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Abstract. Multivariate time series (MTS) forecasting is vital in fields like weather,
energy, and finance. However, despite deep learning advancements, traditional
Transformer-based models often diminish the effect of crucial inter-variable re-
lationships by singular token embedding and struggle to effectively capture com-
plex dependencies among variables, especially in datasets with rare or extreme
events. These events create significant imbalances and lead to high skewness,
complicating accurate prediction efforts. This study introduces PFformer, a position-
free Transformer-based model designed for single-target MTS forecasting, specif-
ically for challenging datasets characterized by extreme variability. PFformer in-
tegrates two novel embedding strategies: Enhanced Feature-based Embedding
(EFE) and Auto-Encoder-based Embedding (AEE). EFE effectively encodes inter-
variable dependencies by mapping related sequence subsets to high-dimensional
spaces without positional constraints, enhancing the encoder’s functionality. PF-
former shows superior forecasting accuracy without the traditional limitations
of positional encoding in MTS modeling. We evaluated PFformer across four
challenging datasets, focusing on two key forecasting scenarios: long sequence
prediction for 3 days ahead and rolling predictions every four hours to reflect
real-time decision-making processes in water management. PFformer demon-
strated remarkable improvements, from 20% to 60%, compared with state-of-
the-art models.

Keywords: Deep Learning · Time Series Forecasting · Hydrology · Transformer.

1 Introduction

Effective time series forecasting is critical for strategic decision-making in many in-
dustries, including meteorology [5, 24], financial markets [14, 12], and energy manage-
ment [8]. Advancements in deep learning have resulted in a wave of complex multivari-
ate time series (MTS) models that have greatly improved forecasting accuracy by utiliz-
ing intricate data relationships, especially where sporadic but major extreme events [20,
21] such as flash floods and droughts exist.

After its immense success in language processing and computer vision, the Trans-
former model [15], known for its strong capabilities in depicting pairwise dependencies
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in sequences, is now making significant inroads into time series forecasting [23, 25, 19].
However, these models typically compress multiple variables of the same timestamp
into a single token, potentially obscuring vital multivariate correlations. As highlighted
by Liu et al. [9] and Zhang and Yan [22], data points within the same timestamp often
represent distinct physical phenomena and are measured inconsistently. This embed-
ding into a singular token can erase crucial inter-variable relationships, and the localized
receptive field of a single timestamp may not capture beneficial information effectively,
especially when dealing with events that are not aligned in time.

Moreover, the application of permutation-invariant attention mechanisms, which
fail to consider the importance of sequence order, may not be suitable for analyzing
temporal data where order significantly impacts series variations. Consequently, these
flaws can limit the Transformer’s capacity to represent and generalize across various
multivariate time series effectively. Even with closely connected multivariate inputs
available, like the streamflow and rain time series, the Transformer struggles to use
these correlations to accurately predict time series with extreme events [6].

In response to these challenges, we propose PFformer, a position-free Transformer
variant for adaptive multivariate time series forecasting. We evaluated PFformer on
four separate datasets and found that PFformer significantly outperforms state-of-the-
art baselines by 20% to 60%. Additionally, we carried out several ablation studies to
understand the effects of specific design decisions.

2 Related Work

To fully leverage auxiliary variables in prediction, multivariate time series studies have
utilized various algorithms, from traditional methods like vector autoregression and
multivariate exponential smoothing to advanced deep learning methods. Vector autore-
gressive (VAR) models [10] are statistical models that assume linear dependencies both
across different dimensions and over time. Wang et al. [16] developed a hybrid model
that combines Empirical Mode Decomposition (EMD), Ensemble EMD (EEMD), and
ARIMA for long-term streamflow forecasting. Additionally, graph neural networks
(GNNs) [18] explicitly capture cross-dimensional dependencies by combining temporal
and graph convolutional layers.

Recently, transformer-based techniques such as Autoformer [17] and FEDFormer [25]
have been introduced to solve this problem. PatchTST [13] enhances time series mod-
eling by using patching techniques to extract local semantics and maintain channel in-
dependence. Crossformer [22] features a cross-scale embedding layer and Long Short
Distance Attention (LSDA) to effectively capture cross-time and cross-variable depen-
dencies in MTS, and iTransformer [9] optimizes Transformer inputs to improve time-
series modeling, focusing on more accurate data interpretation and prediction.

