediction power [22], [23]. However, the
Transformer model suffers from a number of serious draw-
backs that prohibit it from being directly applicable to long
time series forecasting, including quadratic temporal com-
plexity, high memory utilization, and built-in limitations of
the encoder-decoder design. To address these issues, alterna-
tive methods like Autoformer [24] and Reformer [25] have
been proposed to improve the transformer’s dependency dis-
covery and representation ability. Informer [6] proposed a
ProbSparse self-attention mechanism and a generative style
decoder, while FEDFormer [7] represents time series by
randomly selecting Fourier components in an attempt to
improve efficiency compared to the standard Transformer.
PatchTST [23] utilizes patching techniques to enhance time
series modeling by extracting local semantics and ensur-
ing channel independence. Crossformer [10] incorporates a
cross-scale embedding layer along with Long Short Distance
Attention (LSDA), enabling it to effectively capture depen-
dencies that span time and multiple variables in multivariate
time series. Meanwhile, iTransformer [9] refines the inputs
for Transformer models to enhance time-series modeling,
focusing on improving data interpretation and forecasting
accuracy.
While transformer-based models excel at detecting long-

range dependencies using self-attention mechanisms, their
application to long-term forecasting often leads to decreased
accuracy or higher computational demands, limiting their
practicality [8]. Moreover, current approaches to long-term
time series forecasting have typically overlooked the chal-
lenges posed by heavily skewed datasets.

D. EXTREME ADAPTIVE METHODS
Handling datasets with infrequent or extreme events presents
significant challenges in time series prediction, requiring the
creation of specialized algorithms for exact forecasting under
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these circumstances. An and Cho [26] designed a method
for anomaly detection that uses reconstruction probability to
reflect the intrinsic variability of data distributions. Ding et
al. [27] adopted a different tactic by enhancing the capabil-
ity of deep learning models to identify and predict excep-
tional events. Their method adjusts predictions based on how
closely current data resembles past extreme events, though it
may suffer from high memory demands and potential gen-
eralizability issues. This approach was later augmented by
the Generalized Extreme Value Loss (GEVL) [28], replac-
ing the Gaussian kernel with heavy-tailed distribution ker-
nels like Gumbel and Frechet for loss estimation. Instead of
modifying predictions, this method adjusts the loss estimator
to a heavy-tailed distribution. The variational disentangled
extremal (VIE) classifier [29] utilizes representation learning
with a combination of Gaussian and Generalized Pareto dis-
tribution priors to efficiently classify extreme event data. Fi-
nally, we previously introduced the NEC+ model [30], which
trains three predictors simultaneously to maintain excellent
forecasting performance for reservoir water level prediction,
and DAN [31], which learns and merges rich representations
to adaptively predict streamflow.

Our proposed MSEED model incorporates several inno-
vative methods, enabling effective handling of multivariate
time series forecasting, including in rolling prediction con-
texts. The model captures both broad and detailed trends
within skewed datasets, offering a more efficient and precise
method for forecasting skewed time series. We validate its
performance through year-long rolling predictions on four
hydrologic datasets, demonstrating its superior forecasting
capabilities.

III. PRELIMINARY
A. PROBLEM STATEMENT
In this work, we are tacking the problem of single-target
multivariate time series forecasting. Given historical data
from multiple length-t observed series, from x1 to xm, we are
aiming to predict the next h time steps for the first time series
x1. The problem can be described as,

x1,1 · · · x1,t

x2,1 · · · x2,t
...

. . .
...

xm,1 · · · xm,t

 ∈ Rm×t → [x1,t+1, ..., x1,t+h] ∈ Rh,

where xi,j denotes the value of time series i at time j. The
matrix on the left are the inputs, and x1,t+1 to x1,t+h are
the outputs of our method. We define the group of related
time series x2 to xm as auxiliary series. Root mean square
error (RMSE) and mean absolute percentage error (MAPE),
as standard scale-freemetrics, are used to evaluate forecasting
performance.

B. DATA DESCRIPTIONS
As shown in FIGURE 1, our research leverages a hydrologic
dataset first documented in [31], which includes stream-
flow measurements from four Californian streams—Ross,
Saratoga, UpperPen, and SFC—alongside data from four
corresponding rain sensors. Rainfall serves as auxiliary data
within our problem framework, aiding in the prediction of
streamflow. Reflecting California’s dry summer season, our
analysis specifically targets the wetter months from Septem-
ber to May, omitting the summer months to align with the
original study’s design. These streams are pivotal for the
health of California’s freshwater ecosystems, with regulated
streamflow and water retention being crucial for support-
ing native species and habitat sustainability. Typically, these
streams exhibit stable low flows during the dry summer
months and experience pronounced surges during the wetter
winter months, reflecting the extreme values characteristic of
this long-term forecasting dataset.

