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Tutorial Outline

= Part I: Problems and Data Types = Part IV: Neighbors in Advertising and
» Dense, sparse, and asymmetric data Recommender Systems
= Bounded nearest neighbor search " Collaborative filtering at scale
= Nearest neighbor graph construction - kfrircljciSrgemOdels based on the neighborhood

= Classical approaches and limitations

= Part V: Filtering-Based Search

. ) . . .
Part II: Neighbors in Genomics, " Massive search space pruning by partial

Proteomics, and Bioinformatics indexing
" Mass spectrometry search = Effective proximity bounds and when they
= Microbiome analysis are most useful
= Part Ill: Approximate Search = Part VI: Neighbors in Learning and

= Locality sensitive hashing variants M'n'n_g Problems in Gr.aph Data
= Neighborhood as cluster in a complex

. Permutatiqn and graph-based search network system
" Maximum inner product search = Neighborhood as influence trigger set



Talk Outline

* What is filtering-based search?

* Massive search space pruning by partial indexing [and other pruning
strategies]
* So what in the world is partial indexing?
e Search using a partial index
* The case of k-NNG construction
* Approximate methods could use filtering too
 What if we used parallelism
* When both length and angles matter

e Effective proximity bounds and when they are most useful
* Not all pruning is created equal
* When less is more

* Open questions



What is filtering-based search?

* Given a similarity bounding threshold, there is no need to compute the
full similarity between a pair of vectors to tell if they are similar enough

 Compute an upper bound similarity estimate
* Prune/filter the pair if the similarity estimate is below the threshold

sim (g, ¢) > sim(q, ¢)
if: sim(q,c) < e
then: sim(q,c) < €

prune



ow to prune the search space

All Pairwise Similarities
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Sparsity

Vector lengths
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Take advantage of sparsity

Input matrix

h o B fa s fe <dz',dj>
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Index and Accumulator: a match made in heaven

* Inverted index: set of lists, one for each feature, containing
documents and their associated values

......................
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Accumulator

Inverted Index



l[dxJoin: A straight-forward solution

* Method:

Compute and store vector norms
Construct an inverted index from the objects
query
° Compare only with objects with features in common
° Select neighbors

e Results in EXACT solution

* Advantage:

 Skips some object comparisons and many meaningless multiply-
adds



Datasets

Dataset n m nnz (M) | mrl mcl type
Patents 100,000 759,044 46.3 464 61 text
WW100k 100,528 339,944 79 787 233 text
Twitter 146,170 | 143,469 200 | 1370 | 1395 | graph
WW500 | 243223 | 660,600 202 | 830 306 | text
MLSMR 325,164 20,021 006.1 173 2803 | chem
WW500k | 494,244 | 343,622 197 | 399 574 | text
RCV1 804,414 43,001 61 76 1417 text
WW200 | 1,017,531 | 663,419 437 | 430 659 | text
Wiki | 1,815,914 | 1,648,879 14| 24 27 | eraph
Orkut | 3,072,626 | 3,072,441 223 | 73 73 | graph
SC | 11,519,370 7415 | 17845 | 155 | 262.669 | chem
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The sparsity advantage: IndexJoin vs. n? /2

Dataset # sims % all sims
Orkut | 23.308.569.172 0.12
Wiki 71,700,509,475 1.09

Twitter | 8.516.651.351 19.93
RCV1 | 289.612,531.857 29.38

WW100k | 5.052.763.937 25.00

WW500k | 122.095.368,297 25.00

* Alarge number of comparisons are filtered by the sparsity constraints
* For Orkut and Wiki, 99% or more of the comparisons are simply ignored



LSH vs. IndexJoin

* In all experiments, LSH parameters were tuned to achieve at least 95% accuracy.
* LSH outperforms IndexJoin at high thresholds.

* Performs poorly at low thresholds and for high dimensional datasets (Orkut, Wiki).
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A prelude: prefix and suffix vectors
fii o B fa f5 fe

d; |27 E 72 .64
i 2, fs fa fs fe i o, s fa fs
djgp 27 i: dj>p i: 72
D- P-
di = d=° + d7?
Idilly = a5, + 17,
Il = =, o+
(divdj) = (di,d5¥) + (d;,d]")
(divdj) = (d77.d7") + (d;".d;")



So what in the world is partial indexing?

Main idea:

Only need to index enough non-zeros to guarantee correct result.

. < <
sim(dy, de) < [|dy ||z X [ldcl]2

< [[d5 ]2 x 1
< €

fi f2 13 fa fs fe

dy  |dy dp

ds  |ds

ds | |d,4

Input matrix

i 2 fz fa f5 fe
dy

|dz*]], < e
d;
d3
dy
ds

* WeEe’'ll focus initially on the min-e graph construction problem.

