Are You My Neighbor? Bringing Order to
Neighbor Computing Problems.

David C. Anastasiul? , Huzefa Rangwala3, and Andrea Tagarelli*
1Computer Engineering, San Jose State University, CA
!Computer Science & Engineering, Santa Clara University, CA
2Computer Science & Engineering, George Mason University, VA
3DIMES, University of Calabria, Italy

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2019

Part V:
Filtering-Based Search

David C. Anastasiu, San José State University [david.anastasiu@sjsu.edu]

Starting September:
Department of Computer Science and Engineering
Santa Clara University

Tutorial Outline

= Part I: Problems and Data Types = Part IV: Neighbors in Advertising and
» Dense, sparse, and asymmetric data Recommender Systems
= Bounded nearest neighbor search " Collaborative filtering at scale
= Nearest neighbor graph construction - kfrircljciSrgemOdels based on the neighborhood

= Classical approaches and limitations

= Part V: Filtering-Based Search

.) . . .
Part II: Neighbors in Genomics, " Massive search space pruning by partial

Proteomics, and Bioinformatics indexing
" Mass spectrometry search = Effective proximity bounds and when they
= Microbiome analysis are most useful
= Part Ill: Approximate Search = Part VI: Neighbors in Learning and

= Locality sensitive hashing variants M'n'n_g Problems in Gr.aph Data
= Neighborhood as cluster in a complex

. Permutatiqn and graph-based search network system
" Maximum inner product search = Neighborhood as influence trigger set

Talk Outline

* What is filtering-based search?

* Massive search space pruning by partial indexing [and other pruning
strategies]
* So what in the world is partial indexing?
e Search using a partial index
* The case of k-NNG construction
* Approximate methods could use filtering too
 What if we used parallelism
* When both length and angles matter

e Effective proximity bounds and when they are most useful
* Not all pruning is created equal
* When less is more

* Open questions

What is filtering-based search?

* Given a similarity bounding threshold, there is no need to compute the
full similarity between a pair of vectors to tell if they are similar enough

 Compute an upper bound similarity estimate
* Prune/filter the pair if the similarity estimate is below the threshold

sim (g, ¢) > sim(q, ¢)
if: sim(q,c) < e
then: sim(q,c) < €

prune

ow to prune the search space

All Pairwise Similarities

N

Sparsity

Vector lengths

Vector angles

—-@ Angles & lengths

\ /\. True neighbors

Take advantage of sparsity

Input matrix

h o B fa s fe <dz',dj>
d1‘ ________ | T(ds,d;) = ||di|\§+||dj||3—<diadj>
o
0, _(didy)
e C(di, dj) = [[ds[[2x[|d;]]2
dy
ds

(da,ds) Zf:dQ,l X dg 1|+ doo X d3 o + daz x d3 3+
doa X d3a+das X d3s+dag X d3g

Index and Accumulator: a match made in heaven

* Inverted index: set of lists, one for each feature, containing
documents and their associated values

......................

d3 f1f2 f5
ALl s fo fs fo

Ald,]
Alds]
Aldi] +=d3; X dy,
Ald,]
Alds]

dy iidy ildy dy idy idy sl t=d3, X dy,
d3 iids dy ids | d ’ +:[d]3,2 sz
ds) [da] [da]ds] |d ﬂ
d5 E d5 dl d2 d3 d4 d5
________ o
Accumulator

Inverted Index

l[dxJoin: A straight-forward solution

* Method:

Compute and store vector norms
Construct an inverted index from the objects
query
° Compare only with objects with features in common
° Select neighbors

e Results in EXACT solution

* Advantage:

 Skips some object comparisons and many meaningless multiply-
adds

Datasets

Dataset n m nnz (M) | mrl mcl type
Patents 100,000 759,044 46.3 464 61 text
WW100k 100,528 339,944 79 787 233 text
Twitter 146,170 | 143,469 200 | 1370 | 1395 | graph
WW500 | 243223 | 660,600 202 | 830 306 | text
MLSMR 325,164 20,021 006.1 173 2803 | chem
WW500k | 494,244 | 343,622 197 | 399 574 | text
RCV1 804,414 43,001 61 76 1417 text
WW200 | 1,017,531 | 663,419 437 | 430 659 | text
Wiki | 1,815,914 | 1,648,879 14| 24 27 | eraph
Orkut | 3,072,626 | 3,072,441 223 | 73 73 | graph
SC | 11,519,370 7415 | 17845 | 155 | 262.669 | chem

