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Abstract—Time Series Forecasting (TSF) has been researched
extensively, yet predicting time series with big variances and
extreme events remains a challenging problem. Extreme events
in reservoirs occur rarely but tend to cause huge problems, e.g.,
flooding entire towns or neighborhoods, which makes accurate
reservoir water level prediction exceedingly important. In this
work, we develop a novel extreme-adaptive forecasting approach
to accommodate the big variance in hydrologic datasets. We
model the time series data distribution as a mixture of both point-
wise and segment-wise Gaussian distributions. In particular, we
develop a novel End-To-End Mixture Clustering Attention Neural
Network (MC-ANN) model for univariate time series forecasting,
which we show is able to predict future reservoir water levels
effectively. MC-ANN consists of two modules: 1) a grouped Auto-
Encoder-based Forecaster (AEF) and 2) a mixture clustering-
based learnable Weights Attention Network (WAN) with an
attention mechanism. The WAN component is crucial, skillfully
adjusting weights to distinguish data with varying distributions,
enabling each AEF to concentrate on clusters of data with
similar characteristics. Through extensive experiments on real-
world datasets, we show MC-ANN’s effectiveness (10–45% root
mean square error reductions over state-of-the-art methods),
underlining its notable potential for practical applications in
univariate, skewed, long-term time series prediction tasks.

Index Terms—Pattern recognition, deep recurrent neural net-
works, encoder, decoder, time series forecasting, attention cluster-
ing network, Gaussian Mixture, hydrology prediction, reservoir
water level

I. INTRODUCTION

Time Series Forecasting (TSF) has been researched exten-
sively, since it has many real-world applications, including
weather prediction [1], stock market value prediction [2],
and agricultural management [3], among others. In hydrologic
prediction, complex unpredictable factors like weather, geogra-
phy, and human activity also affect the water level of dams and
reservoirs. Reservoirs are multipurpose, vast bodies of water
that play a vital role in flood control, navigation, irrigation, and
energy production. They also have a direct impact on human
safety and welfare. Extensive study on reservoir water level
prediction has been prompted by their versatile use cases.
By serving as organic drainage networks, reservoirs control
precipitation and snowmelt runoff, maintaining ecological bal-
ance and preventing flooding. However, substantial seasonal
shifts cause significant fluctuations in water levels and the non-
stationary and big variance character of these changes makes
traditional forecasting models less accurate.

Traditional machine learning models usually consider sea-
sonality, long-term patterns, and non-stationary properties

when making predictions based on these data, yet predicting
time series with big variances and extreme events remains
a challenging task. Despite deep learning previously being
used to predict reservoir water levels, its effectiveness is often
limited to individual basins and fails to capture non-stationary
patterns with high variance. Moreover, current deep learning
models [4]–[6] struggle with time series data that includes
abrupt changes or rare yet critical extreme events, particularly
in nonstationary reservoir datasets characterized by extreme
values such as the ones we focus on in this work.

Various studies seek to decode the nonlinear nature of
time series through statistical methods. Mixture density net-
works [7] are used for multi-modal data where each modality
can be captured using mixing components [8]. Klotz et al. [9]
examine the uncertainty in streamflow predictions using mix-
ture density networks and Monte Carlo Dropout. However,
their potential to enhance water level predictions has not been
explored, especially in terms of simultaneously accounting for
long-term trends in a single forecast and updating short-term
predictions in a rolling fashion. In a previous work [10], we
introduced NEC+, a probability-enhanced composite model
featuring three distinct components—a predictor for normal
values, another for extreme events, and a classifier to merge the
two—tailored to enhance prediction accuracy for hydrology
time series that include extreme events. This model, however,
is not an end-to-end model and its performance highly depends
on the accuracy of its classifier component.

These challenges have lead us to explore how we can design
an end-to-end neural network capable of utilizing distinct
statistical features to enhance the predictive performance of
non-stationary time series with big variance and extreme
events, which we present in this work. Our contributions
include:

• We develop a novel end-to-end Mixture Clustering At-
tention Neural Network (MC-ANN) for univariate time
series forecasting, which effectively addresses reservoir
water level time series prediction.

• The MC-ANN model incorporates a novel clustering-
based importance enhanced sampling strategy that
adeptly pinpoints critical features and trends within
datasets, thereby enhancing forecasting precision by re-
lying on the learned mixture distribution of the data.

• Our model performs exceptionally well in real-world
circumstances, providing the best results when perform-
ing rolling predictions throughout the year, while also
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Fig. 1. Water level for the five reservoirs in our study from 2007 to 2017 (left). For the Coyote and Stevens Creek reservoirs, water level data from July
2018 to June 2019 show significant variance (right). Upon applying first-order differencing and normalization to the data, extreme values become evident in
the normalized change of the water level series.

outperforming baselines in the single-shot 3 day-ahead
prediction task.

• Through an extensive set of experiments on five real-
world datasets (Table I), we have shown that our model
performs well (10%—45% of root mean square error
reductions over state-of-the-art methods) for reservoir
time series with big variance and extreme events.

• The model integrates a distinctive attention-based Loss,
blending point-wise and segment-wise clustering ap-
proaches, which has been validated in ablation studies
to enhance accuracy by upwards of 20%.

Beyond academic performance, accurate forecasts have direct
real-world impacts. In agriculture, precise water level predic-
tions support optimized irrigation, enhancing crop yield sus-
tainability. In hydropower, improved forecasting enables better
reservoir management, preventing operational inefficiencies.
In flood management, reducing forecast errors can strengthen
early warning systems, helping to mitigate risks. Our model
is deployed in real-world applications. It has been integrated
into FlowView, a web-based platform that provides Santa Clara
Valley Water District with real-time 3-day ahead stream flow
and water reservoir level predictions. This system aids in
decision-making for reservoir operations, water distribution,
and flood risk assessment.