TABLE 1: Input Data Statistics

Statistic / Streamflow Ross Saratoga UpperPen SFC

min 0.00 0.00 0.00 0.00

max 1440.00 2210.00 830.00 7200.00

mean 2.91 5.77 6.66 20.25

std. deviation 24.43 26.66 21.28 110.03

skewness 19.84 19.50 13.42 18.05

kurtosis 523.16 697.78 262.18 555.18

Statistic / Rainfall Ross Saratoga UpperPen SFC

min 0.00 0.00 0.00 0.00

max 0.43 4.01 7.68 8.34

skewness 18.11 68.31 413.02 406.11

kurtosis 524.93 17037.06 254167.52 312091.60

Table 1 presents various statistics for our input time series,
offering insights into their distribution characteristics such
as minimum, maximum, skewness, and kurtosis. The high
skewness and kurtosis suggest a significant departure from
the normal distribution, indicating a prevalence of extreme
values or outliers in our dataset.

C. PIECEWISE LINEAR REPRESENTATION OF TIME SERIES
Time series databases are becoming increasingly popular, and
several high level representations have been proposed, such
as Fourier Transforms [32], Wavelets [33], Symbolic Map-
pings [34] and Piecewise Linear Representation (PLR) [35].
FIGURE 2 shows an example PLR representation of a

curve using 8 segments. The piece-wise linear function can
be described as:

f (x) =


m1 · x + b1, if x ∈ [a1, b1]
m2 · x + b2, if x ∈ (a2, b2]
· · ·
mn · x + bn, if x ∈ (an, bn]
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FIGURE 1: This figure on the left illustrates that all four streams experienced significant peaks from September to May over
the years 2015-2019. Each streamflow exhibited unique fluctuations during winter due to geographical and meteorological
variations. The right side of the figure presents the relationship between streamflow and rainfall for Ross and Saratoga in January
2017. To enhance visibility, the rainfall data has been magnified by 1500 times. While there is a general correlation between the
two variables, local changes remain nonlinear. Additionally, the range of streamflow values varies without a consistent yearly
pattern, and on a finer scale of every 15 minutes, the fluctuations are even more unpredictable, posing a considerable challenge
for this study.
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FIGURE 2: Segment representation example. By dividing
the time series into multiple segments and fitting a linear
regressionmodel to each segment, PLR captures the changing
patterns and trends in the data more effectively compared to
a single linear regression model.

In this representation, the function f (x) is defined by linear
segments between each pair of points (ai, bi). The slopes
(m1,m2, . . . ,mn) and intercepts (b1, b2, . . . , bn) determine
the behavior of the function over the corresponding intervals.
PLR has been used in data mining applications for fast sim-
ilarity search [36], novel distance measures [37], concurrent
analysis of text and time series, vehicle speed estimation [38],

and change point detection [39]. PLR simplifies the repre-
sentation of time series, making their analysis more efficient
while preserving key characteristics. In essence, PLR splits a
series into several segments such that the maximum error of
each segment does not exceed a threshold [40]. However, the
PLR algorithm mainly describes the linear relationship of the
multi-segment representation and is often used as a prepro-
cessing step to reduce both the space and computational cost
of storing and transmitting time series.
In our research, inspired by PLR, we proposed a segment-

expandable encoder-decoder architecture which aims to pre-
dict segment mean values layer by layer in an expanding way,
with a goal of accurate future predictions for heavily skewed
long-term time series.

D. GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMMs) are probabilistic models
that hypothesize data generation from a mixture of several
Gaussian distributions, each characterized by its own mean
and covariance. These models are adept for scenarios where
data emerge from distinct subpopulations represented through
Gaussian statistics. Formally, a GMM is defined as aweighted
sum of M component Gaussian densities,
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FIGURE 3: The MSEED architecture comprises three core components: embedding, encoder, and decoder. Initially, the
input sequence undergoes preprocessing and sampling, with time features generated using sine and cosine transformations.
Specifically, each month-day date is encoded into a feature pair using trigonometric or cyclical encoding, capturing the 365-day
periodicity within a range of -1 to 1. Each layer’s output contributes to the loss as a regularization factor. The output sequence
length escalates from lower to upper layers, allowing varied scale information capture. The top layer’s output is then refined to
produce the final predicted sequence.

p(x|λ) =
M∑
i=1

wiN (x|µi,Σi).

