Biomedical AI in the Age of ChatGPT

Exploring advancements, limitations, and the enduring role of traditional machine learning in biomedical applications.

David C. Anastasiu Santa Clara University

Understanding LLMs in Biomedicine

Advanced AI Architecture

()

Q

A¥

Transformer models process all words simultaneously, understanding context efficiently.

Self-Attention Mechanism

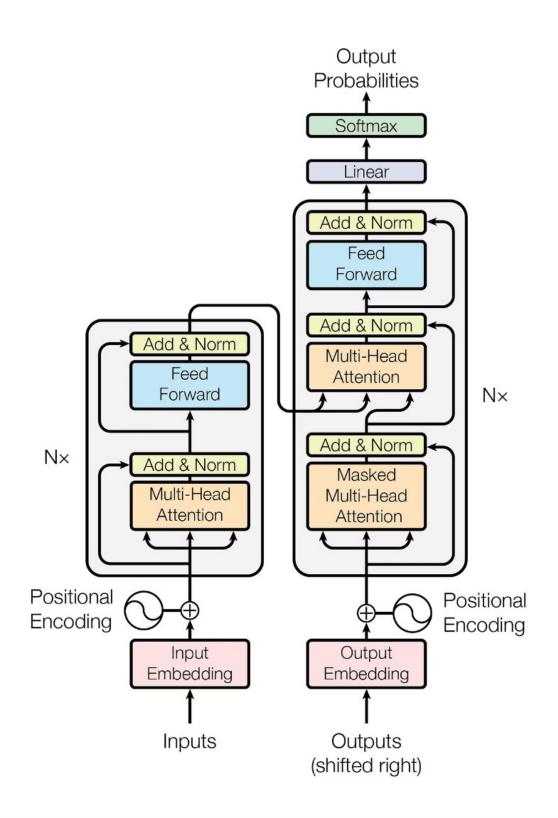
Models weigh word importance, grasping complex relationships in biomedical text.

Statistical Pattern Learning

LLMs predict text based on patterns from vast training datasets.

Natural Language Processing

Enables understanding of biomedical literature and patient data, but can understand more than just text.



LLM Advancements in Biomedicine

Clinical Decision Support

Improved diagnosis accuracy and treatment planning

Drug Discovery

Predicting compound properties, accelerating development

Medical Research

Efficient literature retrieval and organization

Genomics & Proteomics

Analyzing biological sequences with unprecedented accuracy

Electronic Health Record Analysis

Customized models address healthcare language nuances for better outcomes.

Clinical Decision Support Applications

Disease Diagnosis

LLMs analyze patient data and imaging results with improved accuracy and speed.

Treatment Planning

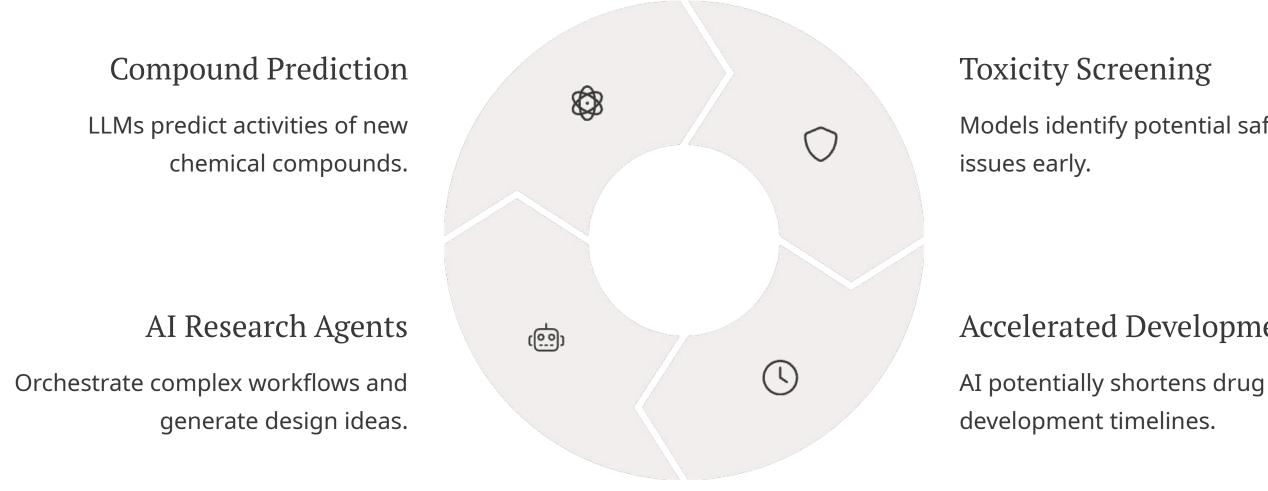
AI suggests options based on latest medical guidelines and patientspecific information.