TABLE I
RESERVOIR SENSOR ORIGINAL DATA AND FIRST-ORDER DATA

STATISTICS

Sensor Min Max Variance Skewness Kurtosis
Original data

Almaden -0.10 1714.08 1714.08 -0.27 -0.76
Coyote 2319.42 27421.25 13304899.11 1.30 3.33
Lexington 867.88 20109.10 21374524.46 0.50 -0.36
Stevens Creek 93.92 3229.98 713429.64 -0.20 -0.93
Vasona 140.15 619.48 5044.46 -1.05 0.67

First-order difference data
Almaden -408.51 417.11 16.13 0.10 3541.97
Coyote -10262.42 11782.86 5865.46 6.10 8985.19
Lexington -10852.95 7841.56 4122.16 -18.42 11104.88
Stevens Creek -1395.84 1092.97 49.75 -22.78 21075.51
Vasona -90.29 74.39 2.45 3.41 438.38

II. RELATED WORK

A. Machine Learning Methods

The prediction of time series has been studied for many
years. Traditional machine learning methods that were once
widely used include the univariate Autoregressive (AR), Mov-
ing Average (MA), Simple Exponential Smoothing (SES),
and Extreme Learning Machine (ELM) algorithms; however,
the Autoregressive Integrated Moving Average (ARIMA) [11]
method and its various variations were the most well-known.
Wang et al. [12] presented a hybrid model for long-term
streamflow forecasting that combines Ensemble Empirical
Mode Decomposition (EEMD), Empirical Mode Decomposi-
tion (EMD), and ARIMA. Several studies employed Gaus-
sian Process Regression (GPR) [13] and Quantile Regression
(QR) [14] to measure forecast uncertainty in addition to
making predictions. Tree-based models have also been used
because they are computationally efficient and can handle
predictors without assuming any particular distribution. Ex-
amples of these models are classification and regression trees
(CART) and random forests (RF). A popular time series
forecasting model, Prophet [15], is based on an additive
model that incorporates seasonal and holiday influences at
many time scales, including annual, weekly, and daily patterns
and captures nonlinear trends in the data. However, machine
learning techniques are hindered by unequal data distribution,
as demonstrated by Singh et al. [16], who also pointed out that
balancing the dataset is a crucial step in the training process.

B. Deep Learning Methods

Deep learning models have recently become the method of
choice for predicting rich time series data [17], surpassing
traditional statistical methods like GARCH [18] and ARIMA.
The NBeats method proposed by Oreshkin et al. [4] out-
performed all competitors on the standard M3, M4, and
TOURISM time series datasets, demonstrating good perfor-
mance on general time series prediction [5]. To anticipate
future values and their confidence, DeepAR [5] assumes a
conditional distribution over the future values and trains a
shared RNN to predict them. TimesNet [19] transforms 1D
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time series data into a 2D representation and utilizes receptive
fields for prediction. Designed for general time series analysis,
it discards high-frequency signals as noise during the transfor-
mation process, which differs from our objective of capturing
extreme values.

Transformer-based techniques, such as Autoformer [6] and
Reformer [20], have been proposed recently to address the
problem of long-term forecasting by granting the transformer
with more sophisticated dependency discovery and modeling
capabilities. A ProbSparse self-attention mechanism and a
generative style decoder were shown to work well in In-
former [21], which significantly increases the inference speed
of long-sequence predictions. However, new research has cast
doubt on these models’ effectiveness, suggesting that more
straightforward linear models may perform better [22], [23]. In
response, some studies explore novel ways to leverage Trans-
formers for time series forecasting. PatchTST [24] segments
time series into patches and applies a channel-independent
Transformer, enhancing efficiency and long-term forecasting
accuracy. iTransformer [25] embeds each time series as variate
tokens, using attention to capture correlations among channels
and a feed-forward network for series representations. It
applies Transformer components on inverted dimensions to
enhance forecasting performance.

C. Extreme Adaptive Methods

Despite extensive research in time series prediction, deep
learning models face difficulties when dealing with time series
data that contain rare or extreme occurrences because of the
obvious imbalance in the dataset. This calls for the creation of
specialist models intended for precise forecasting of extreme
events.

An and Cho [26] proposed a novel method that focused
on anomaly detection using reconstruction probability as a
lens. This approach cleverly takes into account the data
distribution’s intrinsic variability. Similar to this, the Uber
TSF model [27] automatically extracts extra features from the
auto-encoder LSTM network, priming it to capture intricate
time-series dynamics during large-scale events. New inputs
are then fed to the LSTM forecaster for prediction. By em-
ploying the Generalized Extreme Value Loss (GEVL), Zhang
et al. [28] took into account different heavy-tailed distribution
kernels (Gumbel, Frechet) for loss estimation, which trans-
forms the loss estimator to a heavy-tailed distribution. The
variational disentangled extremal (VIE) classifier [29] model
uses representation learning and a combination of Gaussian
and Generalized Pareto distribution priors to classify data with
extreme events. Yifan et al. [30] proposed a framework to
integrate machine learning models with anomaly detection
algorithms, where the extreme events are highlighted so the
machine learning models can process them appropriately.
Additionally, we previously proposed NEC+ [10], a model
specifically designed to provide good prediction performance
on hydrologic time series with extreme events. By employing
the Gaussian mixture model (GMM) [31] and training three
predictors in parallel, our model was able to achieve the best
forecasting performance for reservoir water level time series

with rare but important extreme events, without sacrificing the
quality of normal values prediction.

D. Limitations of Current Approaches

Based on previous research, a variety of neural network
designs, including recurrent neural networks [32], [33], hybrid
networks [4], and graph neural networks [34]–[36] have been
examined for hydrologic forecasting. An ensemble LSTM
and Prophet model developed by Du and Liang [37] was
demonstrated to perform better than any of the individual
models employed in the ensemble. To tackle the hydrologic
prediction problem, Le et al. [38] combined an encoder-
decoder architecture with an attention mechanism [39], [40].
For the reservoir water level forecasting problem, Ibañez et
al. [41] looked at two variants of the LSTM-based DNN
model: a multivariate version (DNN-M) and a univariate
encoder-decoder model (DNN-U). Trigonometric time series
encoding was utilized in both models. To build an extreme
adaptive predictor, some work used Extreme Value Theory
(EVT) [30] and probability enhanced methods [10]. However,
very few of these earlier studies have focused on end-to-
end handling of both long-term sequences and extreme events
in reservoir water level forecasting, especially in the more
practical scenario of rolling prediction.

