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Abstract

With computational power expanding on the edge and deep

learning models now capable of real-time inference, it is

time to rethink our approach to anomalies. Instead of

waiting for anomalies to happen and then detecting them,

why not predict them before they occur—and prevent them

altogether? Imagine a system that can look at the data

at time t and warn us that something might go wrong

at t + h. If h is long enough, we can act—automatically

or semi-automatically—to stop the anomaly in its tracks.

Of course, that might mean changing some people’s plans,

and when the anomaly does not happen (because it was

prevented), they might wonder why those changes were

necessary. That is why these systems need to explain

themselves—showing us, visually or descriptively, what they

thought was about to go wrong. In this paper, we explore

the challenges and opportunities of building real-time video

anomaly anticipation systems and share a vision for how

these tools could make a real-world impact.

1 What is the Blue Sky Idea?

Real-time event detection is essential for preventing
potential catastrophes. Video surveillance systems,
now ubiquitous in cities, workplaces, and retail envi-
ronments, present a valuable opportunity to predict
and prevent anomalies before they occur. This ca-
pability spans multiple domains, including intelligent
transportation systems (ITS), online education, smart
homes, and smart cities [17]. Video anomaly detec-
tion (VAD) involves identifying abnormal events from
video sequences, such as detecting a traffic collision us-
ing freeway surveillance cameras. Thus far, efforts in
VAD have focused primarily on accurately identifying
anomalies and, to a lesser extent, reducing the delay
between an anomaly and its detection. However, these
approaches identify anomalies only after they occur, re-
lying on features in the video that signal an abnormal
event. With advancements in AI hardware and model-
ing, we now have the means to develop tools that can
accurately predict future anomalies in real-time, antici-
pate these events, and offer clear explanations for their
predictions. It is time to push the boundaries of VAD

∗Computer Science and Engineering, Santa Clara University,
Santa Clara, CA, USA.

into the transformative domain of explainable anomaly
anticipation.

2 Why is it a Blue Sky Idea? Why should the
community ponder over it? Why now?

Ideal video anomaly detection is defined as the process
of detecting and tracking abnormal events online and
in real time [12]. Online video analysis methods are al-
gorithms that process video streams incrementally, pro-
ducing output as new frames arrive. In contrast, offline
(or batch) methods require access to the entire input
data before generating any output. While many state-
of-the-art VAD methods achieve high detection accu-
racy, they are offline methods that rely on extracting
complex visual features, making them unsuitable for
real-time applications [24].
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Figure 1: Video anomaly detection (VAD) vs. anticipation
(VAA). ft is the frame at time t, α is the anticipation time

horizon, s(), s
′
() are anomaly scores. Red squares denote

ground truth anomalies.

A fundamental limitation of VAD is that it requires
anomalies to occur before they can be detected. We pro-
pose a shift in focus toward video anomaly anticipa-
tion (VAA), which aims to predict whether an anomaly
will occur within a future time horizon, such as 10 sec-
onds [1]. As illustrated in Figure 1, VAD determines
whether the current frame contains an anomaly (s(t) =
1 or 0), while VAA predicts whether any of the next α
frames will exhibit an anomaly (s(t+1 : t+α) = 1 or 0).
Additionally, we propose to detect when the anomaly
will occur, for instance predicting s

′
(t) = 3, meaning

the anomaly is expected to happen three frames into
the future, and its confidence level. In an analysis we
performed on the Woven Traffic Safety dataset [10], we
found that independent human annotators could predict
an accident that was about to occur 2.76 seconds ahead
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of time on average. With sufficiently accurate predic-
tions and a long enough anticipation horizon, proactive
measures could be deployed to prevent the anomaly.

A crucial research question here is, What is the
maximum anticipation horizon, α, that allows accurate
anomaly prediction with minimal false positives and no
false negatives for various anomaly types?.

Existing methods for describing anomalies also have
significant limitations. These approaches typically an-
alyze the anomaly during or after it has occurred, re-
lying on frames from the anomalous period to generate
descriptions. Many state-of-the-art techniques leverage
Vision Language Models (VLMs) [5, 21, 20] to construct
a narrative based on identified scene facts. However,
these methods focus on what has happened. Instead,
we propose describing what might happen if the pre-
dicted anomaly were to occur.

