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Tutorial Outline
 Part I: Problems and Data Types
 Dense, sparse, and asymmetric data
 Bounded nearest neighbor search
 Nearest neighbor graph construction
 Classical approaches and limitations

 Part II: Neighbors in Genomics, 
Proteomics, and Bioinformatics
 Mass spectrometry search
 Microbiome analysis

 Part III: Approximate Search
 Locality sensitive hashing variants
 Permutation and graph-based search
 Maximum inner product search

 Part IV: Neighbors in Advertising and 
Recommender Systems
 Collaborative filtering at scale
 Learning models based on the neighborhood 

structure

 Part V: Filtering-Based Search
 Massive search space pruning by partial 

indexing
 Effective proximity bounds and when they 

are most useful

 Part VI: Neighbors in Learning and 
Mining Problems in Graph Data
 Neighborhood as cluster in a complex 

network system
 Neighborhood as influence trigger set
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Part I:
Problems and Data Types
David C. Anastasiu, San José State University    [ david.anastasiu@sjsu.edu ]
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Data Mining / 
Machine Learning

Threat/Outlier detection

Duplicate detection

Advertising/Recommendation

Clustering

Pharmaceutical virtual screening

etc…

Data

Similarities
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Traffic Analytics

• Organizing member and Evaluation Chair for the AI City Challenge.
• Address challenges in traffic analysis from video, including: 

• Multi-camera vehicle tracking
• Speed estimation from video
• Anomaly detection

[IEEE CVPR’19] CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification
[IEEE SOSE’19, IEEE SOSE’19, IEEE MC’19, IEEE CVPRW’18, IEEE SmartWorld’17]

w/ Milind Naphade, CTO of AI Cities, NVIDIA 
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Document and Text Mining

Hard problem, complicated 
by the multinational and 
multilingual aspect of the 
Flex business

[Flex Grant] Industry collaboration.

Detect fraud and/or savings opportunities in expense reports

• Receipt localization and classification (ResNet, YOLO-like models)
• Object character recognition (CNN + Bi-directional LSTM)
• Knowledge extraction (NER, heuristics)
• Report-receipt matching (KNN using visual features) 
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Improve Quality and Utility of Search Results

• Developed a “label-first” hierarchical clustering technique.
• Path-based collaborative editing of cluster labels and assignments.
• Method incorporated in a document processing pipeline at LLNL.

[CIKM’11] A Framework for Personalized and Collaborative Clustering of Search Results
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Open Modification Spectral Library Search
[Grant NSF 1850557] CRII: III: RUI: Effective Protein Characterization via Fast Exact Open Modification Searching

• Methods for characterizing the protein composition of biological samples
• Mass spectrometers output relative abundance histograms (spectra)
• Massive databases exist for protein-associated spectra (spectral libraries)
• Task is to match unknown spectra against nearest neighbor in library

• Challenges
• Imperfect ionization/spectrometry
• Size of databases (10’s to 100’s or million)

Image: https://i.stack.imgur.com/iVYVY.png

w/ William Stafford Noble, Genome Sciences, UW



Nearest Neighbor Search
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• Given: a set     of     points in
a query point    from a set     in

• Goal: find the nearest neighbor of    in 

𝑞𝑞
𝑝𝑝



What are we searching for?

• Object representation assigns meaning to object features
• Continuous / discrete / binary
• Synchronous / asynchronous 
• Dense / sparse
• High- / low-dimensional

• Most of the time we represent objects as point vectors in some 
Euclidean space

• Lends itself to easily-understood algebraic and geometric relationships 
between the points
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Asymmetric attributes
• Only presence (a non-zero attribute value) is regarded as important

• Words present in documents
• Items present in customer transactions
• Edges in a graph

• If we met a friend in the grocery store would we ever say the following?
“I see our purchases are very similar since we didn’t buy most of the same 
things.” 

• Asymmetric attributes typically arise from objects that are sets.

• They lend themselves to a sparse vector representation
• More than 50% of values are 0’s, and 0’s are ignored
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Curse of dimensionality

• When dimensionality increases, data 
becomes increasingly sparse in the space 
that it occupies.

• Definitions of density and distance 
between points, which is critical for 
clustering and outlier detection, become 
less meaningful.

• Still meaningful if there is structure in the 
data, i.e., points are clustered/grouped

• Randomly generate 500 points.

• Compute difference between max 
and min distance between any pair 
of points.



Dimensionality Reduction

• Purpose:
• Avoid curse of dimensionality.
• Reduce amount of time and memory required by data mining algorithms.
• Allow data to be more easily visualized.
• Help to eliminate irrelevant features or reduce noise.

• Techniques:
• Principal Components Analysis (PCA)
• Singular Value Decomposition
• Others: supervised and non-linear techniques
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How do we decide the objects are close?
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Bounded nearest-neighbor search
Extensions of the nearest neighbor problem:

• 𝑘𝑘-nearest neighbor (NN) search
• Find 𝑘𝑘 closest neighbors

• Min-𝜖𝜖 similarity search (max-𝑟𝑟 distance, or radius search)
• Find all neighbors with similarity ≥ 𝜖𝜖 (within distance 𝑟𝑟 from the query) 

• 𝑘𝑘-nearest neighbor graph construction
• Find 𝑘𝑘 closest neighbors for all objects in the set

• All-pairs similarity search (min-𝜖𝜖 graph construction)
• Find all neighbors with similarity ≥ 𝜖𝜖 for all the objects in the set
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Background on NN methods

• Tree-based methods (small dimensionality)
• Quad-tree, K-d-tree, VP-tree, R-tree (and variants), Cover-tree, PCA-tree, Ball-tree, 

K-means tree, Spill-tree, HD-index, etc.
• Stochastic methods (approximate)

• LSH (and variants), C2LSH, QALSH, FLANN, KGraph, ANNOY, LEMP, FAISS, FLASH, 
EFANNA, KIFF, HNSW, NGT, etc.

• Filtering based methods (exact)
• All-Pairs, MMJoin, APT, L2AP, CANN, L2Knng, TAPNN, etc.

• Tutorial focused on NNs for real-valued vectors
• Esp. for Euclidean distance and cosine similarity
• Esp. high-dimensional vectors
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