Despite extensive research on time series prediction, deep learning models face dif-
ficulties when dealing with time series data that contain rare or extreme occurrences
because of the obvious imbalance in the dataset. Predicting these types of data is no-
tably difficult as their distribution is heavily influenced by extreme values, leading to
high skewness. This calls for the creation of specialist models intended for precise fore-
casting of extreme events. For example, an earlier model we designed, NEC+ [7] is
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specifically designed to accommodate extreme values in hydrologic flow prediction by
employing the Gaussian mixture model (GMM) [1] and training three predictors in
parallel. Another model we previously proposed, DAN [6], learns and merges rich rep-
resentations to adaptively predict streamflow.

However, few of these prior works have addressed both long-term predictions in
prolonged sequences and used auxiliary variables effectively to enhance extreme value
prediction. To bridge this gap, we propose PFformer to address the challenges of highly
skewed single-target MTS forecasting in the hydrology domain. Experiments on four
real-life hydrologic streamflow datasets show that PFformer significantly outperforms
state-of-the-art methods for hydrologic and long-term time series prediction.

3 Preliminaries

3.1 Problem Statement

Suppose we have a collection of m (m >= 1) related univariate time series, with each
row in the input matrix corresponding to a different time series. We are going to predict
the next h time steps for the first time series x1, given historical data from multiple
length-t observed series. The problem can be described as,

x1,1 · · · x1,t

x2,1 · · · x2,t

...
. . .

...
xm,1 · · · xm,t

 ∈ Rm×t → [x1,t+1, . . . , x1,t+h] ∈ Rh,

where xi,j denotes the value of time series i at time j. The matrix on the left are the
inputs, and x1,t+1 to x1,t+h are the outputs of our method. We first define this task by
modeling the objective time series x1 as the ordinary series and the group of related
time series x2 to xm as auxiliary series.

3.2 Data Descriptions

Table 1. Input Stream Data Statistics

Statistic / Stream Ross Saratoga UpperPen SFC
min 0.00 0.00 0.00 0.00
max 1440.00 2210.00 830.00 7200.00
mean 2.91 5.77 6.66 20.25

std. deviation 24.43 26.66 21.28 110.03
skewness 19.84 19.50 13.42 18.05
kurtosis 523.16 697.78 262.18 555.18

Our study uses a hydrologic dataset first introduced in [6] that captures streamflow
from four California streams: Ross, Saratoga, UpperPen, and SFC. Given California’s
lack of rainfall during the summer, we follow the same problem design as in [6] and
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Fig. 1. The PFformer framework;
⊕

denotes the element-wise addition. The PFformer frame-
work is a transformer-based variant optimized for multivariate time series forecasting. It replaces
the encoder’s positional encoding layer with Enhanced Feature-based Embedding (EFE) to cap-
ture complex inter-variable relationships. In the decoder, Auto-Encoder-based Embedding (AEE)
substitutes the positional embedding, enabling direct, fixed-length predictions without error prop-
agation or masking.

focus on forecasting the months from September to May, deliberately excluding the
summer period. Data for training and validation was drawn from January 1988 to Au-
gust 2021 and we aim to accurately project the streamflow for the subsequent year
(September 2021 to May 2022), with predictions made every four hours. Each predic-
tion estimates the upcoming 3 days based on the preceding 15 days of data. The perfor-
mance metrics we employed are Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE). We add 1 to both the true value and the predicted value to
avoid instability in the calculation when the true values are close to zero. Since the
sensors measure the streamflow and precipitation every 15 minutes, we are attempting
a lengthy forecasting horizon (h = 288). Table 1 shows several statistics of our input
time series, which provide valuable insights into the shape and distribution of the data,
including min, max, mean, median, variance, skewness, and kurtosis. The presence of
high skewness and kurtosis values suggests that our data exhibit significant asymmetry
and departure from the symmetric bell-shaped curve of a Normal distribution. This im-
plies that there are more extreme values or outliers on the higher end of the distribution.