10

The sparsity advantage: IndexJoin vs. n? /2

Dataset # sims % all sims
Orkut | 23.308.569.172 0.12
Wiki 71,700,509,475 1.09

Twitter | 8.516.651.351 19.93
RCV1 | 289.612,531.857 29.38

WW100k | 5.052.763.937 25.00

WW500k | 122.095.368,297 25.00

* Alarge number of comparisons are filtered by the sparsity constraints
* For Orkut and Wiki, 99% or more of the comparisons are simply ignored

LSH vs. IndexJoin

* In all experiments, LSH parameters were tuned to achieve at least 95% accuracy.
* LSH outperforms IndexJoin at high thresholds.

* Performs poorly at low thresholds and for high dimensional datasets (Orkut, Wiki).

1000
100
O 10
S d .
o
O 1 ldxJoin
@
o
N o '/—/
0.01 -
m
0.001
0.3 035 04 045 0.5 055 06 065 0.7 0.75 0.8 0.85 0.9 0.99
E
== Orkut =—%=—Twitter Wiki RCV1l —e—WW100k ——WW500k

12

A prelude: prefix and suffix vectors
fii o B fa f5 fe

d; |27 E 72 .64
i 2, fs fa fs fe i o, s fa fs
djgp 27 i: dj>p i: 72
D- P-
di = d=° + d7?
Idilly = a5, + 17,
Il = =, o+
(divdj) = (di,d5¥) + (d;,d]")
(divdj) = (d77.d7") + (d;".d;")

So what in the world is partial indexing?

Main idea:

Only need to index enough non-zeros to guarantee correct result.

. < <
sim(dy, de) < [|dy ||z X [ldcl]2

< [[d5]2 x 1
< €

fi f2 13 fa fs fe

dy |dy dp

ds |ds

ds | |d,4

Input matrix

i 2 fz fa f5 fe
dy

|dz*]], < e
d;
d3
dy
ds

* WeEe’'ll focus initially on the min-e graph construction problem.

Inverted Index

14

Partial indexing in practice

* L2AP indexes fewer non-zeros than previous approaches

* Leads to greatly improved execution runtime

100

RCV1
80
£
o 60
=
=
w
= 40
=S
20
0
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
<
B index nnz —@— # comparisons

15

Search using a partial index

L2AP follows a two-step process:

1. Accumulate similarity using partial inverted index

D A

Inverted
index

B

Forward
index

DD! = DAT + DB?

di dp d3 dy ds

— 1|-1/|.25 |-1]|.54

Accumulator

2. For each un-pruned object, finish similarity computation using

forward index

« Only need to compute a subset of similarities: sim(d,, d;) & sim(dy, dg)

* Can do further filtering

http://davidanastasiu.net/software/l2ap/

16

http://davidanastasiu.net/software/l2ap/

Angle/Suffix Filtering

Filter/prune object pairs not in final graph based on
similarity estimates

(dg?,dz?) <|dg7 (|2 x [|dZ7]|2

(Cauchy-Schwarz inequality)

hoRE e fs e
dq |[*]|*]|

d. |~*

Y

Aldc]

T
14712 > [1dZ7 12

Filter sim(dg, d;) if Alde] + [[d]P|[2 x [|dZP[|2 < e

17

Angle/Suffix Filtering

Filter/prune object pairs not in final graph based on
similarity estimates

hoRE e fs e
dq |[*]|*]|

d. |~*

i
\ J L
Y

Alde] [1dg7]2 > [1dZ7]

Filter sim(d,, d.) if
Alde] + min(][d2?[o. 127]|o) x [[d27 oo X [|dZ7[]oc > €

But won’t it take longer to compute those norms?