To bridge this gap, we develop a novel End-To-End Mixture
Clustering Attention Neural Network (MC-ANN) for univari-
ate time series forecasting, which addresses effective predic-
tion of long-term time series with big variances and extreme
events. Remarkably, MC-ANN’s performance surpasses that
of state-of-the-art methods across five real-world reservoir
datasets, in both the task of single-shot 3-day ahead prediction
and when considering rolling predictions every 8 hours.

III. PRELIMINARIES

A. Problem Statement

We address a demanding univariate time series forecasting
challenge, dealing with a non-stationary series characterized
by significant variance and containing extreme events. The
data includes both extreme declines and rapid increases in
value. While the majority of typical fluctuations are key to
the overall prediction accuracy, the critical task is to precisely
forecast the infrequent yet severe changes to prevent potential
disasters. The problem can be described as,

[x1, x2, . . . , xT ] ∈ RT → [xT+1, . . . , xT+H ],∈ RH

i.e., we are predicting the vector of length-H horizon future
values given a length-T observed series history, where x1 to
xT are the inputs and xT+1 to xT+H are the outputs. Root
mean square error (RMSE) and mean absolute percentage error
(MAPE), as standard scale-free metrics, are used to evaluate
forecasting performance. Our predictive models utilize the past
15 days of hourly data (with T = 360 time steps) to predict
water levels 72 hours ahead (H = 72), covering a forecast
period of three days.
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Fig. 2. MC-ANN learns the time series data distribution, as a mixture of Gaussian distributions on both point-wise and segment-wise levels, consisting of two
parts: 1) Grouped Auto-Encoder based Forecaster (AEF) and 2) GMM mixture clustering-based learnable Weights Attention Network (WAN) for disentangling
extreme values from normal ones. The AEF Forecaster models predict part of the regression values and WAN generates the weights that allow the AEFs to
focus on different time series trends.

B. Data Statistics

For our study, we utilized an extensive dataset comprising
31 years of hourly water level readings from reservoir sensors
in Santa Clara County. These reservoirs, constructed in the
1930s and 1950s, are designed for water conservation, captur-
ing stormwater runoff that would otherwise flow into the San
Francisco Bay. Besides aiding in flood control and offering
recreational activities, the reservoirs support environmental
health by ensuring river flows are maintained.

Detailed information about the sensor locations and their
corresponding statistics can be found in Table I. Throughout
the paper, we will reference the sensors and their time series
data by the specific locations listed in the table. To provide a
more detailed perspective, Table I presents several computed
statistics for our input time series, including minimum, max-
imum, variance, skewness, and kurtosis. The original water
level data, detailed in the upper section of the table, exhibit
exceptionally large variances due to seasonal changes.

Time series exhibiting trends or seasonality are inherently
non-stationary and typically result in suboptimal predictions.
To counter this, we employ first-order differencing, a common
preprocessing technique in time series analysis used to achieve
stationarity, which subtracts the previous value from the cur-
rent value for each point in the time series, i.e., x′

t = xt−xt−1.
The lower section of Table I displays the first-order difference
of the original data, reflecting water level variations.

High skewness and kurtosis values of the first-order dif-
ference dataset indicate considerable asymmetry and devia-
tion from the symmetrical bell curve typical of a normal
distribution, as discussed in Chissom’s “Interpretation of the
kurtosis statistic” [42]. The negative skewness in a distribution
indicates a leftward bias, with a longer tail on the lower end,
which suggests a higher frequency of extreme decreases in
water levels. In contrast, positive skewness is indicative of
rapid increases presented as positive extreme values.

C. GMM Decomposition

A GMM [31] is a non-supervised clustering method that
assumes data is derived from a mixture of several Gaussian
distributions, each representing a cluster within the complex
overall distribution. GMM is particularly adept at disentan-
gling these distributions without the need for labeled training
data. The GMM approach estimates the parameters of each
Gaussian using the Expectation-Maximization algorithm, iter-
atively improving the model until it converges on a solution
that best explains the hidden, latent structure of the data. This
makes GMMs powerful for uncovering subgroups in multi-
modal data and understanding the intricate distributions within
a dataset. GMM can be described by the equation,

p(x|λ) =
M∑
i=1

wi g(x|µi,Σi), (1)

where x is a D-dimensional continuous-valued vector,
wi ∀i = 1, . . . ,M are the mixture weights, and g(x|µi,Σi) are
the component Gaussian densities. Each component density is
a D-variate Gaussian function, and the overall GMM model
is a weighted sum of M component Gaussian densities,

g(x|µi,Σi) =
1

2π
D
2 |Σi|

1
2

exp

{
−
1

2
(x− µi)

T Σ−1
i (x− µi)

}
, (2)

where µi is the mean vector and Σi is the covariance matrix
of the ith component. The mixture weights are constrained
such that

∑M
i=1 wi = 1. Due to its capacity to represent a vast

class of sample distributions, GMMs are frequently employed
in biometric systems, most notably in speaker recognition sys-
tems. The GMM’s capacity to produce smooth approximations
to arbitrarily shaped densities is one of its most impressive
features [31].

In our model, GMMs generate both point-wise and segment-
wise probability series, capturing distinct temporal patterns
in the data. These probability series serve as inputs to the
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Weight Adjustment Network (WAN), an attention-based mech-
anism that dynamically adjusts the contribution of different
AutoEncoder-based Forecasters (AEFs). This enables special-
ized forecasters to focus on normal conditions or extreme
events, improving overall prediction accuracy. Through this
adaptive weighting, our model enhances robustness in non-
stationary reservoir datasets with high variance and extreme
values.