4 Methods

4.1 PFformer Architecture

Fig. 1 illustrates the PFformer architecture, a transformer-based framework optimized
for multivariate time series forecasting. It consists of two main components: the encoder
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Fig. 2. PFformer encoder embedding module. X and A are the stream and rain value sequences
in our dataset. The output of EFE is the input to the transformer encoder.

and the decoder, both structured to enhance forecasting accuracy through advanced
embedding techniques.
Encoder. As shown in the left part of Fig. 1, the encoder section of our model closely
follows the standard Transformer encoder design aside from the embedding layer, which
uses Enhanced Feature-based Embedding (EFE). This strategy maps input sequences to
high-dimensional spaces without positional encoding and effectively captures complex
inter-variable relationships. These are then processed through layers of multi-head at-
tention and feed-forward networks, each featuring an “Add and Norm” step for output
integration and normalization, crucial for stabilizing the learning process.
Decoder. PFformer bypasses the use of target sequences as inputs to avoid error propa-
gation common with recursive prediction methods. Instead, it predicts all outcomes di-
rectly, eliminating the need for both masking mechanisms and padding due to the fixed
prediction length. The AEE layer is used to create rich representations that enhance
input data for the attention mechanisms. Additionally, we simplified the cross-attention
layer by applying attention computing directly on the output of AEE in the transformer
decoder, enabling effective learning from the richly represented embedding layers.
Output. To enhance the model’s adaptability to extreme values, the AEE module also
plays a critical role in the loss calculation. Specifically, the output from AEE passes
through a linear layer, which is combined with the output from the decoder’s linear
layer to form the final output, as further described in Section 4.5.

4.2 Enhanced Feature-Based Embedding (EFE)

Fig. 2 shows the EFE module in PFformer. For an input sequence of length t, taking the
first time point as an example, EFE combines the predicted sequence value at this time
point, corresponding values from auxiliary sequences, and s preceding values from each
of these auxiliary sequences. These elements are concatenated to form a multi-spatial
subsequence unique to that time point. This subsequence is then processed through a
dense layer coupled with a nonlinear activation function. Then, the output of the EFE
module serves as the input vector for the encoder at this fixed time point. Across all
time points, this forms a high-dimensional input sequence for the encoder layer. The
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Fig. 3. AEE module. The input of the AEE encoder is the aligned multivariate series. X and A
are the stream and rain value sequences in our dataset. The input of the AEE decoder is the time
stamp of the forecasted series.

EFE mechanism focuses on capturing the intricate relationships between different time
series variables across time.

4.3 Auto-Encoder-Based Embedding (AEE)

Fig. 3 illustrates the Auto-Encoder-Based Embedding (AEE) layer, which is designed
to handle aligned multivariate time series data, such as streamflow and rainfall in our
dataset. The encoder module takes as input the aligned multivariate series, where X
represents the streamflow sequence, and A corresponds to the rainfall sequence. These
sequences are processed step-by-step to generate the latent states c and h, which sum-
marize the temporal patterns and dependencies in the input data. The decoder module
then uses the latent states, along with the time stamps of the forecasted series, to predict
future values.

The output of the AEE fulfills two key roles. First, it is integrated with the outputs
from the PFformer decoder, enhancing the overall prediction accuracy. Second, its ca-
pacity for short-term prediction is measured as a component of the loss function. This
inclusion acts as a penalty term, underscoring the critical role of auxiliary variables in
refining short-term forecast accuracy.

4.4 Clustering-Based Oversampling Policy

Since the total length of each time series in our dataset is approximately 1.4 million,
the sampling strategy is crucial during model training. However, simply oversampling
extreme values can degrade overall prediction quality for the rest of the time series, as
previously demonstrated in research. To address this, we propose a Clustering-Based
Oversampling Policy which aims to capture significant data points based on statistic
distributions. We employ a Gaussian Mixture Model (GMM) to cluster the data into
M clusters with mean values µ1, µ2, . . . , µM . Since the cluster with the highest mean
value z represents those extreme values, we marked a data point as important if its value
exceeds η×z. For each peak point, we treat step size s and scope ν as hyperparameters.
The sampling starts ν/2 points to the left of an identified peak, and samples are collected
every s points, effectively generating ν/s samples around each peak.