* We pre-compute all necessary norms and store them in a compressed
sparse row (CSR) —like data structure

* O(nnz) time and space for this step

.75|.25|.25|.50(.25
27 72 .64
72 |.49 49

.67 33 .67
.65 .44 A4 .44

rowval |.75(.25|.25|.50(.25|.27 .72 |.64|.72 .49 |.49|.67|.33|.67|.65(.44|.44|.44

Same idea for

1d77llo, or [|[d7P||o

|I2norm |.66|.61|.56|.25|.00(.96|.64|.00 .69 .49 .00 .75|.67|.00 .76|.62|(.44 .00

rownd /1123|4503 5/0/1|/4/1 /3|, 5|0/|1/|3 4

rowptr | 0 | 5| 8 |11|14|18 19

candidates

Filtering in practice

25x101°

ox1010 |

1.5x1010 |

1x1070 |

5x10° |

* L2AP filters most objects without computing their similarity

WW500

filtered
dps =

5x10°

4.5x10° |
4x10° |
3.5x10° |
3x10° |
2.5x10° |
2x10° |
1.5x109 |
1x10% |
5x108 |

Wiki

filtered |
dps =

% accumulation

25

20

15

10

Mean % accumulated non-zeros

WW200 —s—
WW500 —a—
RCV1 —e—

20

ow fast is it?

* L2AP outperforms all exact and most approximate baselines

LSH ~x- IdxJoin --e- MMJoin - L2AP —=—
1e+5 % + X, + -
. 3;&*&4@0-0-0-0-04—0«»
1e+4 4 + X v, +ox -
-‘—‘"'1‘.:‘;1;""., s:4:-% greesseesum
1e+3 A T+ XL . T X .
© .
()] a x:(. .\-\.“"l-__- x> *-e.,
® 3 . ol
q 100 - + + S
n * x\;\;
1
= 10 - : +
- WikiWords500k WikiWords100k
o] } T T 1 } f T — f t t i f f — t t T i f f t
N2 1e+5 - Xex, + -+ X .
() ‘X--x..x.x X, "R
& .x'x*-x. . X, ok
S fetd | %y T * T %
© :0*0-0-0-0-0'0-«0-“
®-09.0.4.0-9.9,
1e+t3 (¢ 4-¢-¢-6-00-0.0-¢ 0 i) 4]
§ e+3 1¢:¢: : 0-:-0 aabdh S B da b 28~ —S-g g g o ‘e . h—‘—%;ﬁ';‘ﬁ‘.t $0.0:60404
.\.\.\: '0.--.. x'.x % ‘5 = .‘*=-_=_,_'= =‘~= ..
100 - ‘. + Koy W L =
\I\L-\. e, . X %
H'“"--;:‘t.
10 - - . .
WikiLinks TwitterLinks Orkuthks

3 4 5 6 7 8 9 13 4 5 6 7 8 9 13 4 5 6 .T 8 9 1

The case of k-NNG construction

* In the k-NN problem, we don’t have a nice global minimum similarity
threshold we can use for filtering

* |t exists, but
* (1) we don’t know it
e (2)itis likely too low to make a difference

* We can use local incomplete (approximate) neighborhood thresholds
* L2Knng strategy:

e Build an initial approximate graph G
* Provides thresholds for filtering

e Improve G until exact
* Search for objects that can improve neighborhoods

http://davidanastasiu.net/software/I2knng/ 22

http://davidanastasiu.net/software/l2knng/

Step 1: Approximate graph construction

a) Heuristically choose candidates likely to succeed
* Find an initial neighborhood for each object

fi |ds.72

ds .65

f> |dy .75

d, .67

ds .49

f, dy 72

fs|dy .50

ds .49

ds |f .72

f> 49| |fs .49

Sort vectors and inverted lists in non-increasing weight order
Traverse inverted lists and gather u = k candidates

Cu=3 = [ds, dq, d4]

Compute similarities with candidates and keep the k nearest
neighbors

* This step results in an initial approximate graph

23

Step 1: Approximate graph construction

b) Improve initial approximate graph

* Find potential better neighbors for each object (y
times)
* Visit neighbors in non-increasing similarity order
* Consider dg, a neighbor of d,., as a candidate if:
* Have collected less than u candidates
* sim(ds, dy) = sim(d,,dy)
* Compute similarities with candidates and update
both neighborhoods of ds and d,