Inverted Index
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Partial indexing in practice

* L2AP indexes fewer non-zeros than previous approaches

* Leads to greatly improved execution runtime

100

RCV1
80
£
o 60
=
=
w
= 40
=S
20
0
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
<
B index nnz —@— # comparisons

15



Search using a partial index

L2AP follows a two-step process:

1. Accumulate similarity using partial inverted index

D A

Inverted
index

B

Forward
index

DD! = DAT + DB?

di dp d3 dy ds

— 1|-1/|.25 |-1]|.54

Accumulator

2. For each un-pruned object, finish similarity computation using

forward index

« Only need to compute a subset of similarities: sim(d,, d;) & sim(dy, dg)

* Can do further filtering

http://davidanastasiu.net/software/l2ap/
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http://davidanastasiu.net/software/l2ap/

Angle/Suffix Filtering

Filter/prune object pairs not in final graph based on
similarity estimates

(dg?,dz?) <|dg7 (|2 x [|dZ7]|2

(Cauchy-Schwarz inequality)

hoRE e fs e
dq |[*]|*]|

d. |~*

Y

Aldc]

T
14712 > [1dZ7 12

Filter sim(dg, d;) if Alde] + [[d]P|[2 x [|dZP[|2 < e
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Angle/Suffix Filtering

Filter/prune object pairs not in final graph based on
similarity estimates

hoRE e fs e
dq |[*]|*]|

d. |~*

i
\ J L
Y

Alde]  [1dg7 ]2 > [1dZ7 ]

Filter sim(d,, d.) if
Alde] + min(][d2?[o. 127 ]|o) x [[d27 oo X [|dZ7[]oc > €



But won’t it take longer to compute those norms?

* We pre-compute all necessary norms and store them in a compressed
sparse row (CSR) —like data structure

* O(nnz) time and space for this step

.75|.25|.25|.50(.25
27 72 .64
72 |.49 49

.67 33 .67
.65 .44 A4 .44

rowval |.75(.25|.25|.50(.25|.27 .72 |.64|.72 .49 |.49|.67|.33|.67|.65(.44|.44|.44

Same idea for

1d77llo, or [|[d7P||o

|I2norm |.66|.61|.56|.25|.00(.96|.64|.00 .69 .49 .00 .75|.67|.00 .76|.62|(.44 .00

rownd /1123|4503 5/0/1|/4/1 /3|, 5|0/|1/|3 4

rowptr | 0 | 5| 8 |11|14|18 19




# candidates

Filtering in practice

25x101°
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1.5x1010 |
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* L2AP filters most objects without computing their similarity

WW500
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ow fast is it?

* L2AP outperforms all exact and most approximate baselines
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The case of k-NNG construction

* In the k-NN problem, we don’t have a nice global minimum similarity
threshold we can use for filtering

* |t exists, but
* (1) we don’t know it
e (2)itis likely too low to make a difference

* We can use local incomplete (approximate) neighborhood thresholds
* L2Knng strategy:

e Build an initial approximate graph G
* Provides thresholds for filtering

e Improve G until exact
* Search for objects that can improve neighborhoods

http://davidanastasiu.net/software/I2knng/ 22



http://davidanastasiu.net/software/l2knng/

Step 1: Approximate graph construction

a) Heuristically choose candidates likely to succeed
* Find an initial neighborhood for each object

fi |ds.72

ds .65

f> |dy .75

d, .67

ds .49

f, dy 72

fs|dy .50

ds .49

ds |f .72

f> 49| |fs .49

Sort vectors and inverted lists in non-increasing weight order
Traverse inverted lists and gather u = k candidates

Cu=3 = [ds, dq, d4]

Compute similarities with candidates and keep the k nearest
neighbors

* This step results in an initial approximate graph

23



Step 1: Approximate graph construction

b) Improve initial approximate graph

* Find potential better neighbors for each object (y
times)
* Visit neighbors in non-increasing similarity order
* Consider dg, a neighbor of d,., as a candidate if:
* Have collected less than u candidates
* sim(ds, dy) = sim(d,,dy)
* Compute similarities with candidates and update
both neighborhoods of ds and d,

Cy=3(d1) — [ds» d3»d4]

24



Influence of initial
graph quality
toward exact
graph construction

o
o

initial graph
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=
N

ow important is Step 17
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Step 2: Filtering

* For each query object d;,
* Find previously processed objects such that:
* sim(d., dg) > g, can improve query obj. neighborhood
* sim(d., dg) > a4,: can improve neighborhood of previously processed objects

 Verify list of candidate objects:
* prune object pair as soon as possible
* else update neighborhoods of both objects

* Index processed query object

* Caveats
* Neighborhoods stored in max-heaps
* Index tiling used to improve neighborhoods quicker

26



ow well does the filtering work?