To manage the volume of oversampled data, we set a ratio, os, which caps the
oversampled data at os% of the total training set volume. We employ grid search to
determine the optimal value of os to ensure our sampling method remains targeted and
efficient without overwhelming the model with excessive data.
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Table 2. 3-day/4-hour Long-Term (h = 288) Series Forecasting Results

RMSE MAPE

Methods Ross Saratoga UpperPen SFC Ross Saratoga UpperPen SFC

3 d 4 h 3 d 4 h 3 d 4 h 3 d 4 h 3 d 4 h 3 d 4 h 3 d 4 h 3 d 4 h

FEDformer 6.01 3.95 6.01 4.82 3.05 2.55 23.54 17.11 2.10 2.05 1.55 1.54 1.87 1.75 2.35 2.16
Informer 7.84 6.76 5.04 3.78 5.88 5.00 39.89 23.21 4.05 4.71 1.43 1.54 4.10 3.99 8.64 3.61
Nlinear 6.10 2.76 5.23 4.13 1.57 0.51 18.47 5.08 1.99 0.52 0.83 0.82 0.45 0.16 0.92 0.52
Dlinear 7.16 3.31 4.33 1.79 3.53 1.35 21.62 8.75 3.10 1.15 1.40 0.65 2.35 0.69 2.74 1.45

LSTM-Atten 7.35 6.84 6.49 5.59 6.35 4.75 34.17 23.09 3.74 4.10 1.80 1.79 4.76 3.67 9.90 6.25
NEC+ 9.44 2.07 1.88 0.26 2.22 0.33 17.00 2.36 4.80 0.45 0.17 0.07 0.95 0.06 1.07 0.07

iTransformer 4.56 2.14 2.37 0.94 1.12 0.58 17.04 11.00 0.57 0.43 0.27 0.18 0.11 0.06 0.47 0.54
DAN 4.25 2.61 1.80 0.62 1.10 0.43 15.23 3.73 0.07 0.46 0.14 0.22 0.15 0.07 0.26 0.22

PFformer 4.21 1.52 1.69 0.22 1.01 0.24 14.98 2.86 0.10 0.03 0.10 0.04 0.06 0.01 0.18 0.06

4.5 Multiple-Objective Loss Function

To force the AEE to learn rich representations, we use multiple loss functions [2, 11, 3]
when training the PFformer model. We build our loss items as follows,

L1 = RMSE(ŷaux[: s], y[: s]), L2 = RMSE(ŷ, y).

where ŷ is the output of PFformer, ŷaux is the output of the AEE module after a linear
transformation, and s represents the length of the short-term interval, which is set to
16 (4 hours) in our experiments. The L1 regularization component is responsible for
short-term prediction accuracy, while L2 focuses on the overall model accuracy. Then,
the overall loss is composed as,

L = λ× L1 + L2, λ = max(−1 · e
epoch

45 + α, β).

λ acts as a scaling factor for regularization, initially set high to steer the AEE to be
more responsible for short-term prediction accuracy. This ‘teacher mode’ diminishes
over time; λ starts at α and decreases to β over epochs.

5 Evaluation

5.1 Experimental Settings

This study utilized the same time series data as in [7]. In our experiments, we consis-
tently set N = 3, M = 1, and η = 1.2 across all datasets (Ross, Saratoga, UpperPen,
and SFC). The oversampling percentages os% were adjusted to 20% for Ross, Saratoga,
and UpperPen, and to 15% for SFC, reflecting the unique distributions of each dataset.
The oversampling policies, denoted as (s, v), and the α and β values for the regular-
ization parameters were tailored to the distinct characteristics of each dataset. We per-
formed a grid search with s ∈ {1, 2, 4}, v ∈ {4, 8, 16}, α ∈ {1, 1.2, 1.5, 1.8, 2, 2.2},
and β ∈ {0.5, 0.6, . . . , 1} and obtained the best results at (s, v, α, β) of (1,8,1.5,0.9),
(2,16,1.8,0.8), (4,16,2.0,0.8), and (2,16,2.0,0.9) for the Ross, Saratoga, UpperPen, and
SFC datasets, respectively. The hidden dimensions for the attention and linear layers
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were set to [384, 268, 288, 300], and for the AEE LSTM layer to [384, 268, 320, 256].
Furthermore, the AEE featured one LSTM layer for SFC and two for the other sensors.
All models were trained for a maximum of 40 epochs with early stopping triggered af-
ter four consecutive epochs without improvement.We used the Adam gradient descent
algorithm with a starting learning rate of 0.0005, decaying by 0.9 after every epoch,
and set the batch size to 24 for SFC, 48 for Saratoga and UpperPen, and 96 for Ross.
All models were trained using PyTorch 1.11.0+cu102 on a Supermicro SYS-420GP-
TNAR+ system equipped with NVIDIA HGX A100 8-way GPUs (80 GB RAM each)
running Rocky Linux 9.4 (Blue Onyx), but only used one GPU for all training and
inference. We also verified training and inference of our model on a system with one
NVIDIA V100 GPU (32 GB RAM).