Cy=3(d1) — [ds» d3»d4]

24

Influence of initial
graph quality
toward exact
graph construction

o
o

initial graph
recall
=
N

ow important is Step 17

random ---ée--

fast —o— Dbest —a—

-
o
| |

35 -

2

S

ST

)

o

35K -

” |

~ 25K -

O] _

£ 15K
5K -

25 -
15 A
.05 +

- 0.2

| | Rcv1'400|k :

-------- A |
o pnaneeeel _
A‘-u- o _
P = _
Y _
oo'g’u’ ’ e _
du RCV1-400k WW200-250k -

5 25 50 75 100 5 25 50 75 oo

- 1.0

- 0.6

- .55
- 45
- 35
- 25

7K
5K
3K
1K

25

Step 2: Filtering

* For each query object d;,
* Find previously processed objects such that:
* sim(d., dg) > g, can improve query obj. neighborhood
* sim(d., dg) > a4,: can improve neighborhood of previously processed objects

 Verify list of candidate objects:
* prune object pair as soon as possible
* else update neighborhoods of both objects

* Index processed query object

* Caveats
* Neighborhoods stored in max-heaps
* Index tiling used to improve neighborhoods quicker

26

ow well does the filtering work?

Number of candidates pruned in different
stages of the filtering framework

RCV1-400k WW200-250k
4et1t0 || = {3e+10
) L
£ 3e+10 | -
ke _ — 1 2e+10
2 —
T 2e+10 [__
H*
4 1e+10
1e+10 r
cg 0
ses O eRDB Y T ovBBL
Y O 2

dps Kk Kk

27

1e+5

1e+4 -

total time (s), log-scaled

10

ow fast is it?

Approximate Baselines

NN-Descent ---+--
Greedy Filtering ---4---

L2KnngApprox ---&--
L2Knng —=—

1e+3 -

100 H

1e+4 -

1e+3 -

100 -

RCV1

RCV1-100k

10 25 50 75 100

10 25 50 75 100

Kk

1e+6

1e+5

Tle+d -

1e+3 -

100 -

10

1e+6

1e+5 +

le+d

1e+3 -

100 -

10 A

Exact Baselines

kldxJoin —@—
KL2AP —é—

Maxscore —e—
BMM —g—

L2Knng —=—

| WW200-250k

RCV1-100k

w1

| RCV1-400k

5 25 50 75 100

5 25 50 75 100

k

5 25 50 75 100

Approximate methods could use filtering too

* CANN applies the ideas in L2ZAP and L2Knng-a to the approximate
min-€ graph construction problem

* Approximate solution, in 2 steps:

1. Construct approximate min-€ k-NN graph G
1) Heuristically choose objects that area likely neighbors:
a. Build partial inverted index for min-€ search
b. Sort query vectors and partial inverted index in decreasing order
c. Choose objects with high weights in common

2. Use G to construct final min-e NN graph
1) Zero or more graph improvement steps

a. Chose candidates among the neighbors of my neighbors that have

higher similarity with my neighbor than me and my neighbor do -

Filtering helps improve efficiency

e L2-Norm bound is most useful (ignore others)
* Helpful to hash the query vector (e.g., make it dense)

Bounded similarity computation with pruning:

1. function BOUNDEDSIM(d,, d., €)

2: s — 0

3: for each j =1,...,ms.t. d. j >0 do

4: if d, ;j >0 then

5: s s+dgjXdej

6: if s+ [|d;” || x [[d2’ || < € then

T return -1

8: return s

(dg.dc) = (dZF,dzF) + (d;7.d7")

compute estimate

30

time (s), log-scaled

10°3

102

10!

10?2

10!

ow fast is it?