Another key research question here is, Are there
sufficient clues in the scene at time t to accurately
describe the scenario at future time t + β when the
predicted anomaly might occur (β = 3 in our example)?

Now is the ideal time to address VAA due to
advancements in AI modeling, edge computing, and
video surveillance technology, which enable real-time
analysis and prediction. The widespread deployment
of video systems across industries, coupled with the
growing need for proactive safety solutions, makes it
feasible to develop methods that can prevent accidents
and reduce risks by anticipating anomalies before they
occur.

3 Does the Blue Sky Idea challenge our current
set of assumptions or does it take a bold
approach to solve a wicked problem?

The Blue Sky Idea of VAA takes a bold approach
to solve a wicked problem. It challenges the current
assumption that anomaly detection should occur only
after the event has happened, by shifting the focus
to predicting and preventing anomalies in real time.
This requires rethinking traditional methods of video
analysis, expanding the role of AI and edge computing,
and addressing complex challenges like explainability,
inference efficiency, and real-world deployment. The
idea pushes the boundaries of existing technologies to
not only detect but anticipate and intervene before
catastrophic events occur.

The need for VAA solutions is most pressing in sce-
narios where predicting the future with sufficient lead
time could allow for interventions to prevent anomalies.
However, not all anomalies lend themselves to this ap-
proach. For instance, a catastrophic boiler failure may
not be predictable unless clear warning signs, such as
visible stress fractures, are present beforehand. Given

the vast range of possible anomalies, efforts should pri-
oritize high-reward scenarios where real-time anticipa-
tion could feasibly lead to prevention. One prominent
example involves motion-based anomalies, such as a
vehicle veering onto a sidewalk, a traffic accident, or a
forklift colliding with shelving in a warehouse.

4 What are the challenges?

Several challenges, described below, must be overcome
to unlock the full potential of VAA methods.

4.1 VAA Datasets Current general VAD datasets,
such as UCF-Crime and XD-Violence, primarily sup-
port weakly- or semi-supervised VAD models, while
datasets like Iowa DOT [14], CADP, and SUTD-
TrafficQA focus on vehicle accident detection or antic-
ipation, often using dashcam videos instead of surveil-
lance inputs. These datasets are limited by their nar-
row representation of anomaly types and lack of diverse
recording conditions (e.g., variations in time, weather,
and season).

A key research question is whether VAD datasets
can be used to train and evaluate models that solve the
VAA problem. It may be possible to transform exist-
ing VAD datasets into VAA datasets. For instance,
datasets like NWPU Campus [1] include anomaly times-
tamps that could support VAA research but lack ex-
plicit anticipation labels, while WTS [10] is limited to
pedestrian-vehicle accidents and lacks precise anomaly
start annotations.

Another avenue of research would be leveraging re-
cent advances in VLMs and CGI simulations to directly
generate VAA datasets. Synthetic data generation of-
fers a complementary approach, addressing the limita-
tions of real-world datasets and enabling the creation
of rare or hazardous scenarios. Technologies such as
NVIDIA Omniverse Replicator [16] allow for generat-
ing diverse, physically accurate data for training DNN
models. These virtual environments can simulate rare
anomalies, such as traffic or warehouse accidents, that
are impractical to collect in real-world settings. A key
research question is whether models trained on synthetic
data can generalize effectively to real-world scenarios.

4.2 VAA Models Early VAD methods relied on ex-
tracting features from previous frames to model normal-
ity or employed reconstruction- and prediction-based
approaches, using autoencoders or frame prediction to
identify anomalies via reconstruction or prediction er-
rors [15]. Some methods incorporated optical flow to
enhance frame prediction [11, 22], while Cao et al. [1]
extended these to VAA by estimating future-frame pre-
diction errors.
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The key research question here is whether there is
enough signal in the data before the anomaly has oc-
curred to anticipate it. In the case of motion-based an-
ticipation models, this may be possible through accu-
rate prediction of future object motion tracks, similar
to some works in traffic accident anticipation that use
LSTMs, GRUs, and GNNs to determine future colli-
sions [9]. Is it possible to extend these models to solve
the general anomaly anticipation problem?