Medical Literature Navigation

Clinicians access current research quickly, ensuring evidence-based treatments.

These tools assist healthcare professionals, enhancing patient care while saving valuable time.

Revolutionizing Drug Discovery

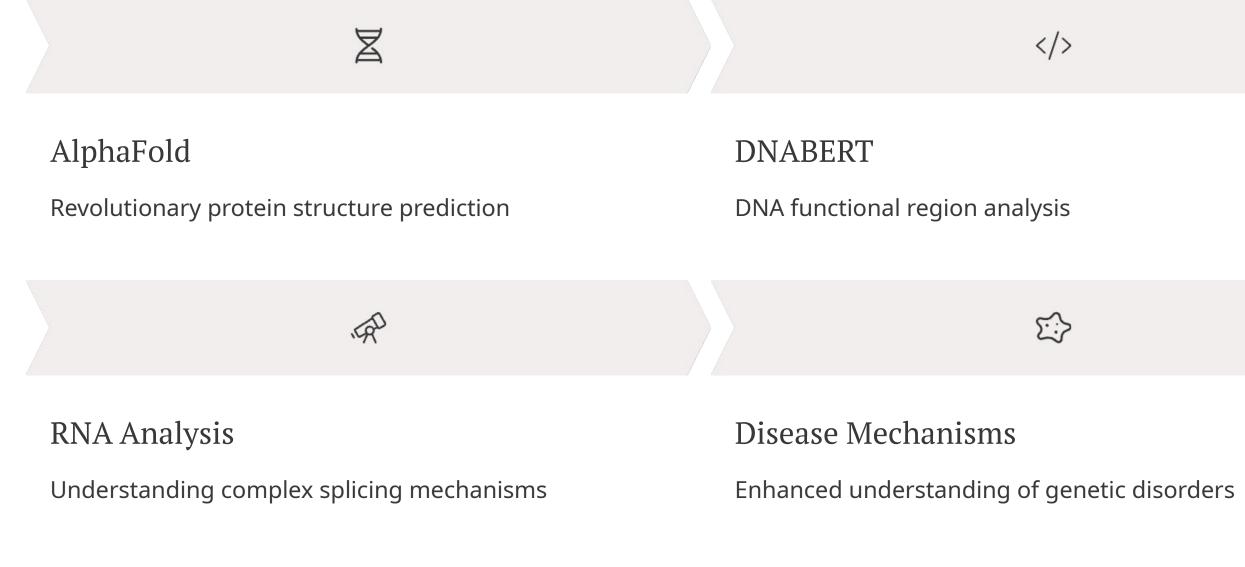


These advances may significantly reduce costs and time in pharmaceutical development.

Models identify potential safety

Accelerated Development

Genomics and Proteomics Applications



LLMs analyze the intricate language of biological sequences with unprecedented accuracy.

Notable Biomedical LLMs

Model Name	Key Features
MediSwift	Sparse biomedical pre-training
BioMedLM	2.7B parameters, PubMed trained
BioMistral	Open-source biomedical focus
CEHR-GPT	Clinical text generation
AlphaFold	Protein structure prediction

Primary Applications

Information retrieval, QA

Biomedical question answering

Various biomedical NLP tasks

Reports, documentation

Drug discovery, genomics

Multimodal LLMs

80%

Data Types

2 +

Diagnostic Mirror

MLLMs integrate text, images, and other modalities.

Processes information similar to human clinicians.

Potential diagnostic enhancement by analyzing multiple data sources.