-1 x AgaA f& ava « Bx? ﬁﬁaﬁe%‘ oo ¥ox® R
g

.].i' ‘35,5 Aa %A M
i = |

. " &

=]
.m!! (]
o - “] .
E § B § =™

Twitter, ¢=0.7 WW100k, c=0.7

tirA* AR A;S* irA* .] * * L * % LI #**_
@
3 I]f ba AAA & an ‘%&m’
mE
[] -) =
]
3 o - LI = . 4
] ![I!di

Twitter, ¢=0.9 WW100k, ce=0.9

0.0 02 04 06 08 1000 02 04 06 08 1o
recall recall
e o L2AP » = BLSH-I
A Ao L2AP-a = = CANN

103

10?2

10!

103

10°

10!

time (s), log-scaled

104 F

103 |

10% }

10t}

10° f
10% |
103 ¢
10% |

10t }

103 }

10%}

10t}

;- =~ * *Ih T = ; -~
-~ ad S
S TR e -
B B T
l’ -
- ;\\B\
Orkut Wiki
03 04 05 06 07 08 09 03 04 05 06 07 08 09
€ €
e—e L2AP = = BLSH-I
&~ - L2AP-a = -= CANN

Recall = 0.9

31

110°
{10
{10°
{10?

{10t

{10*
{103
{102

{10t

{103

{10?

{10t

What if we used parallelism?

* Many processes/threads means potential contention over data
structures or output space

* Must carefully design methods that delineate independent work for the
threads while ensuring load balance

* If all threads have working data, they may overwhelm the cache and
cause delays due to cache misses

e Cache tiling and memory-efficient data structures can help reduce the cache
footprint of each thread

32

Cache tiling

} (non-zeros per index

p 7 objects in each
query block

33

Masked hash table

. traversal order_

dq .43 17 .83/.31
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TR

Hash table 4 -1/10/11|/2 -1/-1 Index pointers
h overflow
17 .83/.31 /.43 Values
2 341 Prefix sizes
Data
43 83/.83.43 Prefix max values
46 95/1.0!.43 Prefix lengths

Partial linear overflow scan during collision lookup.

34

Neighborhood updates

* Local neighborhood updated during search

* Candidate neighborhood updates staged for cooperative update at
the end of query block

di N %Q:&ﬁ o K B e ﬁﬁ%%m% o0/3!/9/11/14
N L D o|2]5[10[12
ds XN 7 0|59/12]12
d, Q&\@%ﬁ% o 0[3|5|5]|8
ds| 1 F o o|o|a|8]10

t, S ¢,

Tiling in practice

Percent Instructions Leading to Cache Misses (Collisions)

pPL2AP —tiled index 1.8 | 24 threads, £=0.3

pL2AP_rr — full inverted index 16l RCV1, pL2AP
™ || RCV1, pL2AP,,

1.4 | WW200, pL2AP

B

(d)p]
Load Balance s 12 WW200, pL2AP,
T ; . 46 1 i
05} E
3 2 08¢
: 2 o6l
e
® 0.4 |

0.2 |
0 [] -_---.-......
< < Q S 4
Y % % % L % % % %%,

index size

< ALAITIINITIIIIIHIIIIINNNNNNY

— — —t
o o o
N w EN

—
O—L

time (s, log-scaled)

ow fast is it?

pldxJoin —e— PL2AP —&— serial —m—
PAPT —a— pL2AP, —a&—

2—e—9 |

WW200 WW500 RCV1

345678934567893456789
€
24 threads @ 2.5 GHz Intel Xeon E5-2680v3 \w 30 Mb Cache

37

When both length and angles matter

* Tanimoto min-€ NNG Construction

For each object d; from a set D,
find all neighbors d; with T(di, dj) = €.

. O <di,dj>
T(di, dj) = ||di||§+||dj||§—<di’dj>

Id: — dj|

http://davidanastasiu.net/software/tapnn/

38

Length-based filtering

* d; and d. cannot be neighbors unless
Idel € [(1/a)lldgll, efldgll]

SHEHRI(GDE

* a bound due to Marzena Kryszkiewicz, I11DS 2013

* Relabel objects in non-decreasing length order

fl f2 f3 f4 f5 f6
dq X dy | |dy dy |dy dy | dy
dy— X dy|lds| [dy](da][4,
ds | ds | |dy dy | |ds | |ds
d4 ds ds
ds