Here, x represents a data point, wi are the mixture weights,
and N (x|µi,Σi) is the Gaussian distribution for component
i with mean µi and covariance Σi. The mixture weights are
constrained such that

∑M
i=1 wi = 1. GMMs are typically

optimized through the Expectation-Maximization (EM) algo-
rithm, which iteratively adjusts the parameters of all compos-
ite functions to maximize the data likelihood.

In this study, we train a three-component GaussianMixture
Model (GMM) using data from rain sensors. We then use the
Gaussian cluster with the highest mean value as a threshold
to identify the occurrence of extreme events.

E. CONTINUOUS QUANTILE VALUE
In statistics and probability, a quantile is a value that divides
a probability distribution or a set of data into equal parts.
Quantiles are cut points dividing the range of a distribu-
tion into continuous intervals with equal probabilities. They
can also be applied to continuous distributions, generalizing
rank statistics to continuous variables and facilitating extreme
value predicitons [41]. For example, if the first quantile equals
5, it indicates that 1

5 = 20% of all observations are less than
or equal to 5.

In our model, we leverage the concept of a continuous
quantile distribution where the 0.85 quantile value signifies
that 85% of the data points in a series do not exceed this
value. This approach helps us understand the behavior of the
majority while also pinpointing upper thresholds crucial for
analyzing extreme scenarios.

F. ROLLING PREDICTION
During the inference phase, we implemented a rolling predic-
tion strategy, updating streamflow forecasts every four hours.
Each cycle produced 288 data points, forecasting the next
three days in 15-minute intervals, based on the prior 1440
time steps or 15 days of data. While our system is designed
to provide reliable three-day forecasts, it places a greater
emphasis on the accuracy of the first four hours within these
predictions, as forecasts are updated every four hours.
This rolling approach is particularly practical for real-time

decision-making, which is why our study focuses on enhanc-
ing the performance of these short-term predictions within the
broader context of maintaining three-day forecast accuracy
over an annual cycle.

IV. METHODS
A. OVERVIEW OF THE MSEED FRAMEWORK
As illustrated in FIGURE3, the target time series and auxil-
iary time series are sampled after undergoing oversampling,
forming a set of sequences that pass through a feature assem-
bling layer. At each time point, this layer generates a high-
dimensional value, which is then processed by a CNN em-
bedding layer before being fed into four LSTM encoders. The
first layer of the decoder is tasked with predicting the quantile
values of several segments, achieved by processing its output
through a CNN for dimension reduction and involving it in
the Kullback-Leibler (KL) divergence loss calculation. The
high-dimensional output of this stage then serves as input for
the subsequent LSTMdecoder layer. For instance, as depicted
in FIGURE 3, the initial layer learns the quantile values for
eight segments, leading to an output of eight units, whereas
the final layer handles the entire sequence, yielding an output
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of 288 units. This scaling of responsibilities allows lower
layers to operate with simpler computational demands and
fewer trainable weights—e.g., 512 in the initial two layers and
doubling in the subsequent layers—to adequately power the
more complex tasks of the upper layers, which address longer
sequence predictions with increased variability.

Notably, we have also incorporated a short-term-enhanced
subnet that specifically aims to enhance the accuracy of the
forecast in the initial four hours of the prediction sequence.
The detailed procedure will be elaborated in subsequent sec-
tions.

B. GMM BASED OVERSAMPLING
Given the substantial volume of data, approximately 1.4 mil-
lion points, and its uneven distribution with a high presence of
outliers, a nuanced oversampling strategy is critical. Our ap-
proach needs to effectively manage the prevalence of extreme
values without compromising the integrity of normal data. In
the SEED framework, a simple classification method is used
to highlight crucial data points. However, in MSEED, due
to the multivariate nature of time series forecasting and the
indicative role of auxiliary data, particularly in our datasets,
we opt for a more tailored strategy. The auxiliary data, no-
tably rainfall, exhibits an even more skewed and imbalanced
distribution. Consequently, we employ rainfall data-driven
oversampling to capture rare but significant variations in the
dataset, which is described in Algorithm1

Require: Rain data, Number of clusters M , Extreme value
threshold factor 1.2, Step size s, Scope ν, Oversampling
ratio os

Ensure: Augmented dataset aligned with targeted
oversampling

1: Fit a Gaussian Mixture Model (GMM) to the rain data
and identify M clusters with mean values
µ1, µ2, . . . , µM

2: Compute z as the maximum mean value from the
clusters

3: for each random sampled data in the dataset do
4: if any rain value in the past and future 1.5 days

exceeds 1.2× z then
5: Flag this sample for oversampling
6: Identify the peak value within the next 3 days
7: Calculate start point for sampling as