D. Rolling Prediction

During the inference phase, we employed a strategy of
rolling predictions, forecasting water levels every 8 hours.
Each prediction cycle generated 72 future data points, effec-
tively covering water level forecasts for the ensuing 3 days at
hourly intervals. These forecasts are based on the preceding
360 time steps, i.e., 15 days in the data. While three-day
forecasts can provide a short-term trend of water levels at a
given moment, rolling predictions are more commonly used in
practice. Continuously updating forecasts are more meaningful
for decision-making, which is why our project focuses on
the performance of rolling predictions over an annual cycle.
Hence, our goal is to achieve superior rolling prediction results
without compromising the accuracy of the three-day forecasts.

IV. METHODOLOGY

A. MC-ANN Framework

The MC-ANN model initiates by learning the distribu-
tion of time series data through a one-dimensional mixture
of Gaussian distributions, producing the WGMM features.
These WGMM features, along with the preprocessed input, is
then used as input for three Auto-Encoder based Forecasters
(AEFs), as depicted on the left side of Fig. 2. On the
figure’s right side, we illustrate the learning of three point-
wise clustering feature groups from the preprocessed input
series x, and three segment-wise groups from the WGMM
feature series g. These are then amalgamated according to
a specified policy to create mixed-clustering groups, which
serve as input to the Weighted Attention Network (WAN) to
specifically disentangle and emphasize extreme values. The
AEF Forecaster models output partially precise values, while
the WAN computes weights to guide the AEFs to concentrate
on various scenarios. In the following, we will further explain
each of the framework components.

B. WGMM Features

Given the training set input data, we first find a univariate
GMM model with M components that best fits the data. The
model aims to reconstruct each time series value as a weighted
combination of M Gaussian predictors. Then, given the pre-
processed input series, we calculate a WGMM feature value
for each data point xj as the weighted sum of the probabilities
from all components, i.e., gj =

∑M
i=1 wi g(xj |µi,Σi). In the

middle section of Fig. 3, the higher values in the WGMM
feature series, represented by the blue line, indicate a greater
likelihood of a data point being an extreme value.
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Fig. 3. Point-wise clustering feature series: initial water levels (top), values
after preprocessing and the WGMM feature series (middle), and PW features
series for a GMM model with M = 3 components (bottom).

C. Point-Wise Clustering (PW GMM) Feature Series

In addition to generating the WGMM features, we use the
trained GMM models to generate M more series that contain
only the probabilities of each GMM component for the input,
which we call the point-wise clustering (PW) feature series.
Each data point in the input series is associated with M
potential cluster memberships, each corresponding to one of
the GMM components. For instance, the point-wise Gaussian
Mixture clustering features for the Coyote reservoir sensor are
illustrated in the bottom portion of Fig. 3, where we have high-
lighted a specific period to better demonstrate the distribution
characteristics. It shows that point-wise (PW GMM) clustering
features indicate the likelihood of data points belonging to
specific clusters. We use the last 72 points from these M series
as input to train our Weights Attention Network.

D. Segment-Wise Clustering (SW GMM) Feature Series

The M PW GMM series described in the previous section
contain the probabilities of each of the last 72 input values
belonging to each of the M GMM clusters. In general, one
of the clusters will contain the most extreme values, and
the mixture weight of its associated GMM cluster (wi from
Equation 1) will likely be low, since the majority of the
points in the time series are not extreme points. Assuming
few extreme points in our input, the PW series associated with
that GMM cluster will have few high probabilities (close to
one) and many probabilities close to zero. Similarly, another
cluster may contain values close to the mode of the time series
and its GMM mixture weight will likely be much higher. The
PW series for this GMM cluster will likely have much higher
values overall.
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While the PW series capture the point-wise trend in the data,
we also wish to capture the trends or shapes of the series. To
do so, we train an additional multivariate GMM model with M
components that uses 72-point sub-segments from the training
time series as inputs. The clusters learned by this model will
conform to series with similar shapes rather than similar point
values. Moreover, one of the clusters will have many samples
with the most prevalent shapes and associated relatively high
weight value, while others will have more infrequent shapes,
like those we might see when extreme events develop in the
series. For a given input sequence in our data, we use the
last 72 points in the series to compute the probabilities with
witch the series belongs to each of the M multivariate GMM
clusters. Then, we form M 72-point segment-wise (SW GMM)
clustering feature series by repeating the probabilities 72 times.
The SW GMM sequences will be combined with the PW
GMM sequences according to the mixture clustering policy
we describe in the following section.

E. Mixture Clustering Policy

We have generated M sets of point-wise clustering feature
series, as well as M sets of segment-wise clustering feature
series, each of length 72. As shown in Fig. 3, point-wise
features are valuable for predicting future values due to
their representation of data point distributions across clusters.
However, there is a notable imbalance issue—few points
are associated with the cluster marked in yellow, while the
majority are associated with the cluster marked in magenta.

To address this imbalance, we form M composite clusters
that are then processed by our Weighted Attention Network
(WAN) as separate Mixture Clustering (MC) Input Groups.
This inclusion introduces a new dimension of learning based
on the characteristics of both point-wise and segment-wise
clusters. By creating a policy to blend segment-wise and
point-wise features, we form three composite clusters that
helps WAN discern the optimal weights that will be used to
combine predictions for M Auto-Encoder-based Forecasters,
enabling our set of AEFs to focus on the most relevant cluster
interactions for predictive analysis.

To integrate the three sets of point-wise and segment-wise
clustering feature series, we rely on the weights learned when
training the respective GMM models. In particular, we sort
the M point-wise cluster series in ascending order based on
their GMM mixture weights, and we sort the M segment-wise
cluster series in descending order based on their respective
GMM mixture weights. Each sorted point-wise cluster series
is then combined with its corresponding segment-wise cluster
series multiplied by a factor SWfactor, such that

MCInput = PWSeries + SWSeries × SWfactor. (3)

This results in M mixed-clustering feature series that act as
inputs to the WAN.