Subset of cosine neighborhood

* The following inequalities hold for our domain:
T(d;,d;) < C(d;,d;)

T(dz,dj) > €= C(d@,dj) > €
C(dz,dj) < € = T(di,dj) < €

* Potential solution
 Store vector norms and normalize vectors
* Find cosine neighbors (L2AP-like filtering here)

* Transform C(di, d]) to T(di, d])
* Remove non-Tanimoto neighbors

* Tighter bound due to Lee et al., DEXA 2010

2€

T(dz,dj) > € = C(dz,dj) > -

€

=1

40

Length + Angle-Based Pruning

* d, and d. cannot be neighbors unless

S

2
Idell € [(1/B8) [Idgll s Blldgll], 5 = % + \/(E) —1

where s is any cosine similarity upper bound
such as the ones we compute during filtering.

41

time (s), log-scaled

ow fast is it?

MLSMR SC-1M

OL.B OI.7 OI.B 01.9 0.59 OI.G OI.7 01.8 OI.9 O.|99
€ €

>+ ldxJoin e—-e MMJoin =& TAPNN

¥—¥ MK-Join

A~~A L2AP

time (s), log-scaled

SC-100k .| SC-1M

' SC-500k

time (s), log-scaled

' SC-5M

10° |]
10* |]

'sc-iIM | g

0.6 0.7 0.8 0.9 1.0 0 SC , , , , ,
095 096 0.97 098 099 1.00

€

Scales well as data set size increases.

42

Effective proximity bounds and
when they are most useful

What will the output look like?

And, a related question, how do | choose €/k?

e Qutput of similarity search/graph construction is data-dependent

* For some data sets, you get no neighbors at € = 0.95 cosine similarity; for
others, you get many neighbors

* A given € threshold means different things in different contexts

* Number of neighbors is dependent on dimensionality

* By the pigeon hole principle, when n > m, more likely to see collisions
(features in common)

* Filtering effectiveness is dependent on stdev of feature weights
* |f all features weight the same, it will take longer to accumulate similarity

* Parameter choices are often dependent on subsequent analysis that
the neighbors are sought for

44

Pruning Effectiveness Comparison

percent pruned by partial indexing

() O © D‘ o > "

®° <9 ©* A D O A*
Cosine § A P T Tanimoto # QQ, PRV

100 o0
% o
o RCV1 60
w0 o
o o
N

03 0.4 05 06 0.7 0.8 0.9 0703 04 o5 05 07 08 09

percent pruned by partial indexing

percent
percent

BN 2cq B cvilen s other

s ps B 2cv Bl nsims 45

Neighborhood Graph Statistics

€ M P M P MK P
WW500k RCV1 Orkut
0.1 || 1,749 3.5e-03 || 10,986 1.4e-02 76 2.5e-05
0.2 233 4.7e-04 2,011 2.5e-03 21 6.9e-06
0.3 64 1.3e-04 821 1.0e-03 7.2 2.4e-06
0.4 25 95.1e-05 355 4.4e-04 2.3 7.6e-07
0.5 10 2.2e-05 146 1.8e-04 || 0.69 2.3e-07
0.6 4.7 9.5e-06 57 7.2e-05 || 0.22 7.2e-08
0.7 2.1 4.2e-06 25 3.2e-05 || 0.09 3.1e-08
0.8 0.93 1.9¢-06 14 1.8e-05 || 0.07 2.1e-08
0.9 0.28 5.7e-07 8.1 1.0e-05 || 0.06 2.0e-08

i: Average neighborhood size
p: Output graph density

46

Not all pruning is created equal

* Designed many filtering criteria for the min-€ and k-NN problems. E.g.,

bound | stage target estimate

id idx | sim(d>7, ds,) min((d3), mx>4), ||d77||2)

Sz c.g. min(||d.||o) (G/quHOO)2

rs sim(d?,d<q) min(<d§j,m$>a Hd?lb)