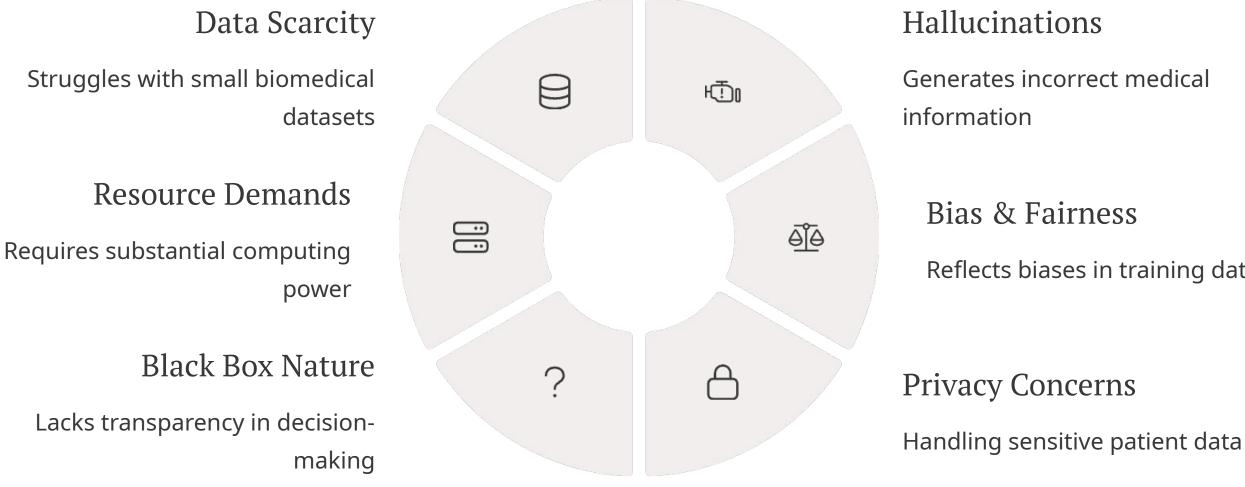
Multimodal LLMs represent the next frontier, combining patient symptoms with radiological images for comprehensive analysis.

This mirrors how clinicians naturally process information, potentially revolutionizing medical diagnostics.

3x

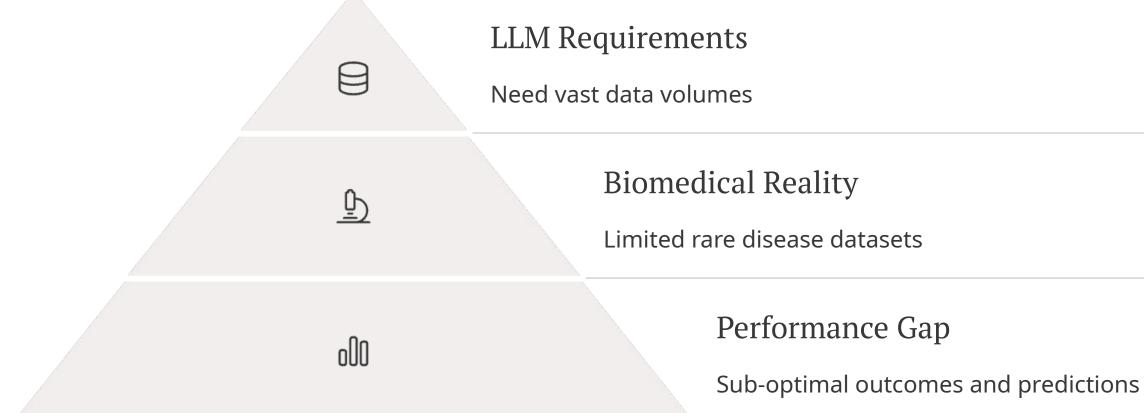
Improved Accuracy

LLM Limitations in Biomedicine



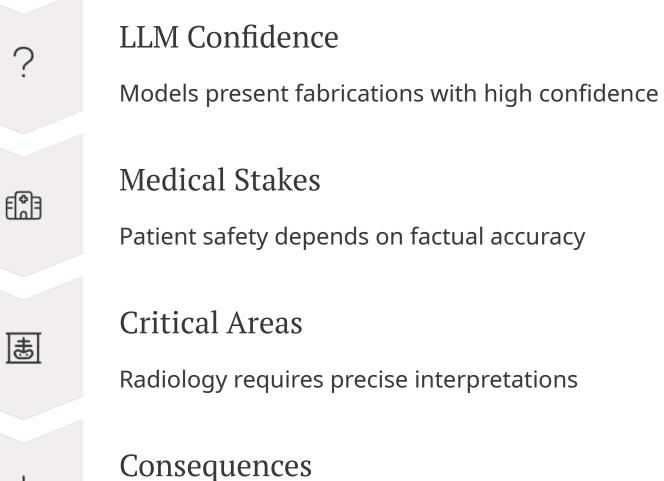
Reflects biases in training data

Data Scarcity Challenges



Small, specialized datasets common in biomedicine contradict LLMs' hunger for massive training data. Rare diseases and niche clinical trials suffer most.