F. Attention-Based Component Weighting

Fig. 4 shows how the WAN employs an attention mechanism
on the combined probability matrix derived from both point-
wise and segment-wise clusters to generate loss weights. This
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Fig. 4. Attention weights-guided backpropagation.

enables the WAN to learn a distinct weight vector for each
mixed cluster, encapsulating the predictive attention directed
towards that particular cluster. These weight vectors are then
applied to the outputs of the AEF, contributing to the loss
computation and influencing the final prediction. Namely,

Li = ˆAEF i ⊙Weightsi, ∀ i ∈ {1, 2, . . . ,M}, (4)

L = RMSE

(
M∑
i=1

Li, y

)
. (5)

This process encourages AEFs to concentrate on the unique
features of the predicted locations associated with specific
cluster characteristics, thereby simplifying the complexity of
the prediction task by breaking it down into more manageable
components.

G. Weights Attention Network

Leveraging the clustering features from the M identified
clusters, we construct a Weights Attention Network that uti-
lizes mixed point-wise and segment-wise clustering feature se-
ries as inputs. This network guides the model to concentrate on
learning the distinct facets of the data concurrently, effectively
allowing it to distinguish between various data behaviors and
patterns.

Our WAN network is composed using M sub models to
process the M input mixture cluster groups. Each sub model
processes input data through a series of layers, each compris-
ing two core components: a stack of multi-head self-attention
mechanisms that allow the model to consider the influence of
different parts of the input sequence when encoding a specific
element, and a feed-forward network that applies a set of
linear transformations. Input tokens are first converted into
vectors using embedding layers, and, to account for the lack of
inherent sequence processing, positional encoding is added to
these embeddings. Residual connections follow each sub-layer,
facilitating gradient flow during training, while layer normal-
ization is applied to stabilize the network’s output. Rectified
Linear Unit (ReLU) activation is applied after the linear layer
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Fig. 5. The Weights Attention Network.

inputs to enhance the model’s capacity for capturing non-linear
characteristics within the data.

As shown in Fig. 5, we apply the softmax function to
the M output vectors from our model, transforming them
into probability values. These probability vectors then serve
as weight factors, which are used to perform element-wise
multiplication with the outputs of the Auto-Encoder based
Forecasters (AEF), effectively weighting the contribution of
each forecaster’s output.

H. Auto-Encoder-Based Forecasters (AEF)

The M forecasters in our model adhere to the original
sequence-to-sequence (seq2seq) architecture, as proposed by
Sutskever et al. [43]. As depicted in Fig. 2, the encoder, which
is an LSTM network, receives past water level observations
(x) and the corresponding WGMM feature variables (g). It
processes this information to produce a hidden state (h) and a
cell state (c). These states from the encoder are subsequently
utilized as the initial states for the LSTM decoder. This
decoder is initialized with known future dates (d), which
correspond to the timestamps for which we aim to predict the
water levels. The outputs from the decoder LSTM are then
directed through a time-distributed dense layer, tasked with
producing the final water level forecasts.

Before providing them as inputs to the decoder, we encode
each date, represented initially as the day in the year, into
a pair of features dt = [dsin, dcos] using sine and cosine
transformations, also known as trigonometric or cyclical en-
coding. This method captures the 365-day periodicity inherent
in calendar dates, representing them as a pair of values within
the range of −1 to 1, thus maintaining the cyclical nature of
time within the model.

I. Clustering-Based Oversampling Policy

We design a novel oversampling approach that aims to cap-
ture important data points in the sequence based on predefined
thresholds and sample data points in their vicinity with specific
step size (s) and frequency (ν).

As shown in Section IV-C, GMM is employed to cluster
the data into M clusters with mean values µ1, µ2, . . .,
µM . Two threshold values, z1, and z2, are determined by
taking the means of the top-2 highest and top-2 lowest cluster
means, respectively. Samples in the sequence are identified as
important if the maximum value in any part of the sequence
exceeds z1 or if the minimum value falls below z2. For each
case, the parameters s and ν are treated as hyperparameters,
providing flexibility for fine-tuning the sampling strategy to
match the specific characteristics and distribution of the data.
By adjusting s and ν, practitioners can effectively control
the density and granularity of oversampled points around
important regions, ensuring a more targeted and data-driven
approach to oversampling. To be specific, the starting point is
shifted left of the identified maximum or minimum by s×ν/2,
and then data points are sampled every s points, repeated ν
times, effectively yielding s×ν samples around each identified
maximum or minimum point.

We will select a ratio os to manage the overall volume of
the training set. The oversampling process will end when the
amount of oversampled data exceeds os percent of the training
set. We employ grid search to determine the optimal os value.

Fig. 6. Stevens Creek reservoir, an artificial lake located in the foothills of
the Santa Cruz mountains, near Cupertino, California.

V. EVALUATION

A. Experimental Settings

1) Dataset: Our dataset1 includes over 31 years of hourly
water level sensor readings for 5 reservoirs in Santa Clara
County, CA, which are Almaden, Coyote, Lexington, Stevens
Creek, and Vasona, named after their locations and de-
scribed in Table I. The table shows several statistics for the
5 reservoir sensors used in our study. As an illustration,
Fig. 6 shows Stevens Reservoir, an artificial lake located
in the foothills of the Santa Cruz mountains, near Cuper-
tino, California. Information about these reservoirs can be
found at https://www.valleywater.org/your-water/local-dams-
and-reservoirs. Although the majority of the data was accessi-
ble starting in 1973, we noticed a large number of missing and
anomalous data points in the series’ early years as a result of
sensor or data storage malfunctions. Therefore, we restricted
our study to the years 1991–2019. An adaptive polynomial
interpolation method was used to fill in short gaps in the time
series during these periods. This method involved projecting

1Data and code for MC-ANN can be found at https://github.com/
davidanastasiu/mcann.
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TABLE II
EFFECTIVENESS COMPARISONS AGAINST STATE-OF-THE-ART METHODS ON ROLLING 8-HOUR PREDICTION.