[2¢cqg sim(d;j,dfj) qu<j\|2 < ||ds7 |2

ps C.V. sim(d,, d;) min(<d§,miv2c>a HdgHz)

dpsy sim(dg,d>) | min(|[dy[lo, |5 |lo) * [|dy]|co X ||dZ]oc
dpss sim(dy,d) | min([|dy[lo, [|d="]lo) x [|d5" oo % 15|
[2¢cv sim(d;j,dfj) qu<j|\2 x ||ds7 |2

e Some of the criteria are problem-specific (L2-Norm-bound is not)
e Of all criterial, the L2-Norm bound is the most productive (by far)

* Some have suggested less pruning may be more efficient

e E.g., De Francisci Morales & Gionis, VLDB’16 (extended L2AP to streaming case)

* May be data specific, but has not been my finding so far

dot-products, log-scaled

total time (s)

When less is more

 The amount of pruning is not directly proportional to efficiency

16410 - 1e+09

- 1e+08
16+09 - [

- 1e+07
16+08 - [

- 1e+06
1e+07 1, [
8000 - 4 - 250
7000 - 3
6000 - - 200
5000 -

- 150
4000 -
3000 - L 100
2000 -

- 50
1000 |

0 0

03 04 05 06 07 08 09 103 04 05 06 07 08 09 1
€

bound estimate

dpsi | min(||dg|lec X [[dZ[[1, [|dZ oo X [|dy[]1)

dpsy | min([|d3?||ce x [|dZ (1, [|dZ ||oe x [1dZ7 (1)

dpss | win(||dylloo x [|dZ"[|1, [|delloo x [|dZ7 1)

dpss | win([|d?|loo X 1271, 12]oo > [|d57 1)

dpss | min([|dglo, [|dZ]]0) X [|dgllee X |5

dpss | win([|dgllo, [|dZ" (o) X ||d57 |lo X |57

dpsy | min([|dg"[lo, [|dZ"lo) x [|dgllo X [|dZ7]

dpss | min(||dg|lo, [|d"lo) x |57 |lo X ||dZ7 |
48

Some filtering may cover other filtering

1e+10 3 - 1e+10
- i
QO] I
T €09 1 L 1e+09
(&]] -
(P 1e+08 - 3
S . L 1e+08
o : i
= 1e+07 1 _
& _ L 1e+07
S 1e+06 ; [
B8] - 1e+06
© 100000 - i
S 10000 L 100000
- | WW-100k Twitter _
1000 f } i i t ; f —— i i i } f f ; 10000
8000 - B e [12000
7000 T "L 10000
6000 e ""o g e? ---"y
L5000 4 " L 8000
g 4000 4~ | 5000
= 2997 4000
% 2000 - i
1000 e ——— e - 2000
°1 WW-100k Twitter - L0

03 04 05 06 07 08 09 103 04 05 06 07 08 09 1
€

Summary and Open Questions

ln summary

* Creating sparsity-aware algorithms goes a long way towards efficient
solutions to hard problems

* Filtering is a very effective technique for similarity search, especially for
sparse data and asymmetric proximity measures

* L2-norm filtering is extremely effective for cosine similarity and
Tanimoto coefficient — may also be beneficial in other proximity
measures (e.g., Euclidean distance)

* More research is needed to:
* Derive new even tighter filtering bounds
* |dentify optimum balance between checking and not checking bounds

* Characterize NNS pruning and output based on feature statistics
* Yuliang Li et al. (ICDT2019) prove optimality guarantees for L2-norm filtering of skewed data
* They also propose alternate and partial inverted list traversal + lower-bound filters

Questions?

References

[1] Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira and Yannis Papakonstantinou Index-based,
High-dimensional, Cosine Threshold Querying with Optimality Guarantees. ICDT 2019.

[2] David C. Anastasiu & George Karypis. Parallel cosine nearest neighbor graph construction. Elsevier Journal of
Parallel and Distributed Computing, 2017. Impact factor: 1.815.

[3] David C. Anastasiu & George Karypis. Efficient identification of Tanimoto nearest neighbors; All Pairs Similarity
Search Using the Extended Jaccard Coefficient. Springer International Journal of Data Science and Analytics,
4(3):153-172, 2017.