The Hallucination Problem



Potential for misdiagnosis and harm

Resource Constraints

Computational Demands

- Requires high-end GPUs
- Massive memory requirements
- Significant power consumption

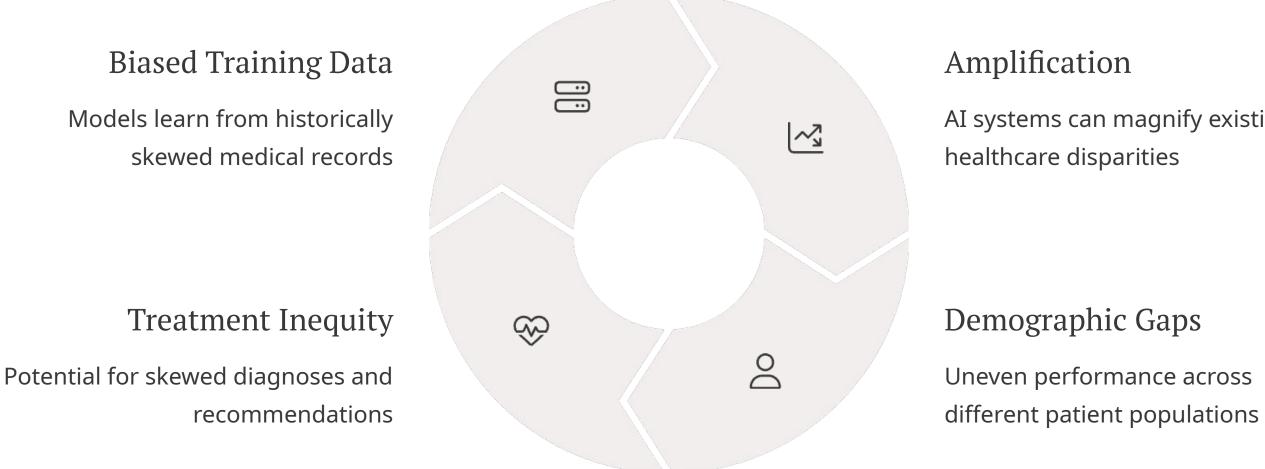
Healthcare Realities

- Limited IT budgets
- Aging infrastructure
- Competing resource priorities

Implementation Barriers

- Technical expertise gaps
- Maintenance challenges
- Uneven global access

Bias and Fairness Issues



AI systems can magnify existing

The Black Box Problem

Opacity Challenge

LLMs operate as "black boxes" with hidden decision processes. Clinicians cannot trace reasoning paths through billions of parameters.

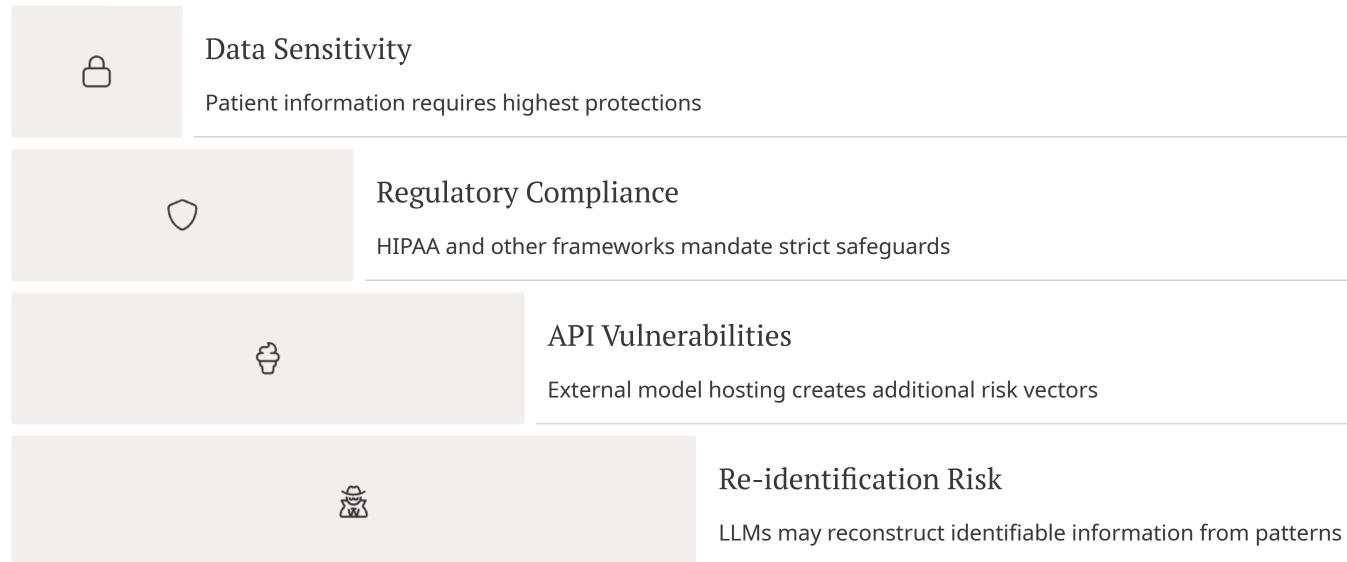
Trust Deficit

Healthcare requires explainable decisions. Medical professionals need transparent rationales for AI suggestions. Trust develops from understanding.