4.3 Real-Time VAA To enable real-time preven-
tion of anomalies, VAA models must operate at the
edge, close to the cameras capturing the scenarios. It
is essential to explore various methods that enhance in-
ference efficiency while maintaining model effectiveness.
One such approach is the quantization of weights and
activations [18], which involves reducing model weights
to lower numerical precision. This technique signifi-
cantly decreases model latency and size with minimal
impact on accuracy. Achieving extreme low-precision
quantization (e.g., fewer than 3 bits per parameter)
often requires data-dependent approaches [7], which
leverage a small calibration dataset to determine opti-
mal quantization parameters. Recent advances in LLM
quantization [13] have pushed these limits further, re-
stricting weights to +1, 0, and -1. This setup is particu-
larly well-suited for specialized hardware, such as Field
Programmable Gate Arrays (FPGAs), where inference
execution can be highly optimized.

Numerous techniques have been proposed to en-
hance DNN inference performance on FPGAs, including
approximate computing, stochastic computing, pipelin-
ing, quantization, and efficient mapping of binarized
neural networks to FPGA hardware [8]. Recent re-
search has also emphasized FPGA-based inference for
resource-constrained scenarios, focusing on applications
such as LLMs [3], multi-modal foundation models, and
Mixture of Experts (MoEs), including vision-specific
MoEs [6]. Once accurate anticipation models proposed
in Section 4.2 have been developed, the key research
question here is, What are the best ways to improve their
efficiency for optimum real-time inference?

4.4 VAA Prevention Once an anomaly is antici-
pated with sufficient confidence, immediate action must
be taken to prevent it. Alerts can be delivered to rel-
evant actors through visual or audio signals. For in-
stance, visual alerts such as flashing lights or highlighted
warnings can be displayed on monitors, while audio
alerts like alarms or instructions can guide operators
to take corrective actions. In environments like ware-
houses or transportation systems, these alerts can be
crucial for preventing accidents.

In automated environments, such as intelligent
transportation systems (ITS) or autonomous vehicles,
vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) communication can enable coordinated responses.
For example, if an accident is predicted, nearby vehicles
can receive alerts to adjust speed or change trajectory to
avoid collisions. In extreme cases, automated systems
could intervene directly by triggering braking or rerout-
ing traffic to prevent the anomaly from occurring.

The challenge lies in ensuring these alerts and inter-
ventions are both timely and accurate, minimizing risks
and maximizing safety. Real-time, context-aware pre-
vention is key to avoiding incidents while maintaining
the safety of all involved. As the best prevention tech-
niques are likely to depend on the type of anticipated
anomaly, a key research question here is how to choose
the most effective means of interacting with the actors
in the scene to effectively prevent the anomaly.

4.5 Explainable VAA While some methods can de-
tect anomalies in video data, they often operate as
black-box systems without offering explanations. Ex-
plainability is defined as “the capacity to clarify or pro-
vide straightforward meaning to humans in easily under-
standable terms” [23]. Current approaches explain de-
tected anomalies at a high level, such as anomaly local-
ization using attention-based models [2], action recog-
nition through reasoning-based models [4], or relying
on intrinsically interpretable methods [19]. Prediction-
based methods that forecast frames or flow maps in
video clips may also be applicable to the VAA problem.

Recent anomaly description methods [5, 21, 20] use
LLMs and VLMs like LLaVA, Qwen-VL, and Video-
LLaVA. These models process several video frames
from the anomaly, encoded by a VLM encoder such
as CLIP ViT-L/14, and generate textual descriptions
of the anomaly scenario. Some methods enhance these
descriptions through an LLM. A key research question
here is whether the signals used to effectively anticipate
an anomaly are sufficient to also explain it.

5 What will success look like?

Although our understanding of anomaly anticipation is
still in its early stages, the potential benefits of this tech-
nology are profound. Success in video anomaly antici-
pation will be characterized by the development of real-
time, explainable systems capable of accurately predict-
ing anomalies before they occur, allowing for proactive
interventions. These systems will operate with minimal
latency, ensuring that predictions are made with enough
lead time to prevent incidents. Additionally, success will
involve creating datasets and AI models that can gen-
eralize across different environments and scenarios, as
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well as implementing robust alerting mechanisms that
effectively communicate predictions to relevant actors
for timely action. Ultimately, the ability to prevent ac-
cidents and reduce risks in various domains, such as
transportation and smart cities, will demonstrate the
transformative impact of this technology.
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