⌊
s×ν
2

⌋
positions left of the peak

8: for i from 0 to ν with step size s do
9: Collect sample at position start point + i
10: end for
11: end if
12: end for
13: Cap the oversampled data to os% of the total training set

volume
Algorithm 1: Rainfall-Driven Oversampling Procedure

In this algorithm, we initially use GMM unsupervised
training to derive three Gaussian distributions from the rain-

fall data, considering the distribution with the highest mean
as indicative of extreme values. For training data extraction,
we randomly select a subsequence comprising 1440 historical
values and 288 values to be predicted. If a rainfall value
within 1.5 days of the prediction start point exceeds 1.2×
the highest mean, we perform oversampling. Specifically,
centered around the peak value during the prediction period,
we shift (s × v)/2 positions to the left and sample v times
with a step size of s. This method aims to address the issue
of imbalance by oversampling near extremes, enhancing the
model’s robustness.

C. FEATURE ASSEMBLING
As shown in FIGURE 4, we introduce a sophisticated feature
assembling method that significantly enhances the handling
of spatio-temporal dynamics in multivariate time series fore-
casting. This method adeptly manages data by isolating criti-
cal time points across multiple sequences.

xi+tAi+t-1…

I1 I2 … It

Ai+t

x…A…… A…

xi+2Ai+1… Ai+2

xi+1Ai… Ai+1

…… …

……

…

Feature
Assembling: FC

Tanh

FIGURE 4: Feature Assembling Method

Consider an input sequence of length t . At each time point,
say the starting one for simplicity, this approach combines
the goal value at that point, relevant values from auxiliary
sequences, and their fa preceding values, where fa is the
assembling length. These components are combined to form
a multidimensional subsequence that is distinct to that time
instance.
This multi-dimensional subsequence undergoes transfor-

mation through a dense layer integrated with a nonlinear ac-
tivation function. By assembling the self-contained represen-
tations, complex relationships across variables are extracted,
promoting the data into an enriched high-dimensional space.
This carefully processed subsequence, which serves as the

encoder’s input at each unique time point, encodes com-
plex inter-variable connections within its structure by the
purposeful aggregation of related sequence data from past
events. This capacity enables the MSEED encoder to oper-
ate efficiently without being constrained by the time align-
ment restrictions of conventional models, allowing it to focus
more intensively on delicate temporal and spatial correlations
within the data.
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D. CONVOLUTIONAL EMBEDDING LAYERS
To preprocess the input before it is fed into the LSTM en-
coder, we use convolutional embedding layers with various
kernel sizes. These diverse kernel sizes enable the extraction
of features at various spatial resolutions. Smaller kernels
excel in detecting local, granular patterns, but larger kernels
understand broader, global contexts. This tiered technique
allows each layer of the LSTMencoder to focus on processing
specific regions of the input sequence.

Furthermore, we use larger kernels with no padding for the
initial layers of our convolutional embeddings. This method
not only reduces the dimensionality of inputs for the lower-
level LSTM layers, making their computational duties easier,
but it also addresses the frequent LSTM difficulties of ex-
ploding and vanishing gradients by minimizing the sequence
length over which gradients must be transmitted.

E. DECODER ARCHITECTURE
In SEED, the mean value is used to progressively learn
characteristics of smaller segments, where each segment is
based on the outputs of the previous one, refining the neural
network’s learning through the learning of feature differences.
However, in MSEED, considering the potential strong in-
dicative nature of the auxiliary series—due to high skewness
and sudden value changes in the series—relying solely on
learning the mean might cause the model to consistently
orbit around the majority of normal values. To address this,
we shifted to using quantile values for approximation. By
adjusting this value, we can adapt to the distribution of dif-
ferent datasets without making any prior assumptions about
data distribution. This adjustment offers greater flexibility, as
the mean is merely one specific instance of various possible
quantile values.

h： h0 h1 h2 h3

LSTM LSTM LSTM LSTM

C: 

Distr0 Distr1

      8  32    96 288

Distr2

Decoder Input 

c3c2c1c0

Loss

Conv
Tanh
Conv

Conv
Tanh
Conv

Conv
Tanh
Conv

Conv
Tanh
Conv

FIGURE 5: Decoder architecture of MSEED.