Datasets Metric MC-ANN NEC+ iTransformer Informer NLinear DLinear NBEATS DNN-U A-LSTM

Almaden RMSE 7.412 10.580 65.683 211.241 16.199 23.009 23.229 9.676 18.040
MAPE 0.002 0.002 0.016 0.204 0.005 0.006 0.009 0.004 0.016

Coyote RMSE 45.373 64.590 755.083 7437.162 385.546 346.678 159.024 117.000 1282.913
MAPE 0.002 0.002 0.020 0.653 0.013 0.012 0.006 0.004 0.126

Lexington RMSE 255.739 303.510 1600.916 9565.245 645.141 798.529 468.829 318.024 660.354
MAPE 0.003 0.003 0.048 0.773 0.023 0.024 0.011 0.005 0.068

Stevens Creek RMSE 7.382 14.977 48.256 714.468 27.380 48.692 34.998 13.363 117.497
MAPE 0.002 0.002 0.0136 0.589 0.005 0.012 0.008 0.006 0.104

Vasona RMSE 5.137 5.775 15.269 19.580 7.045 12.544 10.572 11.370 23.587
MAPE 0.004 0.004 0.020 0.028 0.006 0.013 0.011 0.016 0.049

TABLE III
EFFECTIVENESS COMPARISONS AGAINST STATE-OF-THE-ART METHODS ON 3-DAYS PREDICTION.

Datasets Metric MC-ANN NEC+ iTransformer Informer NLinear DLinear NBEATS DNN-U A-LSTM

Almaden RMSE 53.539 58.117 59.272 217.641 60.516 64.596 64.764 58.648 57.649
MAPE 0.014 0.014 0.015 0.162 0.017 0.021 0.018 0.017 0.021

Coyote RMSE 433.571 466.276 608.228 8507.417 631.056 730.057 535.886 417.24 1338.622
MAPE 0.011 0.011 0.015 0.619 0.019 0.022 0.013 0.012 0.128

Lexington RMSE 774.209 794.842 926.294 11878.486 1019.081 1082.898 931.356 832.329 1050.5
MAPE 0.015 0.014 0.020 0.930 0.030 0.033 0.023 0.018 0.078

Stevens Creek RMSE 71.303 91.810 93.042 1052.549 90.084 99.598 89.918 76.090 156.591
MAPE 0.013 0.011 0.015 0.888 0.014 0.024 0.015 0.016 0.128

Vasona RMSE 18.474 20.893 18.264 22.051 20.157 20.021 21.405 20.683 32.245
MAPE 0.018 0.020 0.020 0.031 0.020 0.024 0.023 0.027 0.062

the missing values onto a polynomial function that was learned
to best match k values before and after a gap of size 2k.

Our objective was to forecast the reservoir water level
for a year, from July 2018 to June 2019. The training and
validation datasets were randomly selected from time series
data covering the period from January 1991 to June 2018.
Our pre-processing regimen for model training included a
first-order differencing, xi = xi+1 − xi for each time step
i, and normalization of the data by standardization (subtract
the mean and divide by standard deviation). Post-processing
steps to revert the data to its original scale involved reversing
the standardization and first-order differencing transformations
applied during pre-processing.

2) Model Parameters: In our study, we employ the
Expectation-Maximization algorithm to fit the GMM models
to the training set input data. Furthermore, we set the number
of components M to 3 for each time series. This decision is
based on our observations that increasing the number of clus-
ters beyond this tends to produce additional components with
diminishing weights, which do not contribute significantly to
the model’s performance.

In our AEF models, we employed a four-layer Long Short-
Term Memory (LSTM) network architecture followed by a
hyperbolic tangent (tanh) activation function to normalize the
LSTM outputs. Upon evaluating various layer widths—256,
384, 512, 698, and 1024 nodes—we determined that layers
with 512 nodes delivered optimal results. For regularization,
we implemented a dropout rate of 0.1 to prevent overfitting and

promote model generalizability. While f = 72 (3 days) was
set by our problem definition, we tested h ∈ 72, 168, 360, 720,
i.e., 3, 7, 15, and 30 days, and found h = 360 to work the
best for all reservoirs. Post-LSTM, our model uses a fully
connected layer to output the final predictions of AEF.

In the WAN network described in Fig. 5, 384 hidden nodes
are used in the attention layer and dense layer for the Almaden,
Stevens Creek, and Vasona sensors, and 300 for the Coyote
and Lexington sensors.

For simplicity, we set the ν and s oversampling parameters
to 18 and 4, respectively, in all our experiments. Essentially,
this means that we will oversample the whole prediction
portion of a given significant sample every four steps, resulting
in an excess of 18 data points around a peak or low point.
We used 20% oversampling for the Stevens Creek dataset and
40% for all others. Additionally, we used PWfactor = 0.4
for the Coyote, Stevens Creek, and Vasona sensors, while the
Almaden and Lexington sensors rely solely on SW clustering
(PWfactor = 0).

We utilized the Adam optimizer with an initial learning rate
of 0.001, which decays by a factor of 0.9 after each epoch.
The training process is configured to run for a maximum
of 100 epochs, with early stopping set to trigger after 4
epochs without improvement. All the models involved in the
experiments were trained on a dataset comprising 40,000
samples, and we validate their performance using a randomly
selected set of 60 samples which were excluded from the
training set.



9

0 10 20 30 40 50 60 70
time ( hours )

540

550

560

570

wa
te

r l
ev

el

Ground Truth
DNN-U : 0.6
N-BEATS : 1.0
NEC+ : 1.2
MC-ANN : 0.3

0 10 20 30 40 50 60 70
time ( hours )

1380
1390
1400
1410
1420
1430

wa
te

r l
ev

el

Ground Truth
DNN-U : 1.4
N-BEATS : 1.2
NEC+ : 2.9
MC-ANN : 1.0

0 10 20 30 40 50 60 70
time ( hours )

1000
1100
1200
1300
1400
1500
1600
1700

wa
te

r l
ev

el

Ground Truth
DNN-U : 25.3
N-BEATS : 47.8
NEC+ : 36.2
MC-ANN : 15.5

0 10 20 30 40 50 60 70
time ( hours )

16000
16250
16500
16750
17000
17250

wa
te

r l
ev

el

Ground Truth
DNN-U : 56.7
N-BEATS : 24.1
NEC+ : 12.1
MC-ANN : 8.3

0 10 20 30 40 50 60 70
time ( hours )