[4] Gianmarco De Francisci Morales and Aristides Gionis. 2016. Streaming similarity self-join. Proc. VLDB Endow. 9,
10 (June 2016), 792-803. DOI: http://dx.doi.org/10.14778/2977797.2977805

[5] David C. Anastasiu and George Karypis. Efficient Identification of Tanimoto Nearest Neighbors. Proceedings of
the 3rd IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016).

[6] David C. Anastasiu & George Karypis. Fast Parallel Cosine K-Nearest Neighbor Graph Construction. In 2016 6th
Workshop on Irregular Applications: Architecture and Algorithms (1A3) (IA3 2016), pages 50-53, 2016.

[7] David C. Anastasiu & George Karypis. PL2AP: Fast Parallel Cosine Similarity Search. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms, in conjunction with SC'15 (IA3 2015), pages 1-8,
ACM, 2015.

[8] David C. Anastasiu and George Karypis. L2ZKnng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm

Pruning. In 24th ACM International Conference on Information and Knowledge Management, CIKM '15, 2015.
53

References

[9] David C. Anastasiu and George Karypis. L2AP: Fast Cosine Similarity Search With Prefix L-2 Norm Bounds.
Proceedings of the 30th IEEE International Conference on Data Engineering (ICDE 2014).

[10] M. Kryszkiewicz. Using non-zero dimensions and lengths of vectors for the tanimoto similarity search
among real valued vectors. Intelligent Information and Database Systems. Springer International Publishing,
2014, pp. 173-182.

[11] Youngki Park, Sungchan Park, Sang-goo Lee, and Woosung Jung. Greedy filtering: A scalable algorithm for
k-nearest neighbor graph construction. In Database Systems for Advanced Applications, volume 8421 of
Lecture Notes in Computer Science, pages 327-341. Springer-Verlag, 2014.

[12] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian locality sensitive hashing for fast similarity
search. Proc. VLDB Endow. 5, 5 (January 2012), 430-441.

[13] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages 577-
586, New York, NY, USA, 2011. ACM.

[14] Dongjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee. 2010. An efficient similarity join algorithm with
cosine similarity predicate. In Proceedings of the 21st international conference on Database and expert
systems applications: Part Il (DEXA'10), Pablo Garcia Bringas, Abdelkader Hameurlain, and Gerald Quirchmayr
(Eds.). Springer-Verlag, Berlin, Heidelberg, 422-436

[15] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all pairs similarity search. In
Proceedings of the 16th international conference on World Wide Web (WWW '07). ACM, New York, NY, USA,
131-140.

54

	Are You My Neighbor? Bringing Order to Neighbor Computing Problems.
	Part V:�Filtering-Based Search
	Tutorial Outline
	Talk Outline
	What is filtering-based search?
	How to prune the search space
	Take advantage of sparsity
	Index and Accumulator: a match made in heaven
	IdxJoin: A straight-forward solution
	Datasets
	The sparsity advantage: IndexJoin vs. 𝑛 2 /2
	LSH vs. IndexJoin
	A prelude: prefix and suffix vectors
	So what in the world is partial indexing?
	Partial indexing in practice
	Search using a partial index
	Angle/Suffix Filtering
	Angle/Suffix Filtering
	But won’t it take longer to compute those norms?
	Filtering in practice
	How fast is it?
	The case of k-NNG construction
	Step 1: Approximate graph construction
	Step 1: Approximate graph construction
	How important is Step 1?
	Step 2: Filtering
	How well does the filtering work?
	How fast is it?
	Approximate methods could use filtering too
	Filtering helps improve efficiency
	How fast is it?
	What if we used parallelism?
	Cache tiling
	Masked hash table
	Neighborhood updates
	Tiling in practice
	How fast is it?
	When both length and angles matter
	Length-based filtering
	Subset of cosine neighborhood
	Length + Angle-Based Pruning
	How fast is it?
	Effective proximity bounds and when they are most useful
	What will the output look like?
	Pruning Effectiveness Comparison
	Neighborhood Graph Statistics
	Not all pruning is created equal
	When less is more
	Some filtering may cover other filtering
	Summary and Open Questions
	In summary
	Questions?
	References
	References