For example, as illustrated in FIGURE 3, to produce a
sequence of 288 predictions, the decoder utilizes four layers.
Each layer targets a different segment length, specifically
8, 32, 96, and 288, which divide the output sequence into
increasingly granular segments. At the initial tier, the output
spans 8 segments, predicting for segments containing 36 data
points each, derived from 288/8. These predictions are then
expanded into 32 segments for the next layer, which focuses
on segments with 8 points each, achieved by replicating each
quantile value four times to form a new sequence as the next

layer input. For instance, a vector of quantiles ⟨a, b, . . . , g, h⟩
is expanded to ⟨a, a, a, a, b, b, b, b, . . . , g, g, g, g, h, h, h, h⟩.
This method of expansion continues until the final layer,
where the output directly corresponds to the full prediction
sequence, with each segment reduced to a single data point,
effectively mapping each quantile directly to its respective
value in the sequence.

This hierarchical technique effectively controls extreme
values by anticipating quantile values for sub-segments with
variable lengths. Extreme values are scattered across multiple
layers of the hierarchy, strengthening the segments that in-
clude them. As shown in FIGURE 5, to optimize each layer’s
effectiveness, we introduce a two-layer CNN following the
LSTM stack. This adaptation ensures a one-dimensional out-
put of consistent length and aids in learning the distribution
of segment quantile values within the predicted sequence.

F. SHORT-TERM ENHANCED SUBNET
While trends and distributions within the dataset shape long-
term forecasts, short-term fluctuations are significantly influ-
enced by external variables. To address this, we introduced an
auxiliary Encoder-Decoder that effectively integrates learn-
ing both short-term and long-term features. The output of the

Input   Sequences

c,h

… di+t+1 di+t+2 … di+t+hXi+1
Ai+1

Xi+2
Ai+2

Xi+t
Ai+t

O1 O2 … Oh

FIGURE 6: Short-Term-Enhanced SubNet of MSEED.

sub-network fulfills two key roles. First, it is integrated with
the outputs from the main MSEED network, enhancing the
overall prediction accuracy. Second, its capacity for short-
term prediction is utilized as a component of the loss function.
This inclusion acts as a penalty term, underscoring the critical
role of auxiliary variables in refining short-term forecast ac-
curacy. Experiments show that the short-term-enhanced net-
work is important in capturing immediate changes influenced
by external factors.

G. MULTIPLE-OBJECTIVE LOSS FUNCTIONS
Our model utilizes the Kullback-Leibler divergence loss as a
way to ensure that the predicted segment distributions align
with the ground truth segment distributions. By minimizing
the Kullback-Leibler divergence between the two distribu-
tions, the model is encouraged to iteratively improve predic-
tions of the segment distributions during the training process.
For example, in the 4-level setting described in FIGURE 3,
the regularization loss term for the ith layer can be described
as,

Li = KL (softmax(p_qi), softmax(g_qi)) ,
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TABLE 2: Effectiveness comparisons with state-of-the-art methods. Over 1600 test points in the test set were inferenced on all
datasets. The best results are in bold and the second best results are underlined.

Methods Metric Ross Saratoga UpperPen SFC

Three days Four hours Three days Four hours Three days Four hours Three days Four hours

FEDformer RMSE 6.01 3.95 6.01 4.82 3.05 2.55 23.54 17.11
MAPE 2.10 2.05 1.55 1.54 1.87 1.75 2.35 2.16

Informer RMSE 7.84 6.76 5.04 3.78 5.88 5.00 39.89 23.21
MAPE 4.05 4.71 1.43 1.54 4.10 3.99 8.64 3.61

Nlinear RMSE 6.10 2.76 5.23 4.13 1.57 0.51 18.47 5.08
MAPE 1.99 0.52 0.83 0.82 0.45 0.16 0.92 0.52

Dlinear RMSE 7.16 3.31 4.33 1.79 3.53 1.35 21.62 8.75
MAPE 3.10 1.15 1.40 0.65 2.35 0.69 2.74 1.45

LSTM-Atten RMSE 7.35 6.84 6.49 5.59 6.35 4.75 34.17 23.09
MAPE 3.74 4.10 1.80 1.79 4.76 3.67 9.90 6.25

NEC+ RMSE 9.44 2.07 1.88 0.26 2.22 0.33 17.00 2.36
MAPE 4.80 0.45 0.17 0.07 0.95 0.06 1.07 0.07

iTransformer RMSE 4.56 2.14 2.37 0.94 1.12 0.58 17.04 11.00
MAPE 0.57 0.43 0.27 0.18 0.11 0.06 0.47 0.54

DAN RMSE 4.25 2.61 1.80 0.62 1.10 0.43 15.23 3.73
MAPE 0.07 0.46 0.14 0.22 0.15 0.07 0.26 0.22

MSEED RMSE 4.21 1.57 1.70 0.27 1.03 0.28 14.81 2.99
MAPE 0.07 0.07 0.10 0.05 0.06 0.01 0.14 0.07

where p_qi is the output of the CNN layer in FIGURE 3,
which represent the predicted segment quantile values in the
ith layer, while g_qi is the vector of computed ground truth
quantile values for the segments in the ith layer. Applying
the softmax function turns both vectors of quantile values
into distributions, which then allows us to compute the KL
divergence between the two distributions.