630

640

650

660

wa
te

r l
ev

el

Ground Truth
DNN-U : 0.6
N-BEATS : 2.1
NEC+ : 1.7
MC-ANN : 0.4

0 10 20 30 40 50 60 70
time ( hours )

2920
2940
2960
2980
3000
3020

wa
te

r l
ev

el

Ground Truth
DNN-U : 2.7
N-BEATS : 4.9
NEC+ : 2.4
MC-ANN : 1.1

0 10 20 30 40 50 60 70
time ( hours )

2500
2600
2700
2800
2900
3000

wa
te

r l
ev

el

Ground Truth
DNN-U : 3.8
N-BEATS : 11.6
NEC+ : 12.3
MC-ANN : 6.7

0 10 20 30 40 50 60 70
time ( hours )

11000

11100

11200

11300

11400

wa
te

r l
ev

el
Ground Truth
DNN-U : 15.4
N-BEATS : 18.8
NEC+ : 13.9
MC-ANN : 11.7

0 10 20 30 40 50 60 70
time ( hours )

1250
1300
1350
1400
1450
1500
1550

wa
te

r l
ev

el

Ground Truth
DNN-U : 6.6
N-BEATS : 17.2
NEC+ : 8.3
MC-ANN : 4.1

0 10 20 30 40 50 60 70
time ( hours )

14000

15000

16000

17000

wa
te

r l
ev

el

Ground Truth
DNN-U : 50.8
N-BEATS : 191.6
NEC+ : 50.0
MC-ANN : 65.5

0 10 20 30 40 50 60 70
time ( hours )

11500

12000

12500

13000

13500

14000

wa
te

r l
ev

el

Ground Truth
DNN-U : 27.9
N-BEATS : 132.2
NEC+ : 11.4
MC-ANN : 7.6

0 10 20 30 40 50 60 70
time ( hours )

1000
1100
1200
1300
1400
1500
1600
1700

wa
te

r l
ev

el

Ground Truth
DNN-U : 19.3
N-BEATS : 32.6
NEC+ : 25.5
MC-ANN : 14.0

Fig. 7. Effectiveness comparison of MC-ANN and baselines. RMSE values are denoted next to each label.

B. Baseline Methods

Our method, MC-ANN, was benchmarked against a com-
prehensive selection of cutting-edge models used in both
general time series and specialized hydrologic prediction, as
detailed in the related work section. These models include:

• FEDFormer [44], which optimizes the Transformer model
by incorporating seasonal-trend decomposition, enhanc-
ing efficiency and performance in long-term forecasting,

• iTransformer [25], which applies the attention and feed-
forward network on the inverted dimensions,

• Informer [21], a Transformer variant designed for ex-
tended time series predictions, featuring a prob-sparse
self-attention mechanism,

• NLinear [23], a robust linear approach employing first-
order differencing, tailored for long-term time series
analysis,

• DLinear [23], a model that applies trend decomposition
to improve long-term time series forecasting,

• N-BEATS [4], renowned for its superior performance on
several benchmark datasets,

• DNN-U [41], a state-of-the-art univariate LSTM-based
encoder-decoder hydrologic model used to predict reser-
voir lagged water levels,

• A-LSTM [38], a state-of-the-art hydrologic model used
to predict stream-flow by applying attention mechanism
to generate the hidden states of a decoder, and

• NEC+ [10], our previous hydrologic time series predic-
tion model especially designed for data involving extreme
events that employs a suite of LSTM-based models.

C. Main Results

The experiment results are shown in Tables II and III. The
best value of each metric is shown in bold. The second-best
value is underlined. While we also tested FEDFormer [44], its
performance was generally worse than the other transformer-
based methods and we leave its results out from the table
due to lack of space. Overall, without sacrificing the 3-day
prediction accuracy, MC-ANN consistently surpasses other
models, with improvements ranging from around 10% to
nearly 45% in rolling prediction. Transformer-based methods
such as iTransformer, FEDFormer, and Informer, struggle
significantly with datasets that exhibit large variances. In the
cases of the Coyote, Lexington, and Stevens Creek reservoirs,
these methods under-performed markedly, indicating a vulner-
ability to the challenges posed by substantial fluctuations in
the data. Fully connected networks such as NLinear, DLinear,
and NBEATS, which benefit from decomposing data into main
trends and residuals, exhibit better performance compared to
Transformer-based methods. However, they still fall short of
achieving high accuracy. On the other hand, RNN-based mod-
els like DNN-U, A-LSTM, and NEC+, which are specifically
tailored for hydrologic data forecasting, perform better than
the aforementioned methods. Despite this, they do not surpass
the effectiveness of MC-ANN, which outperforms all these
models in predicting water levels with big variances.

1) 8-hour rolling prediction: Across various reservoirs, the
MC-ANN model demonstrates superior performance with sub-
stantial improvements in RMSE compared to other forecasting
methods. For Almaden, MC-ANN shows an improvement
of approximately 23.4% over the next best model, while
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in Coyote, it achieves a 29.8% better RMSE. Lexington
sees a 15.7% improvement, and notably, Stevens Creek and
Vasona reservoirs exhibit improvements of 44.8% and 11.1%,
respectively. These results underscore MC-ANN’s significant
advancements in predictive accuracy for rolling water level
predictions, highlighting its potential for practical applications
in hydrologic forecasting.

2) 3-days prediction: In the realm of single-shot 3-day pre-
dictions, MC-ANN consistently manifests high performance,
marked by notable improvements over various state-of-the-art
methods. Overall, MC-ANN performs best on 4 of 5 reservoirs
and is in the second position, only slightly behind the leader,
in the fifth. Comparing its results here with those in the 8-
hour rolling prediction task, we note that MC-ANN excels at
predicting the start of the series, consistently outperforming its
competition without much trade-off in effectively predicting
the remaining time points.

3) statistical significance testing: To validate the robustness
of our improvements, we conducted a Wilcoxon Signed-Rank
Test comparing MC-ANN with each baseline using RMSE
from both rolling and 3-day-ahead predictions across five
datasets (10 RMSE values per model). The results confirm that
MC-ANN significantly outperforms all baselines (p < 0.05 in
all cases), showing the statistical significance of our improve-
ments.