5.2 Baseline Methods

We compared our proposed method, PFformer1, against a wide array of state-of-the-
art time series and hydrologic prediction methods we discussed in Section 2. FED-
Former [25] enhances the standard Transformer by incorporating seasonal-trend de-
composition. Informer [23] introduces a prob-sparse self-attention mechanism tailored
for long-term time series prediction. NEC+ [7] utilizes LSTM-based models optimized
for hydrologic time series prediction in series with extreme events. NLinear [19] is an
effective linear model with one order difference preprocessing for long-term time series,
while DLinear [19] focuses on decomposing trends for similar applications. Attention-
LSTM [4] serves as a state-of-the-art multivariate model in hydrology. Finally, iTrans-
former [9] achieved state-of-the-art results on challenging multivariate time series pre-
diction challenges, and DAN [6] learns and merges rich representations to adaptively
predict streamflow.

5.3 Main Results

The experimental results, detailed in Table 2, highlight the best and second-best values
for each metric, marked in bold and underline, respectively. Overall, PFformer consis-
tently outperforms other models. While models tailored for hydrologic data forecasting,
like NEC+ and DAN, perform better than more generic time series prediction models,
they do not match the effectiveness of PFformer. Specifically, PFformer not only sur-
passes DAN across all RMSE metrics but also achieves remarkable improvements of
23% to 64% in 4-hour rolling prediction RMSE. Compared to NEC+ and iTransformer,
PFformer shows an average increase of 22% and 37% across all RMSE metrics respec-
tively, showing its extreme-adaptive ability.

Transformer-based methods such as FEDFormer and Informer struggle significantly
with datasets that exhibit large variance and fail to adapt to extreme values effectively,
not fully leveraging the attention mechanism’s potential. While iTransformer effectively
utilizes variate tokens to capture multivariate correlations through attention, it risks los-
ing intra-variable temporal relationships by focusing solely on inverted dimensions.
This limitation is significant in forecasting time series with extreme values, where both

1 Code for our method is at https://github.com/davidanastasiu/pfformer.
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Fig. 4. Comparative examples with the best baselines reveal thatPFformer excels in predicting
streamflow values with greater accuracy, both in the short and long terms.

inter-variable relationships and intra-variable temporal sequences are crucial for accu-
racy. Our EFE and AEE address this by preserving both. In contrast, fully connected
networks like NLinear and DLinear, which decompose data into main trends and resid-
uals, perform better than some Transformer-based methods, particularly in rolling pre-
diction scenarios. However, they still fall short of achieving high accuracy.

3-Days Prediction In the realm of single-shot 3-day predictions, PFformer consis-
tently outperforms baselines in RMSE across all four sensors. Notably, when compared
to DAN, PFformer achieves a 60% improvement in MAPE for the UpperPen dataset.
Furthermore, against NEC+, PFformer demonstrates substantial enhancements on the
Ross and UpperPen datasets, with over 50% improvement in RMSE and over 90% in
MAPE. For the Saratoga dataset, PFformer outperforms iTransformer by 28% and 62%
in RMSE and MAPE, respectively.

4-Hour Rolling Prediction In the scenario of 4-hour rolling predictions, which is more
common in practical applications, the PFformer model showcases exceptional perfor-
mance. Compared to DAN, it achieves an average RMSE improvement of 43% and a
MAPE improvement of 83%. Against NEC+, PFformer demonstrates a 22% improve-
ment in RMSE and a 55% increase in MAPE. Compared with iTransformer, PFformer
is superior by 59% and 85% in RMSE and MAPE, respectively. This scenario holds
significant practical value, reflecting the model’s strong applicability in real-world set-
tings.