L5 = RMSE(ŷaux [: st], y[: st]),

L6 = RMSE(ŷ, y),

Similarly, to further emphasize the importance of auxiliary
variables in short-term predictions, we use L5 to regularize
the output of short-term-enhanced sub-network ŷaux . Here, st
represents the length of the short-term interval, which is set
to 16 (4 hours) in our experiments. Then, the overall loss is
composed as,

L = λ×

(
4∑
i=1

Li + L5

)
+ L6

where yp is the output of the top layer of hierarchy encoder-
decoder, ŷ = yp + yaux , and λ is a multiplier (λ = max(−1 ·
e
epoch
45 + 2, 0.1) × 200 in our experiments) applied on the

regulation items, decreasing with each epoch. Initially, λ is
set high to guide the network towards learning polar repre-
sentations for more accurate predictions. This ‘teacher mode’
diminishes over time; λ starts at 200 and decreases to 20 as
training progresses.

V. EXPERIMENTS
To provide a comprehensive evaluation of our proposed
MSEED model, we utilized four distinct streamflow paired
with rainfall datasets and compared its performance against

eight baseline alternatives. We further assessed the effec-
tiveness of the feature assembling method, the impact of
the GMM-based oversampling policy, the quantile approxi-
mation, and the short-term-enhanced subnet via a series of
ablation studies. Our key findings are:

• Across the four datasets and two scenarios, MSEED
consistently outperforms the three second-best models
by an average of 18% to 74% in RMSE and MAPE.

• The feature assembling method effectively mines the
spatial and temporal relationships within multivariate
sequences, enhancing prediction accuracy.

• The GMM-based oversampling policy effectively cap-
tures extreme events and improves MSEED’s forecast-
ing performance.

• The inclusion of the short-term-enhanced subnet signifi-
cantly enhances short-term forecasting accuracy without
compromising long-term prediction capabilities, align-
ing the model more closely with practical operational
demands.

A. EXPERIMENTAL SETTINGS
Data for training and validation was drawn from January
1988 to August 2021 and we aim to accurately project the
streamflow for the subsequent year (September 2021 to May
2022), with predictions made every four hours. Each predic-
tion estimates the upcoming 3 days based on the preceding 15
days of data. Since the sensors measure the streamflow and
precipitation every 15 minutes, we are attempting a lengthy
forecasting horizon (h = 288).
During the inference phase, we predicted streamflow using

rolling predictions at intervals of 4 hours. Each prediction,
however, inferred 288 data points, i.e., the predicted stream-
flow over the next 3 days at 15 minute intervals. To make
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FIGURE 7: Comparative examples with the best baselines reveal that, while the DAN and NEC+ models generally capture the
overall trend of the ground truth, MSEED excels in predicting streamflow values with greater accuracy, both in the short and
long terms.

these predictions, we utilized the previous 15 days of data,
equivalent to 1440 time steps. Prior to model training, all time
series underwent pre-processing steps including a logarithmic
transformation, xi = log(1 + xi) ∀i, and standardization
(subtracting the mean and dividing by the standard devia-
tion). In order to obtain the final inference predictions, we
performed post-processing by reversing the standardization
and logarithmic transformations.

In our models, we utilized a 4-layer MSEED architecture,
where the first two layer consisted of a 1-layer LSTM and
the top two layer consisted of a 2-layer LSTM. After exper-
imenting with different layer widths in [256, 300, 320, 360,
384, 400, 512], we found the best results at ( CNN_width,
FC_width, LSTM_width) of (256, 512, 384), (400, 512, 300),
(384, 384, 360), and (384, 512, 320) nodes per layer for the
Ross, Saratoga, UpperPen, and SFC datasets, respectively. In
the embedding stage, we employed five CNN layers, each
generating 384 channels. The kernel sizes for these layers
were set to 4, 3, 2, and 2, respectively, from the bottom to the
top layer. The quantile value is 0.9 for UpperPen and 0.85 for
the other three datasets. The best feature assembling length fa
for all sensors was 60.

All models were trained using PyTorch 1.11.0+cu10.2
on a Linux server running Ubuntu 20.04.6. The server was
equipped with a 12-core Intel(R) Core(TM) i9-7920X CPU,
128 GB RAM, and 4 NVIDIA RTX 2080 Ti GPUs. However,
the algorithm only used one GPU when training the model or
performing inference. The code for our method will be made
freely available upon publication of the article.