Number of candidates pruned in different
stages of the filtering framework
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1e+4 -

total time (s), log-scaled
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ow fast is it?
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Approximate methods could use filtering too

* CANN applies the ideas in L2ZAP and L2Knng-a to the approximate
min-€ graph construction problem

* Approximate solution, in 2 steps:

1. Construct approximate min-€ k-NN graph G
1) Heuristically choose objects that area likely neighbors:
a. Build partial inverted index for min-€ search
b. Sort query vectors and partial inverted index in decreasing order
c. Choose objects with high weights in common

2. Use G to construct final min-e NN graph
1) Zero or more graph improvement steps

a. Chose candidates among the neighbors of my neighbors that have

higher similarity with my neighbor than me and my neighbor do -



Filtering helps improve efficiency

e L2-Norm bound is most useful (ignore others)
* Helpful to hash the query vector (e.g., make it dense)

Bounded similarity computation with pruning:

1. function BOUNDEDSIM(d,, d., €)

2: s — 0

3: for each j =1,...,ms.t. d. j >0 do

4: if d, ;j >0 then

5: s s+dgjXdej

6: if s+ [|d;” || x [[d2’ || < € then

T return -1

8: return s

(dg.dc) = (dZF,dzF) + (d;7.d7")

compute estimate

30



time (s), log-scaled
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What if we used parallelism?

* Many processes/threads means potential contention over data
structures or output space

* Must carefully design methods that delineate independent work for the
threads while ensuring load balance

* If all threads have working data, they may overwhelm the cache and
cause delays due to cache misses

e Cache tiling and memory-efficient data structures can help reduce the cache
footprint of each thread

32



Cache tiling

} ( non-zeros per index

p 7 objects in each
query block
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Masked hash table

. traversal order_

dq .43 17 .83/.31
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TR

Hash table 4 -1/10/11|/2 -1/-1 Index pointers
h overflow
17 .83/.31 /.43 Values
2 341 Prefix sizes
Data
43 83/.83.43 Prefix max values
46 95/1.0!.43 Prefix lengths

Partial linear overflow scan during collision lookup.
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Neighborhood updates

* Local neighborhood updated during search

* Candidate neighborhood updates staged for cooperative update at
the end of query block

di N %Q:&ﬁ o K B e ﬁﬁ%%m% o0/3!/9/11/14
N L D o|2]5[10[12
ds XN 7 0|59/12]12
d, Q&\@%ﬁ% o 0[3|5|5]|8
ds| 1 F o o|o|a|8]10

t, S ¢,




Tiling in practice

Percent Instructions Leading to Cache Misses (Collisions)
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ow fast is it?

pldxJoin —e— PL2AP —&— serial —m—
PAPT —a— pL2AP, —a&—

2—e—9 |

WW200 WW500 RCV1

345678934567893456789
€
24 threads @ 2.5 GHz Intel Xeon E5-2680v3 \w 30 Mb Cache
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When both length and angles matter

* Tanimoto min-€ NNG Construction

For each object d; from a set D,
find all neighbors d; with T(di, dj) = €.

. O <di,dj>
T(di, dj) = ||di||§+||dj||§—<di’dj>

Id: — dj|

http://davidanastasiu.net/software/tapnn/
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Length-based filtering

* d; and d. cannot be neighbors unless
Idel € [(1/a)lldgll, efldgll]

SHEHRI(GDE

* a bound due to Marzena Kryszkiewicz, I11DS 2013

* Relabel objects in non-decreasing length order

fl f2 f3 f4 f5 f6
dq X dy | |dy dy |dy dy | dy
dy— X dy|lds|  [dy](da ][4,
ds | ds | |dy dy | |ds | |ds
d4 ds ds
ds




Subset of cosine neighborhood

* The following inequalities hold for our domain:
T(d;,d;) < C(d;,d;)

T(dz,dj) > €= C(d@,dj) > €
C(dz,dj) < € = T(di,dj) < €

* Potential solution
 Store vector norms and normalize vectors
* Find cosine neighbors (L2AP-like filtering here)

* Transform C(di, d]) to T(di, d])
* Remove non-Tanimoto neighbors

* Tighter bound due to Lee et al., DEXA 2010

2€

T(dz,dj) > € = C(dz,dj) > -

€

=1
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Length + Angle-Based Pruning

* d, and d. cannot be neighbors unless

S

2
Idell € [(1/B8) [Idgll s Blldgll], 5 = % + \/(E) —1

where s is any cosine similarity upper bound
such as the ones we compute during filtering.
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time (s), log-scaled

ow fast is it?
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Scales well as data set size increases.
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Effective proximity bounds and
when they are most useful



What will the output look like?