Visual Analysis Fig. 4 shows some example predictions for PFformer and the next
two best performing algorithms. As seen in the figure, PFformer’s predictions closely
match the ground truth, particularly in datasets with considerable oscillations. Notably,
PFformer more accurately captures short-term oscillations and severe values than DAN,
as evidenced by lower RMSE values. This improved performance is primarily due to
the rich expressive capabilities of the embeddings mixed with the attention mechanism.

6 Ablation Study

In this ablation study, we aim to explore several key research questions that address
the prediction effectiveness of our model, including (1) the impact of our clustering-
based oversampling policy on model performance; (2) the significance of subsequence
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Fig. 5. PFformer RMSE on Ross given different oversampling percentage os (left), EFE subse-
quence length s (center), and loss multiplier α (right) values, under both 3-day prediction (y1-
axis) and 4-hour prediction (y2-axis) scenarios.

length s in our model’s EFE module; (3) the influence of loss function parameters on
its predictive accuracy; and (4) the overall effect of both the EFE and AEE modules.

6.1 Effect of Parameters

Table 3. PFformer RMSE With
Different Embeddings

Dataset Type EFE/AEE Position Token

Ross 3-day 4.21 4.41 4.55
rolling 1.52 2.24 2.61

SFC 3-day 14.98 21.68 21.38
rolling 2.86 17.13 16.72

UpperPen 3-day 1.01 3.91 2.44
rolling 0.24 3.92 1.47

Saratoga 3-day 1.69 2.59 3.88
rolling 0.29 1.71 3.88

To address the first three research questions, we first
established the optimal parameter combination for
the Ross dataset as our baseline. Then, fixing all
other parameters, adjusted only one parameter at a
time to analyze its influence on model performance.
Fig. 5 shows our results for oversampling percent-
ages os ∈ {10, 20, 30, 40, 50, 60} (left), the EFE
susequence length s ∈ {20, 40, 60, 80, 100, 120}
(center), and the loss multiplier parameter α ∈
{0, 1, 1.5, 2.0, 2.5, 3.0} (right), for both 3-day pre-
diction (y1-axis) and 4-hour prediction (y2-axis)
scenarios.
Oversampling. For the 3-day RMSE, the model
performs best at a 20% rate, while short-term pre-
dictions are more sensitive to extreme values in the
training set, but a 20% rate is the best overall.
EFE Subsequence Length. Regarding the EFE parameter s, theoretically, a larger s
contains more information. By adjusting the accompanying hidden size and number of
layers, a better model might be found, but this also increases redundancy and computa-
tion load. In our experiments, s = 60 was best.
Loss Regularization. Higher values of the loss regularization parameter α force PF-
former to focus more on the accuracy of short-term predictions, but should be balanced
with the need for overall good long-term predictions. In our experiment, α = 1.5 pro-
duced the best results in both 3-day ahead and 4-hour predictions.

6.2 Effect of Architecture

In Table 3, the first column shows the RMSE values obtained when using both the EFE
and AEE layers. In the second column, we removed EFE and AEE and reverted to using
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the original Transformer’s combination of position embedding and token embedding.
In the third column, we eliminated position embedding altogether and solely utilized
token embedding. The results show that the EFE and AEE introduced by PFformer
significantly enhance overall predictive performance by enabling the attention layer to
focus on short-term performance in a rolling prediction mode. Moreover, the position
embedding inherent in traditional Transformers has an inconsistent effect on time series
forecasting, failing to enhance performance on datasets like SFC and UpperPen.

7 Conclusion

This study has successfully demonstrated the efficacy of position-free trainable em-
bedding techniques—Enhanced Feature-based Embedding (EFE) and Auto-Encoder-
based Embedding (AEE)—in improving hydrologic flow prediction. By comparing
these techniques against traditional Transformer embeddings and other state-of-the-art
methods, we have shown that our method significantly enhances forecasting accuracy,
especially in scenarios with extreme values. Our findings suggest that traditional posi-
tional information may be less crucial for time series than previously thought, indicat-
ing a promising direction for future research to further refine these models for broader
applications in complex time series forecasting scenarios.
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