B. BASELINE METHODS
We compared our proposed method, MSEED, against a wide
array of state-of-the-art time series and hydrologic prediction
methods, introduced earlier in the related work section:

• FEDFormer [7], which combines Transformer with the
seasonal-trend decomposition methods, has been shown
to bemore efficient than the standard Transformer, yield-
ing improved results for long-term series forecasting;

• Informer [6], a transformer-style model for long-term
time series prediction with a prob-sparse self-attention
mechanism;

• NEC+ [42], a group of LSTM-based models that holds
the best performance for hydrologic time series predic-
tion in the presence of extreme events;

• NLinear [8], an effective linear model with one order
difference preprocessing for long-term time series;

• DLinear [8], a trend decomposed linear model for long-
term time series prediction;

• Attention-LSTM [43] serves as a state-of-the-art multi-
variate model in hydrology;

• iTransformer [9] achieves state-of-the-art performance
on a variety of challenging multivariate time series pre-
diction;

• DAN [31] learns and merges rich representations to
adaptively predict streamflow.

C. MAIN RESULTS
The experimental results, which are presented in Table 2,
showMSEED’s superior performance in multivariate time se-
ries forecasting, particularly under high value scenarios. Par-
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FIGURE 8: Ablation comparative examples with the SEED.

ticularly, MSEED regularly outperforms comparable mod-
els overall on all metrics, including some significant im-
provements on some specific datasets. For example, in 3-
day prediction, when compared to DAN, MSEED obtains an
impressive 60% improvement in MAPE for the UpperPen
dataset, and when compared to NEC+, it improves RMSE by
more than 90% and MAPE by 98% for the Ross dataset. Fur-
thermore, MSEED outperforms iTransformer by more than
49% in RMSE and 67% in MAPE for the Saratoga dataset.

Overall, across the four datasets and two scenarios,
MSEED improves 18%, 35%, 21% on RMSE and 65%, 74%
and 56% on MAPE on average compared to NEC+, iTrans-
former, and DAN, respectively.

Transformer-based methods such as FEDFormer and In-
former, while effective in some scenarios, struggle signif-
icantly with datasets exhibiting large variances and fail to
adapt effectively to extreme values. In contrast, models tai-
lored specifically for hydrologic data forecasting, such as
NEC+ and DAN, though better than more generic models,
still fall short of MSEED’s performance. Fully connected
networks like NLinear and DLinear, which decompose data
into main trends and residuals, perform better than some
Transformer-based methods in rolling prediction scenarios
but do not achieve the high accuracy that MSEED does.

D. VISUAL ANALYSIS
FIGURE 7 displays forecasts for MSEED and the follow-
ing two top-performing models. As illustrated in the im-
age, MSEED’s predictions closely match the ground truth,
especially in datasets with significant oscillations. Notably,
MSEED better catches short-term oscillations and severe
values than DAN, as indicated by lower RMSE values.
This improved performance is primarily due to the embed-
dings’ broad expressive capabilities, along with the attention
method.

The feature assembling method and the Short-Term En-
hanced SubNet in MSEED successfully maintain critical
inter-variable relationships and intra-variable temporal se-
quences, which are essential for good prediction.

VI. ABLATION STUDIES
To examine the effects of our architecture components, we
conducted a group of experiments.

TABLE 3: Comparison With Different os

Metrics/ 3-day 4-hour

os RMSE MAPE RMSE MAPE

0 4.44 0.22 2.33 0.15
10% 4.32 0.18 1.63 0.07
20% 4.21 0.07 1.59 0.07
30% 4.28 0.15 1.73 0.16

A. EFFECT OF THE OVERSAMPLING POLICY

To evaluate the impact of the oversampling policy, we con-
ducted a grid search on the combination values of s and v,
aiming to capture more information from the more important
sampled sequences. This approach allowed the models to
effectively adapt to the unique characteristics of the data
and extract valuable insights. We obtained the best results at
(s, v) of (1,2), (1,3), (2,4), and (3,4) for the Ross, Saratoga,
UpperPen, and SFC datasets, respectively.
Further, based on the optimal (s, v), we initially trained the

models without any oversampling, i.e., os = 0. TABLE 3
shows the RMSE of the inference on the Ross test sets. We
observed that increasing the os had a positive impact initially.
However, there was a point of diminishing returns, where
further increasing the os did not lead to a significant decrease
in RMSE. This suggests that there is an optimal threshold os
value beyond which the policy’s effectiveness plateaus.
It is worth noting that the effect of this policy was variable

on different datasets, likely due to the difference in variance.