Regulatory Hurdles

Healthcare regulators increasingly demand AI transparency. Current LLM architectures struggle to meet explainability requirements in medical contexts.

Privacy and Security Concerns



Mitigation Strategies for LLM Limitations

For Data Scarcity

- Fine-tuning on domain data
- Data augmentation techniques
- Transfer learning approaches

For Hallucinations

- Retrieval-Augmented Generation
- Prompt engineering
- Factual fine-tuning

For Bias & Fairness

- Diverse training data
- Bias detection techniques
- Continuous monitoring

For Interpretability

- Explainable AI methods
- Hybrid model approaches
- Transparency frameworks

Traditional ML vs. LLMs: Key Differences

Traditional ML

- Effective with small datasets
- Highly interpretable
- Lower computational demands
- Established methodologies

Large Language Models

- Require massive training data
- "Black box" decision making
- Resource-intensive operation
- Emerging best practices

Transparency and Trust

Clear Decision Paths

Decision trees provide visible logic behind each prediction. Clinicians can trace exactly how conclusions were reached.

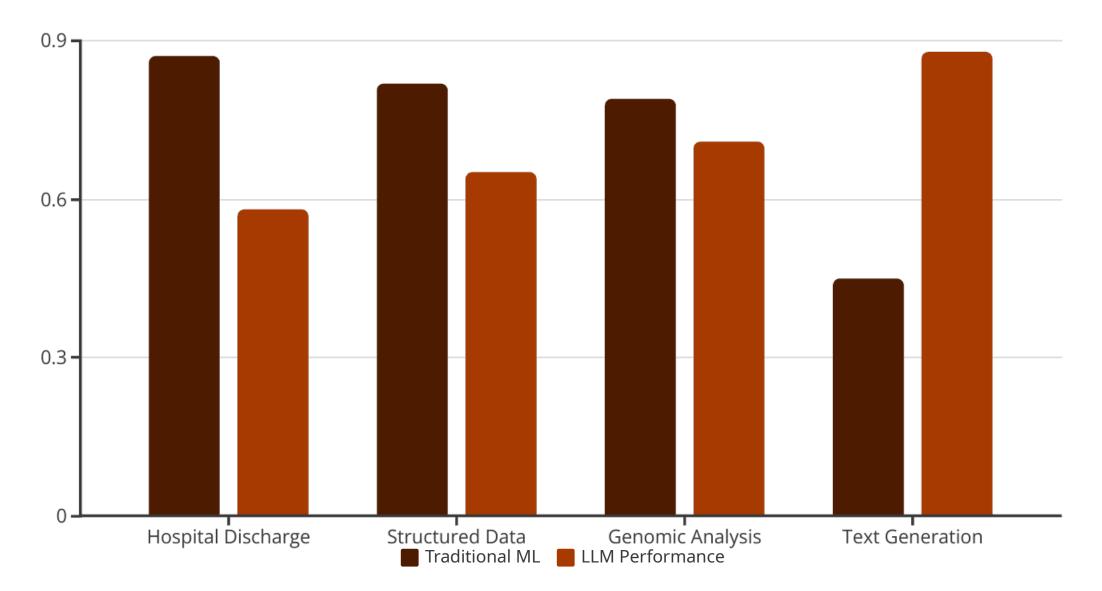
Regulatory Compliance

Healthcare requires explainable AI models. Traditional ML offers auditability that LLMs often lack.

Building Clinical Trust

Medical professionals adopt tools they understand. Transparent models increase implementation rates.

Performance Comparison



Traditional ML outperforms LLMs in prediction tasks with structured data, while LLMs excel at text generation and understanding.

Use Case Selection Guide

Choose Traditional ML When:

- Limited data available
- Structured tabular data
- Need for interpretability
- Resource constraints
- Well-defined prediction tasks

Choose LLMs When:

- Processing natural language
- Generating human-like text
- Analyzing unstructured data
- Complex pattern recognition
- Multimodal integration needed

The Future: Synergistic Approach

The future of biomedical AI lies in combining LLMs and traditional ML to create more robust, reliable, and ethically sound solutions that ultimately benefit human health.