4) Inference examples: Fig. 7 shows several example pre-
dictions from the five reservoirs. For visual clarity and to
emphasize comparative effectiveness, we only show a few
of the closest baseline models in addition to MC-ANN and
exclude those with significantly poorer performance. This
approach highlights the relative strengths and improvements
of MC-ANN over models with the closest accuracy, thereby
providing a more focused and impactful visual representation
of its predictive capabilities.

Results illustrate that MC-ANN excels in capturing the
short-term trends of the data over a 3-day horizon, effectively
predicting the nuances of the water level time series. MC-
ANN is proficient in tracking rising curves, responding to
downward trends, and navigating through fluctuating patterns.
Even in instances of large variations, MC-ANN demonstrates
its capability to predict these significant changes with great
accuracy.

D. Ablation Studies
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Fig. 8. Effects of oversampling between 0% and 80% for the Stevens Creek
(left) and Vasona (right) reservoirs.

1) Effects of cluster-based oversampling: Given the data’s
pronounced skewness and kurtosis, which signal a deviation
from a normal distribution, it is impractical to set the oversam-
pling ratio OS based solely on data statistics. Thus, we advise

using a grid search strategy to identify the optimal values
for these parameters, ensuring a more precise and data-driven
approach to managing sample importance.

Fig. 8 shows the effects of oversampling between 0% and
80% for the Stevens Creek (left) and Vasona (right) reservoirs.
For the Steven Creek reservoir, performance is enhanced by
23.7% compared to not oversampling when OS is set to 20%,
i.e., 20% of the training data are oversampled. The optimal OS
percentage for the Vasona reservoir is 40%, and its RMSE is
lowered by 43.4%.
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Fig. 9. Segment-wise clustering examples.

TABLE IV
IMPACT OF WAN AND GMM CLUSTERING INPUTS ON RMSE

Dataset Type no WAN no PW PWfactor = 0.4

Coyote rolling 51.530 47.75 45.373
Coyote 3-day 472.578 435.032 433.571

Stevens Creek rolling 9.051 9.470 7.382
Stevens Creek 3-day 80.089 65.064 71.303

Vasona rolling 6.805 6.541 5.137
Vasona 3-day 19.792 19.032 18.474

2) Effects of WAN and Segment-Wise clustering: Consid-
ering the importance of point-wise clustering features, which
capture the distributional characteristics of the input series,
we evaluate the influence of segment-wise clustering (SW
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GMM) on overall model performance. To help understand this
influence, Fig. 9 shows some randomly chosen examples of
each SW GMM cluster when M = 3. It is easy to see that
the clusters have samples with different shapes, as intended
in our design. Furthermore, Table IV presents RMSE results
for three reservoirs under different WAN configurations: (1)
without WAN, (2) with segment-wise clustering only, and (3)
with both point-wise and segment-wise clustering (optimal SW
factor found via grid search).

The results show that SW factor enhances forecasting ac-
curacy by allowing the model to capture segmented features
over time. Compared to the no-WAN baseline, integrating
SW alone improves 3-day prediction accuracy by 10.2% and
rolling prediction accuracy by 2.2% on average. Further incor-
porating point-wise clustering yields rolling prediction RMSE
reductions of 11.9%, 18.4%, and 24.5% for the respective
reservoirs and 3-day RMSE reductions of 8.3%, 11.0%, and
6.7% respectively. These results show that combining segment-
wise and point-wise clustering allows WAN to adaptively
enhance forecasting accuracy across reservoirs.

TABLE V
CLUSTER WEIGHTS BEFORE/AFTER MIXTURE

Coyote Reservoir min median max

PW Cluster Weights 0.008 0.251 0.741
SW Cluster Weights 0.252 0.366 0.382

Mixture Cluster Weights 0.195 0.308 0.497

Stevens Creek Reservoir min median max

PW Cluster Weights 0.017 0.269 0.714
SW Cluster Weights 0.122 0.329 0.549

Mixture Cluster Weights 0.283 0.299 0.418

Vasona Reservoir min median max

PW Cluster Weights 0.009 0.160 0.831
SW Cluster Weights 0.209 0.366 0.425

Mixture Cluster Weights 0.217 0.263 0.520

3) Effects of different mixture policies: As introduced in
Section IV-E, in order to correct cluster imbalance, we merge
the three sets of point-wise and segment-wise clustering
feature series based on mixture weights learned from their
respective GMM models. We arrange the M point-wise cluster
series in ascending order and the M segment-wise cluster
series in descending order based on their GMM mixture
weights. The imbalance of the clusters is relieved following
the blending procedure, as Table V illustrates.

Additionally, we performed a full year rolling prediction on
the Stevens Creek reservoir to demonstrate the significance of
this policy, which can be seen in Fig. 10. We compare the
worst policy, which involves merging the PW clusters in their
initial order, with the best policy, which we just described.
The results show how the worst policy performs poorly as a
result of significant imbalance.

VI. CONCLUSION

In this study, we introduce the Mixture Clustering Attention
Neural Network (MC-ANN), a composite framework for uni-
variate time series forecasting, tailored to effectively capture
rare but critical extreme events in lengthy time series data. The
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Fig. 10. Comparison of the effects of using the best and worst cluster mixture
policies on a whole year rolling prediction of the Stevens Creek reservoir
levels.

MC-ANN model employs an innovative clustering-based sam-
pling strategy to enhance the identification of crucial features,
significantly improving prediction accuracy by learning from
the data’s mixed distribution. Demonstrated to excel in real-
world applications, our model consistently updates short-term
forecasts with high precision while also grasping long-term
trends in extended three-day forecasts. Extensive testing on
five real-world datasets has shown that MC-ANN outperforms
existing methods, achieving a 10%–45% reduction in root
mean square error for time series with high variance and
extreme events. Additionally, the model’s unique attention-
based component weighting, which combines point-wise and
segment-wise clustering, has been proven in ablation studies
to further boost accuracy by over 20%.
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