B. EFFECT OF THE FEATURE ASSEMBLING METHOD

By holding the optimal settings for Ross constant and varying
one parameter at a time, we assessed the impact of two critical
factors. Initially, we altered the assembling length from 20 to
100. As shown in FIGURE 9, it is evident that the assem-
bling length plays a role in unveiling the spatial relationships
among multivariate data, with a length of 60 yielding the
best results for the 3-day forecast. However, too short an
assembling length fails to provide enough hints to uncover
spatial relationships among different time series, while too
long a length leads to information redundancy, negatively
impacting prediction accuracy.
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FIGURE 9: RMSE on Ross datasets given assembling length
s ∈ {20, 40, 60, 80, 100}, regularization quantile 100 × q ∈
{65, 75, 85, 95, 100}.

C. EFFECT OF THE APPROXIMATION QUANTILE VALUES
Subsequently, while still keeping other values fixed, we
changed the quantile values used for progressive approxima-
tion in the loss regularization item. As shown in FIGURE 9,
the optimal result was achieved at 0.85. Higher quantile set-
tings guide the model to learn more about extreme events,
particularly when the quantile is set to 1, pushing the seg-
ment mean towards maximum values. Although this offers a
stronger alert for predicting extreme events, it compromises
overall forecasting accuracy. On the other hand, a lower quan-
tile, while representing the majority of cases, struggles to aid
in predicting extreme values.

D. EFFECT OF THE MULTIVARIATE INPUT
To assess the effectiveness of introducing multivariate capa-
bilities and the specifically designed MSEED, we compared
SEED and MSEED across all dimensions in all datasets. As
seen in the TABLE 4, while both models perform similarly in
3-day forecasts,MSEED clearly outperforms SEED in 4-hour
scenarios. This improvement is attributed to the inclusion of
auxiliary variables and the model’s successful exploitation
of their nonlinear relationships. For instance, in our datasets,
rainfall is a stronger indicator of streamflow changes within a
few hours rather than over three days. The model leverages
this fact to excel in rolling predictions, showcasing its ad-
vantage in practical applications. This characteristic is also
evident in FIGURE 8; although SEED’s 3-day RMSE is
slightly better,MSEED’s forecast curve is noticeably superior
in the initial hours, aligning more closely with real-world
application needs.

TABLE 4: Comparison With SEED

3-day 4-hour

Metrics RMSE MAPE RMSE MAPE

Ross

SEED 4.23 0.11 1.64 0.07
MSEED 4.21 0.07 1.57 0.07

Saratoga

SEED 1.67 0.09 0.28 0.06
MSEED 1.70 0.10 0.27 0.05

UpperPen

SEED 1.07 0.10 0.32 0.05
MSEED 1.03 0.06 0.28 0.01

SFC

SEED 14.44 0.20 6.26 0.07
MSEED 14.81 0.14 2.99 0.07

E. EFFECT OF SHORT-TERM-ENHANCED SUBNET
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FIGURE 10: Examplesof the Short-Term-Enhanced SubNet
effect.

To validate the effectiveness of the Short-Term Enhanced
Subnet, we conducted experiments by removing this subnet
along with its associated loss regularization item, relying
solely on the output from the hierarchical encoder-decoder.
In these tests, the RMSE for a three-day forecast on the SFC
dataset increased from 14.81 to 15.69, while the RMSE for
rolling predictions jumped significantly from 2.99 to 7.39.
FIGURE 10 clearly shows that both short-term and long-
term forecasting accuracies are adversely affected without the
SubNet, especially the short-term predictions.
The inference examples of the model without SubNet are

represented by the green line in FIGURE 10. According to
these findings, the MSEED model’s prediction accuracy may
suffer if the SubNet is removed.
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VII. CONCLUSION
The Multivariate Segment-Expandable Encoder-Decoder
(MSEED) model introduced in this study significantly ad-
vances the forecasting of complex, skewed time series. By
integrating segment representation learning with a multi-
tiered encoder-decoder framework, MSEED effectively cap-
tures intricate dynamics across various scales, enhancing both
accuracy and granularity of predictions. Its novel compo-
nents, including the feature assembling layer, a Short-Term-
Enhanced Subnet, and an auxiliary-focusedGaussianMixture
Model (GMM)-based sampling strategy, enable it to adeptly
handle both long and short-term fluctuations and extreme
events, areas where traditional models often falter. Tested
across diverse datasets, MSEED consistently outperforms
existing multivariate models, demonstrating substantial im-
provements in multivariate time series forecasting accuracy.
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