And, a related question, how do | choose €/k?

e Qutput of similarity search/graph construction is data-dependent

* For some data sets, you get no neighbors at € = 0.95 cosine similarity; for
others, you get many neighbors

* A given € threshold means different things in different contexts

* Number of neighbors is dependent on dimensionality

* By the pigeon hole principle, when n > m, more likely to see collisions
(features in common)

* Filtering effectiveness is dependent on stdev of feature weights
* |f all features weight the same, it will take longer to accumulate similarity

* Parameter choices are often dependent on subsequent analysis that
the neighbors are sought for
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Pruning Effectiveness Comparison

percent pruned by partial indexing

() O © D‘ o > "
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Neighborhood Graph Statistics

€ M P M P MK P
WW500k RCV1 Orkut
0.1 || 1,749 3.5e-03 || 10,986 1.4e-02 76 2.5e-05
0.2 233 4.7e-04 2,011  2.5e-03 21  6.9e-06
0.3 64 1.3e-04 821 1.0e-03 7.2  2.4e-06
0.4 25 95.1e-05 355 4.4e-04 2.3 7.6e-07
0.5 10 2.2e-05 146 1.8e-04 || 0.69 2.3e-07
0.6 4.7  9.5e-06 57 7.2e-05 || 0.22 7.2e-08
0.7 2.1  4.2e-06 25 3.2e-05 || 0.09 3.1e-08
0.8 0.93 1.9¢-06 14 1.8e-05 || 0.07 2.1e-08
0.9 0.28 5.7e-07 8.1 1.0e-05 || 0.06 2.0e-08

i: Average neighborhood size
p: Output graph density
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Not all pruning is created equal

* Designed many filtering criteria for the min-€ and k-NN problems. E.g.,

bound | stage target estimate

id idx | sim(d>7, ds,) min((d3), mx>4), ||d77||2)

Sz c.g. min(||d.||o) (G/quHOO)2

rs sim(d?,d<q) min(<d§j,m$>a Hd?lb)

[2¢cqg sim(d;j,dfj) qu<j\|2 < ||ds7 |2

ps C.V. sim(d,, d;) min(<d§,miv2c>a HdgHz)

dpsy sim(dg,d>) | min(|[dy[lo, |5 |lo) * [|dy]|co X ||dZ]oc
dpss sim(dy,d) | min([|dy[lo, [|d="]lo) x [|d5" oo % 15|
[2¢cv sim(d;j,dfj) qu<j|\2 x ||ds7 |2

e Some of the criteria are problem-specific (L2-Norm-bound is not)
e Of all criterial, the L2-Norm bound is the most productive (by far)

* Some have suggested less pruning may be more efficient

e E.g., De Francisci Morales & Gionis, VLDB’16 (extended L2AP to streaming case)

* May be data specific, but has not been my finding so far




# dot-products, log-scaled

total time (s)

When less is more

 The amount of pruning is not directly proportional to efficiency
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bound estimate

dpsi | min(||dg|lec X [[dZ[[1, [|dZ oo X [|dy[]1)

dpsy | min([|d3?||ce x [|dZ (1, [|dZ ||oe x [1dZ7 (1)

dpss | win(||dylloo x [|dZ"[|1, [|delloo x [|dZ7 1)

dpss | win([|d?|loo X 1271, 12 ]oo > [|d57 1)

dpss | min([|dglo, [|dZ]]0) X [|dgllee X |5

dpss | win([|dgllo, [|dZ" (o) X ||d57 |lo X |57

dpsy | min([|dg"[lo, [|dZ"lo) x [|dgllo X [|dZ7]

dpss | min(||dg|lo, [|d"lo) x |57 |lo X ||dZ7 |
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Some filtering may cover other filtering
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Summary and Open Questions



ln summary

* Creating sparsity-aware algorithms goes a long way towards efficient
solutions to hard problems

* Filtering is a very effective technique for similarity search, especially for
sparse data and asymmetric proximity measures

* L2-norm filtering is extremely effective for cosine similarity and
Tanimoto coefficient — may also be beneficial in other proximity
measures (e.g., Euclidean distance)

* More research is needed to:
* Derive new even tighter filtering bounds
* |dentify optimum balance between checking and not checking bounds

* Characterize NNS pruning and output based on feature statistics
* Yuliang Li et al. (ICDT2019) prove optimality guarantees for L2-norm filtering of skewed data
* They also propose alternate and partial inverted list traversal + lower-bound filters



Questions?
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